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Abstract

This article discusses the dynamics of an incompressible, isotropic elastic continuum. Starting from the
Lorentz-invariant motion of defects in elastic continua (Frank 1949), MacCullagh’s aether theory (1839)
of an incompressible elastic solid is reconsidered. Since MacCullagh’s theory, based on linear elasticity,
cannot describe charges, particular attention is given to a topological defect that causes large deformations
and therefore requires a nonlinear description. While such a twist disclination can take the role of a charge,
the deformation field of a large number of these defects produces a microstructure of deformation related
to a Cosserat continuum (1909). On this microgeometric level, a complete set of quantities can be defined
that satisfies equations equivalent to Maxwell’s.
Note added in 2020. I do not identify any longer with the entire content of this paper originally
written in 2005, because the elastic continuum approach has significant difficulties in describing Dirac’s
large numbers. However, I think the paper contains some valuable thoughts that may stimulate further
research.
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1 Introduction

There is a long history of elastic solid theories re-
lating to electrodynamics, which Sir Edmund Whit-
taker elaborately described in his famous treatise
(1951). This branch of physics is not focus of curent
attention as it is widely held that aether theories
and Lorentz invariance are incompatible. To dis-
prove this prejudice, in section 1 I outline that the
propagation of topological defects in elastic media
even requires a description that is equivalent to the
special theory of relativity (SRT), whereby the ve-
locity of sound takes the role of c. Due to this lit-
tle known result, which was obtained first by Frank
(1949), aether theories such as the one developed by
Irish physicist James MacCullagh should regain due
consideration; this is done in section 2. In its classic
form, MacCullagh’s theory can only describe elec-
trodynamics without charges, and it was discarded,
as a result, already in the 19th century. Unfortu-
nately, at that time, neither the knowledge of topo-
logical defects (dislocation theory started around
1950) nor on finite continuum mechanics were de-
veloped.

Therefore, I discuss the properties of a particu-
lar topological defect that can act as a charge and,
at the same time, satisfies Lorentz-invariant dynam-
ics. Section 4 raises the question regarding the de-
formation field of a large number of defects. While
still dealing with compatible deformation, the aris-
ing microstructure appears to be a concrete exam-
ple of a Cosserat continuum (Cosserat and F. 1909;
Mindlin 1964; Kröner 1980; Hehl 1991). Section 5
and 6 discuss that microstructure in detail. The aris-
ing quantities are analogous to those that satisfy the
equations of electrodynamics.

Though these remarks are inspired by the sim-
ilarities to electrodynamics, the skeptical reader is
invited to follow the discussion of a variety of effects
that follow from ‘pure’ continuum mechanics.

2 Dynamics of an incompress-
ible elastic continuum

2.1 Lorentz invariance

We investigate the continuum mechanics of an elas-
tic solid with topological defects. It will be shown1

1Following Frank (1949).

that moving topological defects show a Lorentz con-
traction of their deformation fields.

The continuum is described by two quanti-
ties: the displacement2 vector ~u that points from
an undeformed, ’Euclidean’ state to the deformed
state, and its derivative, the deformation gradient F
(Truesdell and Toupin 1960; Beatty 1987; Unzicker
2000).

The equation of motion in linear elasticity is the
Navier equation (Love 1927, p. 293; Whittaker 1951,
p. 139, with slight changes of notation)

−(λ+ 2µ) grad div ~u−µ curl curl ~u = ρ
∂2~u

∂t2
, (1)

where µ and λ are the elastic constants and ρ is
the density of the elastic continuum. In linear ap-
proximation, incompressibility enforces div ~u = 0,
therefore, eqn. (1) reduces to

−µ curl curl ~u = ρ
∂2~u

∂t2
(2)

Apply now vector analysis ∆ = grad div −
curl curl and suppose a statically stable topologi-
cal defect (that satisfies µ curl curl ~u = 0) prop-
agates in x-direction with velocity v.3 Even if it
causes deformations of arbitrary shape, it will be
represented by a time-independent function of x′, y
and z, where x′ = x − vt. With this substitution

and with ∆ = curl curl , ∂2

∂t2 becomes v2 ∂2

∂x′2
, and

the remaining terms of eqn. 1 reads:

µ(
∂2

∂y2
+

∂2

∂z2
) + (µ− v2ρ)

∂2

∂x′2
= 0 (3)

With the further substitution

x′′ = x′

√
1− v2ρ

µ
= (x− vt)

√
1− v2

c2
, (4)

where c =
√
µ/ρ, the propagating solution is iden-

tical to the static solution, apart from the substitu-
tion x → x′′, the well-known ‘Lorentz contraction’
by the factor

√
1− v2/c2. The speed of light in the

special theory of relativity (SR) corresponds to the
velocity of transverse sound in an elastic solid.

2Displacement is just a shift of material elements and must
not be confused with the electric displacement D.

3The example of a screw dislocation is given in Unzicker
(2000).
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Similarly it can be shown that the elastic en-
ergy of a propagating solution increases with the
factor 1/

√
1− v2/c2 (Frank 1949, p. 132). Further

details on the one-to-one correspondence to SR can
be found in Eshelby (1949), Kröner (1960), Weert-
man and Weertman (1979), Günther (1988, 1996)
and in detail in Unzicker 2000.

Can these relativistic effects, apart from being a
curiosity of elasticity theory, have a deeper mean-
ing? The famous experiments by Michelson and
Morley seem to have disproved any concept of de-
scribing spacetime by continuum mechanics.

At this point I need to emphasize that the physi-
cists of the 19th century imagined particles to be
made of an external substance distinct from the
‘aether’, which, for some reason, can pass through
the aether without (or with infinitely little) fric-
tion.4.

In contrast to the above derivation, they never
thought of ‘particles’ as being defects creating a dis-
placement field. This is not astonishing, since the
first examples of such defects, dislocations in solids,
were discovered in 1934 by Taylor. In view of the
results of Frank (1949) and others however, one re-
alizes, describing spacetime as an elastic continuum
was not the wrong approach but a wrong or miss-
ing concept of particles moving in it . Elastic solid
theories therefore deserve reconsideration.

2.2 Maxwell’s equations of empty
space in MacCullagh’s theory

Among various aether theories, MacCullagh’s the-
ory (1839) is particularly interesting. Considering
an incompressible elastic solid, he identified µ curl ~u
with the electric and ρ∂~u∂t with the magnetic field.
The electric field would, thus, be related to the ro-
tation of volume elements, and the magnetic field to

4In ‘The Theory of Electrons’ (1915) however, Hendrik
Antoon Lorentz made the following interesting statement:
‘Indeed, one of the most important of our fundamental as-
sumptions must be that the ether not only occupies all space
between molecules, atoms or electrons, but that it pervades
all these particles. We shall add the hypothesis that, though
the particles may move, the ether always remains at rest.
We can reconcile ourselves with this, at first sight, somewhat
startling idea, by thinking of the particles of matter as of
some local modification in the state of the ether. These mod-
ifications may of course very well travel onward while the
volume-elements of the medium in which they exist remain
at rest’

their velocity.5

Then, equation (2) is obviously equivalent to the
first Maxwell equation

1

ε0
curl ~E = µ0

∂ ~H

∂t
, (5)

whereby we should bear in mind that linear elas-
ticity is an approximation. With this identification,
the second Maxwell equation

div ~H = 0 (6)

follows directly from the incompressibility condi-
tion div (ρ~u) = 0 (ρ is a constant), which implies
div d~u

dt = 0.
By definition

div curl ~u = 0 and curl
d

dt
~u =

d

dt
curl ~u (7)

holds, which correspond to Maxwell’s second pair of
equations in vacuo. In MacCullagh’s incompressible
elastic medium only transverse waves exist. Their
dynamics are completely analogous to electromag-
netic waves. Though only describing empty space,
the r.h.s. of (5) already contains Maxwell’s cele-

brated term d~D
dt .

3 The Larmor defect - a source
of intrinsic rotational strain

3.1 Nonlinear extension of MacCul-
lagh’s theory

As Whittaker (1951, p. 287) comments on the preed-
ing theory, ‘In the analogy thus constituted, electric
displacement corresponds to the twist of the ele-
ments of volume of the aether; and electric charge
must evidently be represented as an intrinsic rota-
tional strain.’ On the other hand, the vector identity
div curl = 0 seems to make charges impossible.

MacCullagh’s theory is based, however, on linear
elasticity, which is only an approximation. Never-
theless, one may obtain charges when dealing with
large deformations that require a nonlinear treat-
ment. Large deformations occur near topological de-
fects that have shown the above relativistic behav-
ior. In the following, I focus on a nontrivial topolog-
ical defect I call the Larmor6 defect.

5The incompleteness of such a proposal is discussed below.
6See description b).
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3.2 Defect creation

Since a proper understanding of the following is es-
sential, I will risk some redundancy in giving differ-
ent descriptions a)-d) of the same object that may
help visualization. The defect can be produced as
follows:

a) Cutting the elastic continuum along a (cir-
cular) surface, twisting the two faces against each
other by the amount of 2π and rejoining them again
by gluing.

b) On p. 227 of his article, Larmor (1900) de-
scribed a nearly identical process7: ‘if breach of con-
tinuity is produced across an element of interface
in the midst of an incompressible medium endowed
with ordinary material rigidity , for example by the
creation of a lens-shaped cavity, and the material
on the one side of the breach is twisted round in its
plane, and continuity is then restored by cementing
the two sides together..’

Of course, one creates singular deformation gra-
dients at the circular boundary.

c) Imagine RI3 filled with elastic material and re-
move a solid torus centered at the origin and with
z as symmetry axis (fig. 1). Then the complement
is doubly connected due to the material nearby the
z-axis. One now cuts the material along the surface
bounded by the inner circle of the torus in the x−y-
plane (hatched surface in fig. 1). Now the cut faces
can be twisted, for example the face of the positive
z-direction clockwise and the face of the negative
one counterclockwise, and glued together again. If
each of the twists amounts to π, the material ele-
ments meet their old neighbors again, so to speak,
since the total twisting angle is 2π. Returnung to the
above description, now let the removed torus shrink
to zero, r → 0 (Unzicker 2000).

d) cut out a cylinder from the inside of the elastic
material, leave the bottom of the cylinder untwisted,
apply a twist of 2π to the top (see fig. 2) and put
the cylinder back into the elastic continuum. Since
a twist of 2π corresponds to identity, the displace-
ment vector ~u is continuous at the top and bottom
surface, whereas it is discontinuous on the jacket of
the cylinder. Now let the jacket shrink to a circu-
lar singularity line and let the surrounding material
respond elastically to the imposed deformation.

7However, giving another interpretation to this ‘nucleus of
beknottedness’. See also Whittaker 1951, p. 287.

z

r

Figure 1: Schematic description of how to produce
the Larmor defect in an elastic continuum. The solid
torus is removed. Then the material is cut along the
hatched surface. After twisting the cut faces by the
amount of 2π, the material is rejoined. To obtain a
line defect, the solid torus can be shrunk to a sin-
gularity line. Note that after the cut, the same ma-
terial elements are rejoined. Topologically speaking,
the dotted line in fig. 1 represents a closed path in
SO(3).

The modern terminology8 used in material sci-
ence is ‘twist disclination loop’ with a twisting angle
of 2π (Unzicker and Fabian 2003).

3.3 Elementary properties of Larmor
defects

Mirror-symmetric types. Two versions of the
defect exist, distinguished by the orientation of the
twists. This becomes ultimately clear when you
think of wringing dry a wet towel with your hands.
You can do it in either by applying clockwise or
counterclockwise torque, regardless of the direction
in space of the twisting axis. Thus there are two
physically different deformations of the continuum,
mirror-symmetric to each other.

Motion of the defect. It is important to bear in
mind that during the motion of topological defects,

8The Larmor defects creates deformations that are locally
similar to those of a screw dislocation. The description as
‘screw dislocation loop’ (Unzicker 1996) is, however, no longer
used.
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Figure 2: Deformation of a cylindrical rod to which
a counterclockwise torque is applied to the top.

as in the propagation of waves, there is no travelling
of material, just of structure. Therefore, the singu-
larity line of the Larmor defect, as it is well known
from the motion of dislocations, can move without
any net material transport. The same holds for ro-
tations of the defect. Thus we consider it a mobile
object, like a knot in a frictionless cord.

Energies and ‘Forces’. It is clear that the dis-
placement field of two opposite defects compensates
and yields a trivial state. Two coalescing defects,
therefore, should release their stored elastic energy
and transform it into elastic waves. It is further clear
that two mirror-symmetric defects (of opposite sign)
propagating towards each other lower their elastic
energy W and should experience an attracting force
−dWdr . By analogy, we conclude that defects of the
same sign repel each other.9 When using the term
‘force’ we should bear in mind that we are not talk-
ing about interactions among material elements but
about displacement field configurations that travel
unchanged in form. One may define, however, such
a force using Newton’s F = m a and m := W

c2 (cf.
Frank 1949)

The deformation field proves intractable by lin-
ear elasticity. A solution with a finite torus (see

9For defects with a twisting angle of less than 2π one can
offer a more rigorous argument. As obtained in Unzicker and
Fabian (2003), the elastic energy increases with the square of
the twisting angle. Two superimposed defects would, there-
fore, contain four times the elastic energy of W . Assuming W
is a continuous function of the distance r, equal defects must
repel each other.

above c)) was obtained by rather extensive numer-
ical methods (Unzicker and Fabian 2003). The so-
lutions that rigorously took into account the non-
linear incompressibility condition, showed an elon-
gation along the symmetry axis of the defect. This
so-called Poynting effect10 is characteristic of the
theory of finite deformations.

Instead of describing the rotation of the vol-
ume elements by the curl of the displacement vector
curl ~u, finite rotations require matrices R ∈ SO(3).
How to obtain R from ~u the deformation gradient
F (polar decomposition) and other basic concepts of
nonlinear elasticity are outlined in sec. 5 of Unzicker
(2000).

For our purposes, we shall restrict to an approx-
imate solution given in fig. 3.

Figure 3: Qualitative description of the deformation
field on the surface of a sphere surrounding a Larmor
defect centered at the origin. In the first approxima-
tion, the displacement occurs along the meridians.

We shall assume the radius of the surrounding
sphere to be large compared to the Larmor defect;
thus the rotation of the volume elements (exagger-
ated in fig. 3) is satisfactorily described by curl ~u
and we may ignore other nonlinear effects.

10The Poynting effect in its classic form is (Truesdell and
Noll 1965, p. 193):‘When an incompressible cylinder, free on
its outer surface, is twisted, it experiences an elongation ul-
timately proportional to the square of the twist.’
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3.4 Surface and volume torques.

The defect as visualized in fig. 3 is intuitively speak-
ing a source of torque, since the regions of the poles
show a clockwise twist. When trying to formulate a
quantitative statement of this fact, one encounters
some unexpected difficulties. Note that keeping the
z-axis in mind, the torque is counterclockwise on the
south pole, but physically the poles have equivalent
(‘clockwise’) deformation.

The definition ‘torque per area’, applied to an
Gaussian surface integral, can lead to contradic-
tions. Consider the deformation in fig. 3 and try
to produce it by infinitesimal torques perpendicu-
lar to the surface. We can start at the pole regions,
apply clockwise torques, doing likewise on merid-
ional stripes towards the equator, and obtain the
desired deformation. Thus, one may claim that fig. 3
is a manifestation of clockwise torque. However, if
we start by applying torques on infinitesimal areas
in the equatorial region, the same deformation is
produced with counterclockwise torques. The same
problems arise even for flat surfaces, as one can
easily verify. There is a subtle difference, however.
Looking at the deformation in fig. 3, we note that
the deformation in the polar regions is a rotation,
whereas in the equatorial region we, more appropri-
ately, speak of a shear . Even if curl ~u is, say, positive
in the pole region and negative in the equatorial re-
gion, the sign does not tell us anything about the
characteristic deformation of fig. 3. How do you dis-
tinguish a ‘rotational’ from a ‘shear’ curl ? We have
to recover this from the topological properties of the
sphere (see fig. 4).

Due to Brouwer’s fixed point theorem, for any
deformation there are at least two points on the
sphere where ~u vanishes. In our special case fig. 3, it
vanishes indeed at the poles, and additionally, at the
equator. We shall call the deformation around the
poles rotational curl and what happens at the equa-
tor we shall call shear curl. Now we can easily define
the rotational curl linked to the 0-dimensional ob-
jects as the relevant one for our purposes, that is to
determine the sign of the Larmor defect inside the
sphere fig. 3. Correspondingly, we shall talk about
rotational and shear torques, referring to that topo-
logical definition.

Figure 4: Positions on the sphere surrounding a Lar-
mor defect where the displacement vector ~u van-
ishes. If ~u vanishes at a point, curl ~u in the vicinity
is called rotational, in the vicinity of the line, it is
called a shear type.

3.5 Relations to the Cosserat contin-
uum

In classical elasticity theory, at a boundary of a body
only forces are assumed to act per unit area. Then,
in the static case, the stress tensor σik

11 is shown
to be symmetric (Cauchy 1827; Love 1927, p. 78;
Truesdell and Toupin 1960; Beatty 2000).

In 1909, the brothers E. and F. Cosserat con-
sidered an elastic medium in which moment stresses
τik, that is torque i per unit area k, are allowed. The
equilibrium law in modern notation (e.g. Kröner
1980, eqn. 42) is

∂

∂k
τik = div τik = σ̄ik = σik − σki. (8)

σ̄ik is a vector perpendicular to both i and k.
Since it will be relevant for the following, I shall
visualize this equation in its integral form12 by con-
sidering a cylinder-shaped volume element∫

jacket

~σ × ~r d~f =

∫
circles

~τd~f (9)

inside an elastic material (see fig. 5). Generally, both
surface integrals have to be taken over the entire sur-
face. Here, if we apply a torque to both ends of the
rod towards a given orientation, this has to be com-
pensated by surface tractions on the jacket of the

11Force i per unit area k.
12Using a generalized Gauss’ theorem for tensors to div τik

and Stokes’ theorem for the curl -like quantity σ̄ik to all cir-
cular slices.
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cylinder. It is important to note that the contribu-
tions of τyy at the front and the back do not cancel
out since the opposite amount of torque is applied on
differently oriented surfaces. Thus the quantity τyy
changes along the rod, as it is clear from div τik 6= 0
in eqn. (9), too. It is also evident that given a con-
stant σxz and r, the total torque applied to the rod
increases with its length l, thus one can reasonably
define a volume density ti of torque - in the above
case 2τyy/l.

Figure 5: Visualization of eqn. (9), a volume ele-
ment in an elastic material consisting of a cylinder
on whose covers torques act. These torques are com-
pensated by surface tractions on the jacket.

It is clear that these theories of more general
elastic continua require a microstructure of the ma-
terial and, therefore, frequently are applied to in-
compatible deformations. In the above example,
their application can be justified if the size of the
regions of interest is larger than the volume element
(fig. 5). On the microscopic level, the above defor-
mation is compatible and still obeys classical con-
tinuum mechanics.

4 Distribution of a large num-
ber of Larmor defects

4.1 Paradoxes with isotropy

Inspired by the hypothesis that Larmor defects, act-
ing as ‘sources of intrinsic rotational strain’, could
serve as charges, one may wonder about the na-
ture of a macroscopic electric field. However, even

without that motivation, as a riddle of pure con-
tinuum mechanics, we may consider a large num-
ber, such as 1015, of (positive) Larmor defects dis-
tributed isotropically inside a sphere. Then the ques-
tion arises: what deformation field do we observe at
a distance? Due to incompressibility, the displace-
ment field ~u has no radial component, and if we as-
sume a radial symmetry of ~u, due to isotropy curl ~u
must also vanish; with a trivial derivative, the de-
formation itself however would be trivial. Larmor’s
defect of a negative sign should still experience an
attracting force, however. How is this force transmit-
ted? Where has all the stored elastic energy gone, if
the deformation is trivial?

4.2 Continuum mechanics with mi-
crostructure -‘texture’

To avoid this counterintuitive consequence, the only
possible solution is that radial symmetry is broken
and the anisotropy of a single Larmor defect trans-
forms into an anisotropy of the macroscopic defor-
mation even if one tries to arrange the defects in the
highest possible symmetric order.

Approximate numerical implementation. As
a first approach, the deformations of six Larmor de-
fects (see fig. 3), with axes oriented in dodecahedral
symmetry were superimposed, yielding the result as
shown in fig. 6. The black and white regions cor-
respond to the rotational and shear curl of the dis-
placement field, respectively. As in fig. 4, this defini-
tion is possible since we can draw a pattern of dots
and lines indicating ~u = 0.

We imagine the black regions to be tubes of
twisted material, two of them coming out of each
Larmor defect. Since a complete numerical treat-
ment of this case would go beyond any computing
power13, one can just suspect that a texture like
the one shown in fig. 6 is a configuration of mini-
mal elastic energy. To test this hypothesis, random
distributions of the defect axes that showed con-
sistently higher energies were analyzed. This also
turned out to be true for little random modifica-
tions of the configuration shown in fig. 6. The ex-
istence of a repulsive force between ‘tubes’ of even
sign seems reasonable, therefore. For the following

13The solution for a single defect in Unzicker and Fabian
(2003) could be obtained by a reduction to two dimensions.

7



Figure 6: Qualitative description of the deformation
field on the surface of a sphere surrounding several
Larmor defects. In the first approximation, we can
identify regions of the rotational (black) and the
shear (white) curl of the displacement vector ~u on
the surface and a medium gray level indicating 0.
The black spots correspond to clockwise twisted ar-
eas in fig. 3.

we shall assume that ensembles of Larmor defects
create a microstructure of such tubes. Tubes pierc-
ing through a surface element appear as a ‘texture’
sketched in fig. 7, the little arrows now indicating
the orientation.

Extending the analogy, one is tempted to con-
sider the twisted tubes as electrical field lines. How-
ever, even without that motivation, it is quite evi-
dent from the above considerations on energy that
more defects add further tubes at the microstruc-
tural level rather than causing the deformation field
to vanish. It is surprising that, in a material with
compatible deformation, these textures of deforma-
tion appear at large distances from the topological
defects.

Figure 7: Schematic picture of the twisted regions
in fig. 6. From left to right, the ‘density’ of tubes
increases.

5 Analogs to electromagnetic
quantities

5.1 Gaussian surface integral

Given that Larmor defects cause a microscopic de-
formation, as shown in fig. 7, it is easy to deduce the
net number14 n of Larmor defects included within
a closed surface by counting the 2n tubes piercing
through it. Equivalently, one may speak of integra-
tion of the density of piercing tubes over a surface,
this density having the unit 1

m2 . Using the analogy
to the Gaussian surface integral, this density could
be a measure of the electric displacement.15 ~D would
then be proportional to 1/r2, r being the radius of
the tubes.

5.2 Electric field and electric dis-
placement

I shall attempt, however, a related, but not identi-
cal definition of ~E and ~D. Though if one must be
careful while ‘integrating’ torques over surfaces, it
makes sense to address rotational and shear torque,
as outlined in section 3.4. In addition to the sur-
face torque, we can define a volume torque (N/m2)
as outlined in the example fig. 5. For example, the
black spots in fig. 6, continued towards the inside of

14We do not count pairs of opposite signs, since they may
cancel out.

15This must not be confused with the displacement vector
~u, which is the shift of material elements.
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the sphere, are regions of a nonvanishing rotational
torque density.

We may also consider the rotational torque on
the surface fig. 7. The divergence of this surface
torque is a torque density with unit N/m2. We will
see below that this rotational torque density T/V

obeys the same equations as the electric field ~E. In
the simple example of cylindrical rods, for small de-
formations the torque is proportional to the twisting
angle and the shear modulus µ. We may, therefore,
divide the torque density by µ and obtain a dimen-
sionless measure of strain, T

µV which is intuitively
related to a twisting angle. This definition proves
to be analogous to the corresponding quantities in
MacCullagh’s theory. In an incompressible isotropic
material, the deformation εik and the stress tensor
σik are related by

σik = 2µεik, (10)

µ being the shear modulus. Since according to
eqn. 8, we may express the rotational torque den-
sity as σ̄ik, (10) generalizes to

σ̄ik = 2µε̄ik. (11)

The anti-symmetric part of the deformation ten-
sor, 2ε̄ik, is however nothing other than curl ~u, the
quantity that MacCullagh assigned to the electric
displacement. We shall, therefore, take the quantity
T
µV = E

µ , the rotational part of curl ~u, as analogous

to the electrical displacement ~D.

5.3 Coulomb’s law

Consider a flat surface pierced by tubes of the same
size r. In the case of a ‘homogeneous electric field’,
these tubes continue in a direction perpendicular to
the pierced surface.

It is clear that since the same torque is applied to
a tube of any size, the torque per volume τi decreases
inversely proportional to the square of the radius of
the tube. In the weak-field-limit, where we expect
Hooke’s law to be valid, for the twisting angle ϕ ∼
D ∼ 1/r2 holds. This is also in agreement with the
energy density of the electric field w ∼ E2.

5.4 Dynamical deformations analo-
gous to the magnetic field

As is well-known from classical electrodynamics, the
magnetic field creating a Lorentz force can be un-

derstood as an electric field arising from a Lorentz
contraction of distances between charges in a trans-
formed inertial system (e.g. Landau and Lifshitz
1972, par. 24). I shall use this approach to define
a quantity analogous to the magnetic field.

Assume the x-axis to be a wire with net charge 0
in the rest system S in which Larmor defects of op-
posite sign move in opposite directions, respectively.
Then, at a distance r the deformation field will be a
superposition of ‘tubes’, moving and oriented oppo-
sitely (see fig. 8). When discussing motion, we bear
in mind that there are just structures of microstrain
propagating, while the elastic material remains at
rest, like a water wave.

Figure 8: Model of a magnetic field created by
charges of different sign moving in opposite di-
rections. The respective ‘electric’ fields that are
Lorentz-contracted, cancel out because the number
of twisted circles per area is equal.

Figure 9: The same situation as in fig. 8, from a
system that moves with velocity v to the right with
respect to the wire. The charges moving to the right
are also no longer Lorentz-contracted, but the in-
coming charges are still more contracted. A greater
net density of clockwise twisted tubes is perceived,
which can be interpreted as an ‘electric’ field.

Note that because of the velocity v in x-
direction, the tubes must show a slight Lorentz con-
traction, due to the result in section 2.1. Since the
net number of tubes cancels out16, there is no ‘elec-
tric’ field and no force. The situation changes how-

16This does not mean that the time-dependent displace-
ment field u(t) is trivial, see below.
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ever, if a Larmor defect moves with the same veloc-
ity v parallel to the defects of the same sign (System
S′). These will acquire their original distances in
their rest system S′, whereas the defects of opposite
sign, moving with even greater velocity, relatively,
will shorten in x-direction (see fig. 9). Consequently,
the moving defect will, at a distance, be perceived
as a net number of (contracted) tubes carrying an
opposite ‘charge’ and experience an attractive force
towards the x-axis due to the extra torque arising.

The completely analogous situation is commonly
described with a (static) magnetic field parallel to
concentric circles around the current and a Lorentz
force e (v ×B).

With this indirect argument, we can define a field
analogous to the magnetic flux ~B as the amount
of net (extra) torque per volume created by such a
motion of defects,

~B =
1

c2
~E × ~v, (12)

as it is well known from electrodynamics. The direc-
tion of the field is perpendicular to both the moving
tube axes and their direction of motion. Since c2

equals µ
ρ in the continuum mechanical case, eq. 12

transforms to
~B = ρ ~D × ~v (13)

Following MacCullagh, we once more define the
magnetic field strength ~H as 1

ρ
~B, thus yielding the

simple relation ~H = ~D×~v. It is important to bear in
mind that v, in this case, is not a material velocity
as in MacCullagh’s case but a velocity of structures
- the twisted tubes may well travel onward while
the volume elements of the medium remain at the
same position. H acquires an intuitive meaning as
advected rotational curl, directed perpendicular to
both the curl and the advection velocity. To facili-
tate visualization, one more remark is given.

The magnetic flux, in terms of the analogy,
equals the electric field gained by the velocity v, due
to the relativistic effects with a factor v/c2, yielding
the unit Ns

m3 . Since this is a momentum density (as in
MacCullagh’s theory), there is another possible in-
terpretation. A propagating texture of twisted tubes
as shown in fig. 8 produces a time-dependent dis-
placement field ~u(t). For the situation given above,
we have to imagine the advection of tubes. While

the inside of the tube passes (comparable long pe-
riod), the velocity vector d

dt~u is pointing downwards,
followed by a short period in which upward velocity
is advected. This behavior is sketched in fig. 10

t

u

Figure 10: Time-dependent displacement vector d
dt~u

in the situation of fig. 8.

Since the average value of the displacement ve-
locity has to be zero, for the definition of ~B one
may consider only the longer periods with slower
motion. This is not as arbitrary as it seems. In the
electric case, we were integrating torques over the
tube areas only because of the problems mentioned
in section 3.4. In a situation as shown in fig. 10, the
medium velocity during the slow phase should be
closely related to the magnetic field. Again, we have
to distinguish carefully the velocity of structures and
material.

5.5 Purpose of the above definitions.

Regarding the ‘classical’ fields appearing in Mac-
Cullagh’s theory, we have noted differences as well
as similarities. The main difference is that the mo-
tion of the propagating microstrain assumes the role
of the material velocity. However, we still can as-
sign the same physical units to the microgeomet-
ric quantities. If both classical and microgeomet-
ric fields satisfy Maxwell’s equations, we would face
a situation in which two different physical quanti-
ties are hidden in each of the conventional electric
and magnetic fields. That means, our perception
of an electric (magnetic) field could be a mixture
of fields describing wave propagation (MacCullagh)
and charges/currents (topology). I shall address this
possibility now.
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6 Maxwell’s equations for the
microgeometric fields

In the following, the notations ~E and ~B will
be reserved for the fields in MacCullagh’s theory
( 1
ε0

curl ~u and ρd~udt ), while the microgeometric quan-

tities are denoted as ~E∗ and ~B∗ ( ~B∗ = µ0
~H∗,

~D∗ = ε0 ~E
∗).

We first consider the second Maxwell equation
and check whether it is also satisfied for the micro-
geometric magnetic field ~B∗. Since ~B∗ arises from
a Lorentz transformation of ~E∗

′
from the system S′

to S, vector analysis rules yield

div ~B =
1

c2
div (~v× ~E∗

′
) =

1

c2
(~v·curl ~E∗

′
+ ~E∗

′
·curl ~v).

(14)

since both fields ~E∗
′

and v are irrotational, the r.h.s.
of (14) vanishes and div ~B = 0 holds for the micro-
geometric case, too.

6.1 Ampere’s equation for the micro-
geometric magnetic field

If ~B is identified as above with the velocity ρd~udt , the
fourth Maxwell equation in vacuo (7) is satisfied by
definition. A static magnetic field for instance of a
coil however, cannot be represented by a velocity,
because the steady flux through the coil would cre-
ate increasingly larger deformations of any elastic
material.

To visualize Maxwell’s fourth equation we con-
sider the situation sketched in fig. 11. A circular
region is pierced by twisted tubes (electrical field
lines).

In addition, further tubes are crossing into the
circle from the right.17 Tubes moving perpendicular
to their axes create a microgeometric magnetic field
in the perpendicular direction, as outlined in fig. 8
above. It is clear that any tube crossing into the
circle increases the line integral

∫
~H∗d~s along the

circle, which according to Stokes’ theorem is a mea-
sure of curl ~H∗. Increasing the number of tubes in
the circle is, however, nothing other than increasing
the microgeometric electric displacement, dD

∗

dt .

17Bear in mind that the structures are crossing, not the
material.

Figure 11: Electric field lines (tubes) crossing into a
circular region increase the density of tubes (dD

∗

dt )

and can be interpreted as a line integral of ~B.

When trying to visualize Maxwell’s fourth equa-
tion, it is useful to imagine the magnetic field H as
follows: D is the number of curls per area (1/m2, cf.
fig. 7 and 8), or, if one prefers a dimensionless unit,
the average twisting angle) The moving curls gener-
ate a field H = Dv, thus a product of displacement
field and velocity, whereby the direction is perpen-
dicular to ~v and the field lines (tubes).

Of course, adding electrical field lines could be
accomplished by a Larmor defect piercing the circu-
lar surface, too. This demonstrates that the current
density j and ε0

dD
dt are of the same nature. Thus we

obtain

curl ~H∗ = ~j +
d ~D∗

dt
(15)

or, after multiplication with the shear modulus µ
( 1
ε0

),

c2curl ~B∗ =
~j

ε0
+
d ~E∗

dt
(16)

6.2 Faraday’s equation for the micro-
geometric magnetic field

In MacCullagh’s theory, the equation of motion (2)
proved to be equivalent to the first Maxwell equa-
tion. This seems to work quite well as far as elec-
tromagnetic waves are concerned, but runs into se-
rious problems when dealing with slowly changing
magnetic fields of nonoscillatory character (Whit-
taker 1951, p. 280). While explaining the validity

of curl ~E∗ = − d
dt
~B∗, I shall again invoke the visual
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imagination. In fig. 12 a visualization of curl ~E∗ is
given, that means a situation of closed circular tubes
(field lines), sketched as tori. The arrangement is
symmetric with respect to the z-axis. Assume all
tubes to be twisted symmetrically, e.g. clockwise
on the r.h.s. and counterclockwise on the left (see
fig. 12). Since these ‘field lines’ are closed, they do
not end as usual in Larmor defects.

Figure 12: Each of the tori stands for a region of
twisted material, which is analogous to an electrical
field line.

Evidently, such a situation can never be stable.
Rather the twisted tori should relax and continue
twisting back until their internal orientation is re-
versed. Naturally, this corresponds to reversing the
electric field. Imagine such an opposite situation at
t = T/2, whereas t = 0 is shown in fig. 12. How
should we visualize the deformations at t = T/4 and
t = 3T/4? We can imagine the tori at rest while
their inside rotates back. Alternatively, the tubes
may maintain their orientation but propagate to-
wards the z-axis, that is the tori would shrink to
an interval on the z-axis. Of course, after having
crossed the axis, the tori would expand again to the
size shown in fig. 12, with reversed orientation. Both
scenarios of the transition t = 0 to t = T are in-
distinguishable, however. Remember that there is
no net material transport but just a propagation of
structures, and it does not make sense to see a dif-
ference between an extinction/creation process and
a propagation. In the latter scenario, we observe
twisted tubes crossing the z-axis from all directions
in the xy-plane. Bearing in mind the above defini-
tion of ~H∗, this is nothing other than a microgeo-
metric magnetic field strength.

Similar to a pendulum, the situation in fig. 12
changes from a maximum value of curl ~E∗ (t =

0, T/2, ~B∗ = 0) to a maximal ~B∗ (t = T/4, 3T/4,

curl ~E∗), thus the rotation of the tubes generate a
microgeometric magnetic field and

curl ~E∗ = − d

dt
~B∗ (17)

holds.

6.3 Overview

Table I gives an overview of the quantities that fulfill
Maxwell’s equations and the respective units.

Symb. MacCullagh Microg. Units

E 1
µcurl ~u T

V = µϕ̄ Nm−2

B ρdudt
v
c2µϕ̄ Nsm−3

D curl ~u ϕ̄ 1
H du

dt ϕ̄dudt ms−1

Table I.

As far as constants are concerned, we shall iden-
tify dielectricity ε0 with the inverse of the shear
modulus 1/µ and the magnetic permeability µ0 with
the density ρ of the elastic continuum. One should
not worry about measuring these quantities, since
only the speed of light (c2 = 1

ε0µ0
) is accessible to

observation and corresponds to the velocity of trans-
verse sound

√
µ/ρ. Further considerations on units

are given in section 4 of Unzicker (1996).
While in MacCullagh’s theory this applies to the

vacuum case only, the topological and microgeomet-
ric quantities also describe charges and currents.
Thus the combinations ~E + ~E∗, ~B+ ~B∗ etc. do sat-
isfy the basic equations of electrodynamics and cor-
respond to the classical fields ~E and ~B that we ob-
serve. Remember that the classical fields are merely
theoretical constructs and we may be yet unaware
that they consist of two different quantities. Exper-
imentally, the wave dynamics (MacCullagh) usually
appears separated from the static or slow-motion
regime. There are, however, situations in which new
effects should occur if the micromechanic analogy is
indeed appropriate. If finite rotations are related to
the electric field, the superposition principle is vio-
lated for strong fields. A proposal to test this has
been worked out in Unzicker (2019).
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7 Outlook

The above analysis of an isotropic, incompressible
elastic continuum with topological defects was in-
spired by the far-reaching analogy to a spacetime
with elementary particles. The first ideas in this di-
rection emerged in the 19th century: ‘On this view,
electrons, and hence all material bodies built up
from them, are of the nature of structures in the
aether....’ (Whittaker 1951, p. 287). These hypothe-
ses are now supported by further coincidences. First,
equations equivalent to those of special relativity fol-
low directly from elasticity theory. As shown here
for the first time, one can define quantities derived
from the elastic deformation that satisfy equations
that are equivalent to Maxwell’s. Regarding ener-
gies and forces, a quantitative analysis still must be
done. Important progress with respect to the aether
theories, however, is that the contradictions arising
from material velocities were resolved by substitut-
ing them with velocities of deformation structures.

The Larmor defect, a twist disclination, was
shown to describe charges and therefor, should be
considered a natural extension of MacCullagh’s the-
ory. Larmor defects of different sign cancel out and
release elastic energy. On the other hand, given a
sufficient amount of elastic energy, the creation of
a defect pair should be possible. Thus, it does not
make sense to assign an ‘identity’ to topological de-
fects,18 a well-known behavior from quantum statis-
tics.

Furthermore, the analysis of topological defects
led to the appearance of a microstructure of the de-
formation field. This interesting phenomenon of mi-
crostrain is a result of pure continuum mechanics
that does not necessarily need to be interpreted in
‘electrodynamic’ terms. If one accepts such an inter-
pretation however, it may answer the question why
quantized structures necessarily appear in electro-
dynamics.

Acknowledgment. I am grateful to Karl Fabian
for commenting on the manuscript. I benefited from
discussions with Karl Fabian and Hannes Hoff.

18See a detailed discussion in Unzicker (2002).
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