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1.  INTRODUCTION 

 

The main objective of this paper is to extend the following Trigonometric double angle and Trigonometric Product 

formulae. However, some conjectures are stated for further research. 

(1.1)                                                                                     2SinxCosx = Sin2x  

(1.2)                                                                                     2Cos2x = 1 + Cos2x  

(1.3)                                                                                     SinP −  SinQ =  2Cos (
P+Q

2
) Sin (

P−Q

2
) 

(1.4)                                                                                     CosP +  CosQ =  2Cos (
P+Q

2
) Cos (

P−Q

2
) 

 

 

2. EXTENSIONS 

 

(1.1) can be extended as follow: 

(2.1)           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

(1.2) can be extended as follow: 

(2.2)           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

(1.3) can be extended as follow: 

(2.3)           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘)𝑆𝑖𝑛((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

(1.4) can be extended as follow: 

(2.4)           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘
)𝐶𝑜𝑠((𝑃 + 𝑄)𝑘 − 𝑛𝑄)

𝑛

𝑘=0
 

 

 

3. PROOFS 

 

To proof (2.1) and (2.2), note that, 

(3.1)                                                                                            (𝑟 + 𝑡)𝑛 = ∑ (𝑛
𝑘)𝑟𝑛−𝑘𝑡𝑘

𝑛

𝑘=0
 

                                                     

If we let r = e(
m

n
)𝑖x, t = e(2a+

m

n
)𝑖x, we can see from (3.1) that, 

(e(
m
n )𝑖x +  e(2a+

m
n )𝑖x

)
𝑛

= ∑ (
𝑛

𝑘
)  e(

m
n )(n−k)𝑖x . e(2a+

m
n )𝑖kx

𝑛

𝑘=0

 

(e(
m
n

)𝑖x +  e(2a+
m
n

)𝑖x
)

𝑛

= ∑ (
𝑛

𝑘
)  e(m−(

m
n

)k+2ak+(
m
n

)k)𝑖x

𝑛

𝑘=0

 

(3.2)                                                             (e(
m

n
)𝑖x +  e(2a+

m

n
)𝑖x

)
𝑛

= ∑ (𝑛
𝑘) e(2ak+m)𝑖x

𝑛

𝑘=0
 

We can see from (3.2) that, 

(e(
m
n )𝑖x +  e(2a+

m
n )𝑖x

)
𝑛

= (e(a+
m
n )𝑖x. (e−𝑖ax + e𝑖ax))

𝑛

 

    Also. we can see from (3.2) that, 

∑ (
𝑛

𝑘
)  e(2ak+m)𝑖x

𝑛

𝑘=0

= ∑ (
𝑛

𝑘
) (𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥 +  𝑖𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥)

𝑛

𝑘=0

 

    So, from (3.2), we see that, 
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(e(a+
m
n )𝑖x(e−𝑖ax + e𝑖ax))

𝑛

= ∑ (
𝑛

𝑘
) (𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥 +  𝑖𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥)

𝑛

𝑘=0

 

                                                                      (2e(a+
m

n
)𝑖x

(
e𝑖ax+e−𝑖ax

2
))

𝑛

= ∑ (𝑛
𝑘)(𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥 +  𝑖𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥)

𝑛

𝑘=0
 

     (3.3)                                                         e(an+m)𝑖x (
e𝑖ax+e−𝑖ax

2
)

n

= ∑ (𝑛
𝑘)(𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥 +  𝑖𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥)

𝑛

𝑘=0
 

Note that, 

(
e𝑖ax+e−𝑖ax

2
)= Cos(a)x 

Also note that, 

e(an+m)𝑖x = 𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 +𝑖𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 

 

So, from (3.3), we can see that, 

2𝑛(𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 + 𝑖𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥)Cos𝑛𝑎𝑥 =  ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 + 𝑖 ∑ (𝑛

𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

 (3.4)          2𝑛Cos𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 + 𝑖(2𝑛Cos𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥) =  ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 + 𝑖 ∑ (𝑛

𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥
𝑛

𝑘=0
 

Equating the real and imaginary parts of (3.4), we see that, 

(3.5)                                                           2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘)𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

This completes the proof of (2.1). 

(3.6)                                                        2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (𝑛
𝑘)𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
 

This completes the proof of (2.2). 

 

If we set 𝑚 =  𝑛𝑦 − 𝑎𝑛 𝑎𝑛𝑑 𝑥 = 1 in (3.5)and (3.6), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡, 

(3.7)                                                                  2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝑆𝑖𝑛(𝑛𝑦) = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘 − 𝑛)𝑎 + 𝑛𝑦)

𝑛

𝑘=0
 

(3.8)                                                                 2𝑛𝐶𝑜𝑠𝑛𝑎𝑥𝐶𝑜𝑠(𝑛𝑦) = ∑ (𝑛
𝑘)𝐶𝑜𝑠((2𝑘 − 𝑛)𝑎 + 𝑛𝑦)

𝑛

𝑘=0
 

 

If we set 𝑎 =  (
𝑃+𝑄

2
) , 𝑦 =  (

𝑃−𝑄

2
)  𝑖𝑛 (3.7), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡,  

                                               2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘)𝑆𝑖𝑛((2𝑘 − 𝑛) (
𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                                                                   = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘) (

𝑃+𝑄

2
) − 𝑛 (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
 

                                                                                                   = ∑ (𝑛
𝑘)𝑆𝑖𝑛((2𝑘) (

𝑃+𝑄

2
) + 𝑛 (

−𝑝−𝑄+𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                 2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝑆𝑖𝑛 (

𝑛(𝑃−𝑄)

2
)   = ∑ (𝑛

𝑘)𝑆𝑖𝑛((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

This completes the proof of (2.3). 

 

Also, if we set 𝑎 =  (
𝑃+𝑄

2
) , 𝑦 =  (

𝑃−𝑄

2
)  𝑖𝑛 (3.8), 𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡,  

                                            2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
) = ∑ (𝑛

𝑘
)𝐶𝑜𝑠((2𝑘 − 𝑛) (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                                                                                 = ∑ (𝑛
𝑘

)𝐶𝑜𝑠((2𝑘) (
𝑃+𝑄

2
) − 𝑛 (

𝑃+𝑄

2
) + 𝑛 (

𝑃−𝑄

2
))

𝑛

𝑘=0
 

                                                                                                 = ∑ (𝑛
𝑘

)𝐶𝑜𝑠((2𝑘) (
𝑃+𝑄

2
) + 𝑛 (

−𝑝−𝑄+𝑃−𝑄

2
))

𝑛

𝑘=0
  

                                           2𝑛𝐶𝑜𝑠𝑛 (
𝑃+𝑄

2
) 𝐶𝑜𝑠 (

𝑛(𝑃−𝑄)

2
)  = ∑ (𝑛

𝑘)𝐶𝑜𝑠((𝑃 + 𝑄)𝑘 − 𝑛𝑄)
𝑛

𝑘=0
 

This completes the proof of (2.4). 

 

 

4. SOME OTHER NEW IDENTITIES 

 

2𝑛𝐶𝑜𝑠ℎ𝑛(𝑎)𝑥𝑆𝑖𝑛ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) 𝑆𝑖𝑛ℎ(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0
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2𝑛𝐶𝑜𝑠ℎ𝑛(𝑎)𝑥𝐶𝑜𝑠ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) 𝐶𝑜𝑠ℎ(2𝑎𝑘 + 𝑚)𝑥

𝑛

𝑘=0

 

2𝑛(−1)
𝑛
2𝑆𝑖𝑛𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (

𝑛

𝑘
) (−1)𝑘𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)

𝑛

𝑘=0

 

2𝑛(−1)
𝑛−1

2 𝑆𝑖𝑛𝑛𝑎𝑥𝑆𝑖𝑛(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑜𝑑𝑑)

𝑛

𝑘=0

 

2𝑛(−1)
𝑛+1

2 𝑆𝑖𝑛𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝑆𝑖𝑛(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑜𝑑𝑑)

𝑛

𝑘=0

 

2𝑛(−1)
𝑛
2𝑆𝑖𝑛𝑛𝑎𝑥𝐶𝑜𝑠(𝑎𝑛 + 𝑚)𝑥 = ∑ (

𝑛

𝑘
) (−1)𝑘𝐶𝑜𝑠(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)

𝑛

𝑘=0

 

2𝑛𝑆𝑖𝑛ℎ𝑛𝑎𝑥𝑆𝑖𝑛ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝑆𝑖𝑛ℎ(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)

𝑛

𝑘=0

 

−2𝑛𝑆𝑖𝑛ℎ𝑛𝑎𝑥𝑆𝑖𝑛ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝐶𝑜𝑠ℎ(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑜𝑑𝑑)

𝑛

𝑘=0

 

−2𝑛𝑆𝑖𝑛ℎ𝑛𝑎𝑥𝐶𝑜𝑠ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝑆𝑖𝑛ℎ(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑜𝑑𝑑)

𝑛

𝑘=0

 

2𝑛𝑆𝑖𝑛ℎ𝑛𝑎𝑥𝐶𝑜𝑠ℎ(𝑎𝑛 + 𝑚)𝑥 = ∑ (
𝑛

𝑘
) (−1)𝑘𝐶𝑜𝑠ℎ(2𝑎𝑘 + 𝑚)𝑥        (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)

𝑛

𝑘=0

 

 

5. UNDERSTANDING MULTINOMIAL TRIANGLES 

In order to understand Multinomial Triangle, we need to take a quick look at the Binomial Triangle; Binomial Triangle is a 

triangle formed by arranging the coefficients of the expansion of two variables which is denoted by, 

(1.0)                                                             (𝑎 + 𝑥)𝑝 = ∑ (𝑛
𝑘)𝑎𝑝−𝑘𝑥𝑘

𝑝

𝑘=0
            

We need to know that 𝑎 and 𝑥 in (1.0) are the two variables and (𝑛
𝑘) stands for all the coefficients of (𝑎 + 𝑥)𝑝 when expanded. For 

example, the expansion of (𝑎 + 𝑥)3 gives, 

(1.1)                                                          (𝑎 + 𝑥)3 =  𝑎3 + 3𝑎2𝑥 + 3𝑎2𝑥 + 𝑥3 

We can see that the coefficients of the expansion of (𝑎 + 𝑥)3 are (1, 3, 3, 1) 

For a better clarification, we explain the meaning of Binomial Triangle using Fig 1.0 below. 

 

BINOMIAL TRIANGLE 

 

 

 

 

 

Fig 1.0 

 From fig 1.0, we can easily generate the coefficients of the expansion of (𝑎 + 𝑥)𝑝 by adding together two consecutive numbers 

of the expansion of (𝑎 + 𝑥)𝑝−1. For example, to generate the coefficients of the expansion of (𝑎 + 𝑥)5, we look at where P = 4 and add 

the first two numbers which are 0 and 1, which gives us 1. To get the second coefficient, we look at where p = 4 again and add the 

second and the third numbers which are 1 and 4, which gives us 5. Doing this on and on, we see that the coefficients of the expansion of 

(𝑎 + 𝑥)5 are (1, 5, 10, 10, 5, 1). So, we have the next table to be, 

 

 

P = 0     0  1  0     Z1 

P = 1    0  1  1  0    Z1---Z2 

P = 2   0  1  2  1  0   Z1---Z3 

P = 3  0  1  3  3  1  0  Z1---Z4 

P = 4 0  1  4  6  4  1  0 Z1---Z5 
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Fig 1.1 

Fig 1.1 explains how Binomial Triangle is formed. 

 Note that all the zeros in all the tables are meant for explaining how the next coefficients are generated, so are ignored when 

we want to use the coefficients. It means the first coefficient of the expansion of (x1+x2+x3+…+ xr)n will always be 1 when the coefficients  

of x1, x2, x3,…,xr are 1. 

 

TRINOMIAL TRIANGLE 

 Trinomial Triangle is formed just like that of Binomial Triangle except that three consecutive numbers are added. For 

quadrinomial, four consecutive numbers are added. Fig 1.3 below is called Trinomial Triangle. 

 

 

 

 

 

Fig 1.2 

 Looking at Fig 1.2, we see that three consecutive numbers are added to give the number immediately below the middle number. For 

example, the arrows in Fig 1.2 means (0+0+1 = 1), (2+1+0 = 3) and (1+3+6 = 102). In the case of Binomial Triangle, the next coefficient to be 

generated is placed below the middle of the two consecutive numbers; see the arrows in Fig 1.0 for more clarification. 

 In essence, the rules that apply to Binomial Triangle also apply to all Multinomial Triangles whose numbers form the coefficients of 

the expansion of even number of variables, i.e.  (x1+x2+x3+…+ xr)n, where r is any positive even number including zero(Mononomial). Also, 

the rules that apply to Trinomial Triangle also apply to all Multinomial Triangles whose numbers form the coefficients of the expansion of odd 

number of variables, i.e.  (x1+x2+x3+…+ xr)n, where r is any positive odd number. The number of zeros to be added to both sides of the 

coefficients is (r-1). This means no zero is needed for any Monomial expansion because the expansion will always result in a single term, 

i.e. (x)n=xn and therefore, its coefficient will always be 1 except the coefficient of x is not 1. 

WHAT IS Zn? 

 The number of coefficients of a particular Multinomial expansion is needed to know the number of terms that the expansion 

has. Let n be the number of terms of that particular multinomial expansion, then Zn is the nth coefficient of the expansion. For example, 

in Fig 1.2 where we have P = 3. We could see that we have  

Z1---Z7 at the other end. Since we have to ignore all the zeros, Z1---Z7 means there are 7 coefficients in a Trinomial Triangle when 

(𝑎 + 𝑏 + 𝑐)3 is expanded and that, Z1 =1, Z2 =3, Z3 =6, Z4 =7, Z5 =6, Z6 =3, and Z7 =1. 

 

 

 

P = 0      0  1  0      Z1 

P = 1     0  1  1  0     Z1---Z2 

P = 2     0  1  2  1  0    Z1---Z3 

P = 3    0  1  3  3  1  0   Z1---Z4 

P = 4  0  1  4  6  4  1  0  Z1---Z5 

P = 5 0  1  5  10  10  5  1  0 Z1---Z6 

P = 0     0 0 1 0 0     Z1 

P = 1    0 0  1 1 1 0 0    Z1---Z3 

P = 2    0 0 1 2 3 2 1 0 0   Z1---Z5 

P = 3   0 0 1 3 6 7 6 3 1 0 0  Z1---Z7 

P = 4 0 0 1 4 10 16 19 16 10 4 1 0 0 Z1---Z9 
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CONJECTURES 

Let n = the number of the coefficients of a Multinomial expansion, 

        r = number of variables of a Multinomial expansion, 

        p = power of a Multinomial expansion, 

        Zk = kth coefficient of a Multinomial expansion with respect to p and r, 

Then 

∑ Zk. 𝑐𝑜𝑠 (𝑎 + 2(𝑘 − 1)𝑑)

𝑛

𝑘=1

= (
𝑠𝑖𝑛𝑟𝑑

𝑠𝑖𝑛𝑑
)

𝑝

. 𝑐𝑜𝑠(𝑎 + (𝑟 − 1)𝑝𝑑)                 (𝑟 > 2)  

∑ Zk . 𝑠𝑖𝑛(𝑎 + 2(𝑘 − 1)𝑑)

𝑛

𝑘=1

= (
𝑠𝑖𝑛𝑟𝑑

𝑠𝑖𝑛𝑑
)

𝑝

. 𝑠𝑖𝑛(𝑎 + (𝑟 − 1)𝑝𝑑)                   (𝑟 > 2)  

 ∑ Zk. 𝑐𝑜𝑠ℎ(𝑎 + 2(𝑘 − 1)𝑑)

𝑛

𝑘=1

= (
𝑠𝑖𝑛ℎ𝑟𝑑

𝑠𝑖𝑛ℎ𝑑
)

𝑝

. 𝑐𝑜𝑠ℎ(𝑎 + (𝑟 − 1)𝑝𝑑)                (𝑟 > 2)  

∑ Zk . 𝑠𝑖𝑛ℎ(𝑎 + 2(𝑘 − 1)𝑑)

𝑛

𝑘=1

= (
𝑠𝑖𝑛ℎ𝑟𝑑

𝑠𝑖𝑛ℎ𝑑
)

𝑝

. 𝑠𝑖𝑛ℎ(𝑎 + (𝑟 − 1)𝑝𝑑)                   (𝑟 > 2) 

 

PRACTICAL EXAMPLES 

 Suppose r = 3, p = 3, from Fig 1.2, we see that the coefficients are (1, 3, 6, 7, 6, 3, 1). So, we have, 

cos (𝑎) + 3𝑐𝑜𝑠(𝑎 + 2𝑑) + 6𝑐𝑜𝑠(𝑎 + 4𝑑) + 7𝑐𝑜𝑠(𝑎 + 6𝑑) +  6cos(𝑎 + 8𝑑) +3𝑐𝑜𝑠(𝑎 + 10𝑑) +  cos(𝑎 + 12𝑑) = (
𝑠𝑖𝑛3𝑑

𝑠𝑖𝑛𝑑
)

3

. 𝑐𝑜𝑠(𝑎 + 6𝑑)   

sin (𝑎) + 3𝑠𝑖𝑛(𝑎 + 2𝑑) + 6𝑠𝑖𝑛(𝑎 + 4𝑑) + 7 𝑠𝑖𝑛(𝑎 + 6𝑑) +  6𝑠𝑖𝑛(𝑎 + 8𝑑) +3𝑠𝑖𝑛(𝑎 + 10𝑑) +  𝑠𝑖𝑛(𝑎 + 12𝑑) = (
𝑠𝑖𝑛3𝑑

𝑠𝑖𝑛𝑑
)

3

. 𝑠𝑖𝑛(𝑎 + 6𝑑) 

cosh (𝑎) + 3𝑐𝑜𝑠 ℎ(𝑎 + 2𝑑) + 6𝑐𝑜𝑠 ℎ(𝑎 + 4𝑑) + 7𝑐𝑜𝑠 ℎ(𝑎 + 6𝑑) + 6𝑐𝑜𝑠ℎ(𝑎 + 8𝑑) +3𝑐𝑜𝑠ℎ(𝑎 + 10𝑑) + 𝑐𝑜𝑠ℎ(𝑎 + 12𝑑) = (
𝑠𝑖𝑛ℎ3𝑑

𝑠𝑖𝑛ℎ𝑑
)

3

. 𝑐𝑜𝑠ℎ(𝑎 + 6𝑑) 

sinh (𝑎) + 3𝑠𝑖𝑛 ℎ(𝑎 + 2𝑑) + 6𝑠𝑖𝑛 ℎ(𝑎 + 4𝑑) + 7𝑠𝑖𝑛ℎ(𝑎 + 6𝑑) + 6𝑠𝑖𝑛ℎ(𝑎 + 8𝑑) +3𝑠𝑖𝑛 ℎ(𝑎 + 10𝑑) +  sinℎ(𝑎 + 12𝑑) = (
𝑠𝑖𝑛ℎ3𝑑

𝑠𝑖𝑛ℎ𝑑
)

3

. 𝑠𝑖𝑛ℎ(𝑎 + 6𝑑) 
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