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Abstract

The system of 16-component equations including two equations of the
Bethe-Salpeter kind (without an interaction) and two additional condi-
tions are considered. It is shown that the group of the initial symmetry
is SU(3)C × SU(2)L × U(1). The symmetry group is established as the
consequence of the field equations; SU(2) should be chiral, the color space
has the signature (+ +−). The structure of permissible multiplets of the
group coincides with the one postulated in the SU(3)C × SU(2)L-model
of strong and electroweak interactions excluding the possible existence of
the additional SU(2)R-singlet in a generation.

1 Introduction

The lepton and quark sectors of the model of strong and electroweak interactions
based on the group SU(3)C × SU(2)L × U(1) [1], if one does not take into
account differences relatively to SU(3)C , differ insignificantly - one singlet of
SU(2)R is introduced in the lepton sector, and the two singlets in the quark
one. If results of measurements of the neutrino mass [2] are confirmed, the
simplest way to modify the model to get the non-zero neutrino mass is the
introduction of the second SU(2)R singlet in the lepton sector. It is shown in
this paper that the model of field of the two-component fermions admitting the
existence of four generations of the same type has namely such the structure

∗This paper (in Russian) was deposited in VINITY 19.12.1988 as VINITI No 8842-B88;
it was an important stage in the development of my model of the composite fundamental
fermions (see hep-th/0207210). Now I have translated it in English to do more available.
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of multiplets and such the group of the initial symmetry of its solutions. It is
important that the types of the symmetry group and of its admitted multiplets
are consequences of the model which can be established by the analysis of the
field equations. The minimum number of generations cannot be arbitrary, too.
The representation about a color of a field state may be connected in the model
with the certain inversions affecting internal and external coordinates of the
composite fermion. So, it is possible that the similar model of the field of
fermions may be used to construct the general description of the fundamental
particles and their interactions.

The considered model by zero masses of the components may be interpreted
in two ways: as the non-local field theory based on the use of the two-point wave
function in the 4-space-time or as the local field theory in the eight-dimensional
pseudo-euclidian space with two time axis, and besides the additional coordi-
nates have clear physical interpretation: the ones are the coordinates of the
relative position of the composite system’s components. It is known that the
geometrical description of fields and their interactions in spaces of a dimension
greater than 4 permits to consider jointly gravi-electro-weak and gravi-electro-
strong interactions in 7-dimensional space with one time [3], and the possibility
of the simple interpretation of the additional dimensions in the 8-space seems
to be essential.

2 The 16-component field equations of the two-
component fermions

Let us use the Dirac way to introduce the field equations for ψ starting from
the classical equations of the connection of the energies E,E1, E2 and of the
momenta p,p1,p2 of the composite system and its components:

E = E1 + E2, (1)

p = p1 + p2, (2)

where Ei = (mi2 + pi2)0.5. At first we linearize the non-linear (relatively pik)
equation (1), and after that we replace the classical energies and momenta by
their operators. With Eq.(1) we juxtapose the linear equation (c = h = 1):

i∂ψ/∂t = (β1m
1 + α1kp1k + β2m

2 + α2kp2k)ψ, (3)

where t is the time, p1k, p2k are the operators of the constituents momenta,
βi, αik are matrices, k = 1, 2, 3. It may be shown that matrices of the dimension
greater than 8 × 8 are needed to satisfy the conformity principle. The dimen-
sion 16 × 16 is sufficient to construct the matrices with the following algebra
containing commutators [ ] and anticommutators { }:

{αik, αil} = 2δkl, {αil, βi} = 0,

[βi, βj ] = [αik, βj ] = [αik, αjl] = 0, β2
i = I16, i �= j, (4)
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there is not summation on i.
These relations are executed for the following matrix presentation:

β1 = I2 × σ3 × I4, β2 = σ3 × σ3 × I4,

α1k = σ1 × σ1 × I2 × σ
′
k, α2k = σ1 × I2 × σ

′′
k × I2, (5)

where σk are the Pauli matrices, σ
′
k, σ

′′
k are two transpositions of them, for

example: σ
′
k = σ

′′
k = σk. Eq. (3) has the same form as the Bethe-Salpeter

equation [4] which is used for the description of such composite systems as
mesons.

For the momentum operators it will be naturally to postulate instead Eq.
(2) the following connection:

pkψ = p1kψ + p2kψ, (6)

where pk is the operator of the system momentum, ψ is the 16-component vector.
If we introduce the operators of the component energies E1, E2, the Eq. (3)
will have the same view (E ≡ i∂/∂t):

Eψ = E1ψ + E2ψ, (7)

i.e. the equations of motion of the components are:

Eiψ = αikpikψ + βim
iψ, (8)

there is not summation on i. If x1μ, x1μ are the coordinates of the first and
second components, ψ = ψ(x1μ, x1μ), then Eqs. (6,7) in the form: pμψ =
p1μψ +p2μψ can be understood as a transition in the eight-dimensional pseudo-
euclidian space from the coordinates x1μ, x2μ to the new coordinates xμ, yμ,
where xμ are the coordinates of the system center of inertia, and yμ are still not
defined. In the space of the operators p1μ, p2μ by such the transition we can
define the operators πμ ≡ i∂/∂yμ to be independent of pμ as:

πμψ ≡ p1μψ − p2μψ. (9)

Then from Eq. (8) besides Eq. (3) we get the equation independent of it:

π0ψ = (β1m
1 − β2m

2 + α1kp1k − α2kp2k)ψ. (10)

Eqs. (3, 10) contain the terms: α1kp1kψ±α2kp2kψ ≡ 1/2((α1k±α2k)pkψ+(α1k∓
α2k)πkψ), distinguished by the replacement pkψ ↔ πkψ. Such the matrices Ak

exist that the additional condition to be accepted:

α1kp1kψ + α2kp2kψ = Akpkψ, (11)

and its consequence (due to the noted symmetry):

α1kp1kψ − α2kp2kψ = Akπkψ (12)
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lead to the split of the 16-component Eqs. (3, 10) into the four Dirac equations
for some sets of four components of ψ. Let us accept Eq. (11) as a postulate;
we can choose Ak as: Ak = I2 × σ1 × σk × I2. Now we can rewrite Eqs. (3, 10)
as:

Eψ = (β1m
1 + β2m

2)ψ + Akpkψ, (13)

π0ψ = (β1m
1 − β2m

2)ψ + Akπkψ, (14)

where ψ = ψ(xμ, yμ), and Eqs. (11, 12) taking into account Eqs. (6, 7) as:

(Ak − α1k)(pk + πk)ψ = 0, (15)

(Ak − α2k)(pk − πk)ψ = 0. (16)

By the transition from Eq. (8) to Eqs. (13,14) the conditions (15,16) provide
the compatibility of these system of equations for the function ψ given in the dif-
ferent coordinate spaces. These conditions do not contain evidently derivatives
with respect to time, to be like the condition on a wave function for particles
with spin 3/2, when field equations are written in the Rarita-Schwinger form [5].
Eqs. (13-16) give us the model of the two-component system without interac-
tions describing four sets of fermions in the physical space with the coordinates
xμ which will be named generations.

3 Discrete and continues symmetries of the model

Let us consider the symmetries of the model for the case m1 = m2 = 0. The
structure of the matrices is such that the following sets of components of ψ obey
the Dirac equations:

ψ1, ψ3, ψ5, ψ7; ψ2, ψ4, ψ6, ψ8; ψ9, ψ11, ψ13, ψ15; ψ10, ψ12, ψ14, ψ16.

Let us introduce left and right components of these four-component spinors
ψ

′
: ψ

′
L = 1/2(1 − γ5)ψ

′
, ψ

′
R = 1/2(1 + γ5)ψ

′
; their components of the view

1/2(ψk ± ψn) we shall write shortly as k ± n, where (+) relates to the right
components, (−) relates to the left ones. It ensues from Eqs. (13,14) that:

(Akpk)(Akπk)ψ = pkπkψ = Eπ0ψ, (17)

i.e. ψ(x, y) does not depend on the ”angle” between the vectors pk and πk. It
means that the model is invariant relatively to the global group SO(3). We have
the same situation by the inversion (x, y) ↔ (x,−y), because of that the model
is SU(2)-invariant (SU(2)/(±I) = SO(3)), and components of ψ should be
transformed by some presentation of SU(2). The analysis of the conditions (15)
and (16) shows that namely the ones define the structure of SU(2) multiplets.
These conditions put on the following restrictions: 1) doublets and singlets of
SU(2)L, as well as SU(2)R, cannot exist together; 2) if ψA and ψB are two
different solutions, then their components separately may form only singlets; 3)
the first (second) component of doublets can be formed only from components of
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one solution; 4) it is possible to form up to 4 doublets of one of groups SU(2)L

or SU(2)R (it depends on a variant of the model), moreover all doublets are
transformed on the interwoven group presentations (i.e. the transformation
of one doublet should be accompanied by the same transformation of other
doublets), and up to 8 singlets of another SU(2).

Before to prove these propositions let us explain what is mentioned as ”model
variants”. The algebra (4) admits the sign change for any matrix of the chosen
presentation. Let εik = ±I be multipliers for αik by this change, αik → εikαik

(there is not summation by i, k). It turns out that by ε1kε2k = +I for any k
only the SU(2)R-doublets are possible, and by ε1kε2k = −I only the SU(2)L-
doublets are possible.

To prove the given propositions let us rewrite (15) and (16) in components:

D1ϕ1 = 0, D2ϕ2 = 0, (18)

where the operators Di ≡ (pi1,−pi1, ipi2,−ipi2, pi3,−pi3), where piμ = piμ(pμ, πμ),
and the matrices ϕ1, ϕ2 have the view:

3 ± 7 4 ± 8 1 ± 5 2 ± 6 11 ± 15 12 ± 16 9 ± 13 10 ± 14
10 ± 14 9 ± 13 12 ± 16 11 ± 15 2 ± 6 1 ± 5 4 ± 8 3 ± 7
10 ± 14 −(9 ± 13) 1 ± 5 2 ± 6 2 ± 6 −(1 ± 5) 9 ± 13 10 ± 14
3 ± 7 4 ± 8 −(12 ± 16) 11 ± 15 11 ± 15 (12 ± 16) −(4 ± 8) 3 ± 7
1 ± 5 2 ± 6 −(11 ± 15) 12 ± 16 9 ± 13 10 ± 14 −(3 ± 7) 4 ± 8
9 ± 13 −(10 ± 14) 3 ± 7 4 ± 8 1 ± 5 −(2 ± 6) 11 ± 15 12 ± 16

±(3 ± 7) ±(4 ± 8) ±(1 ± 5) ±(2 ± 6) ±(11 ± 15) ±(12 ± 16) ±(9 ± 13) ±(10 ± 14)
11 ± 15 12 ± 16 9 ± 13 10 ± 14 3 ± 7 4 ± 8 1 ± 5 2 ± 6
11 ± 15 12 ± 16 ±(1 ± 5) ±(2 ± 6) 3 ± 7 4 ± 8 ±(9 ± 13) ±(10 ± 14)
±(3 ± 7) ±(4 ± 8) 9 ± 13 10 ± 14 ±(11 ± 15) ±(12 ± 16) 1 ± 5 2 ± 6
±(1 ± 5) ±(2 ± 6) 11 ± 15 12 ± 16 ±(9 ± 13) ±(10 ± 14) 3 ± 7 4 ± 8
9 ± 13 10 ± 14 ±(3 ± 7) ±(4 ± 8) 1 ± 5 2 ± 6 ±(11 ± 15) ±(12 ± 16)

If ψ is transformed under the action of generators of SU(2)L or SU(2)R,
all columns of the matrices ϕ1, ϕ2 should be saved excluding their rearrange-
ments. Let ψA, ψB be solutions of Eqs. (13,14). The matrices ϕi are such that
components of ψA (or ψB) cannot be the first and the second components of
the doublet because by the SU(2)−transformations it would lead to the change
of some columns of ϕi, i.e. from ψA (ψB) only singlets may be constructed.
The bijection ϕ1 → ϕ2 (as of ordered sets of their elements) is impossible that
confirms the necessity namely of the inversion y → −y (but not y → −y) by the
transition from one SO(3) to another. The matrix ϕ1 allows the single corre-
spondence besides of identical between components of ψA and ψB : ψB = UψB,
where U = σ1 × I8, i.e.

(1 + 5)A (3 + 7)A (2 + 6)A (4 + 8)A (9 + 13)A (11 + 15)A (10 + 14) (12 + 16)A

(9 + 13)B (11 + 15)B (10 + 14)B (12 + 16)B (1 + 5)B (3 + 7)B (2 + 6)B (4 + 8)B

(19)
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That gives 4 possible doublets of SU(2)L or SU(2)R, moreover the component
placement in columns of ϕ1 is such that the same transform should be carried
out above all four sets of components. If we suggest that one of these possible
doublets can be replaced on two singlets then components of other possible
doublets should be or zero or the pairs of singlets of the corresponding SU(2).

By virtue of the Dirac equation for R− and L−components (only by m1 =
m2 = 0) Eq. (18) can be transformed to the view (Ei ≡ pi0):

D
′
1ϕ

′
1 = 0, D

′
2ϕ

′
2 = 0, (20)

where the operators D
′
i ≡ (pi1,−ipi2, pi3, pi0), and the matrices ϕ

′
1, ϕ

′
2 have the

view:

10 ± 14 9 ± 13 12 ± 16 11 ± 15 2 ± 6 1 ± 5 4 ± 8 3 ± 7
10 ± 14 −(9 ± 13) 12 ± 16 −(11 ± 15) 2 ± 6 −(1 ± 5) 4 ± 8 −(3 ± 7)
9 ± 13 −(10 ± 14) 11 ± 15 −(12 ± 16) 1 ± 5 −(2 ± 6) 3 ± 7 −(4 ± 8)

±(1 ± 5) ±(2 ± 6) ±(3 ± 7) ±(4 ± 8) ±(9 ± 13) ±(10 ± 14) ±(11 ± 15) ±(12 ± 16)

,

3 ± 7 4 ± 8 1 ± 5 2 ± 6 11 ± 15 12 ± 16 9 ± 13 10 ± 14
3 ± 7 4 ± 8 −(1 ± 5) −(2 ± 6) 11 ± 15 12 ± 16 −(9 ± 13) −(10 ± 14)
1 ± 5 2 ± 6 −(3 ± 7) −(4 ± 8) 9 ± 13 10 ± 14 −(11 ± 15) −(12 ± 16)
9 ± 13 10 ± 14 11 ± 15 12 ± 16 1 ± 5 2 ± 6 3 ± 7 4 ± 8

,

that is equivalent in this case to the record of Eq. (8) via components.
The inversion (x, y) → (x,−y) transfers D

′
1 ↔ D

′
2, ψ(x, y) → ψ

′
(x,−y) =

uψ(x, y). By that we have:

D
′
1ϕ

′
1[ψ(x, y)] → D

′
2ϕ

′′
1 [uψ(x, y)],

D
′
2ϕ

′
2[ψ(x, y)] → D

′
1ϕ

′′
2 [uψ(x, y)],

i.e. Eq. (20) will be invariant under this transformation if ϕ
′′
1 = ϕ

′
2, ϕ

′′
2 =

ϕ
′
1. The matrices ϕ

′
1, ϕ

′
2 can be transferred one into another transforming ψ

but only for ψL or ψR: the transform exist for that components to whom the
same signs correspond in the bottom rows of ϕ

′
1, ϕ

′
2. Then ϕ

′′
1 (V ψR∨L) =

ϕ
′
2(ψR∨L), ϕ

′′
2 (V ψR∨L) = ϕ

′
1(ψR∨L), V is the matrix, V = V −1, R ∨ L means

”R or L”. Only for that type of components the existence of the SU(2)-doublets
is permitted. For the given presentation (5) SU(2)R-doublets exist, ε1kε2k =
+I; SU(2)L-doublets are permitted by ε1kε2k = −I, i.e. after the change of
signs of α1k or α2k.

The group SU(2) is not an only symmetry group of the model. Unlike
ϕ1, ϕ

′
1 admits 8 types of solutions distinguishing by the transposition of the

ψ components; all of them, taking into account the transform ψ → V ψ, are
allowed by ϕ

′
2, too. These eight solutions are splitted in two subsets of the

considered type of ψA and ψB = UψA, i.e. four types of doublets of some ψR∨L
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are admitted. Let us show these possible solutions as the substitutions skipping
solution indices (their second part can be get by the transform ψ → Uψ):

1 ± 5 3 ± 7 2 ± 6 4 ± 8 9 ± 13 11 ± 15 10 ± 14 12 ± 16
3 ± 7 9 ± 13 4 ± 8 10 ± 14 11 ± 15 1 ± 5 12 ± 16 2 ± 6
1 ± 5 11 ± 15 2 ± 6 12 ± 16 9 ± 13 3 ± 7 10 ± 14 4 ± 8
3 ± 7 1 ± 5 4 ± 8 2 ± 6 11 ± 15 9 ± 13) 12 ± 16 10 ± 14

(21)
Writing them as: ψ,U1ψ,U2ψ,U3ψ, where Uk are the transposition matrices,
we have the following algebra for Uk an U :

U1U2U3 = U2U3U1 = U3U1U2 = U,

U1U3U2 = U2U1U3 = U3U2U1 = I,

U2U1 = U3, U1U3 = U2, U2U3 = U1,

U1U2 = UU3, U3U1 = UU2, U3U2 = UU1,

U2
1 = U, U2

2 = U2
3 = I, [U,Uk] = 0. (22)

By (22), all solutions are splitted into the two classes if we identify ψ ∼ Uψ:
the ones having only one of three ”properties” being an analog of three ”colors”
of quarks (it is Ukψ), and having all three ”properties” (it is ψ). So, we may
interpret in this way the concept of ”color” for the composite system. By the
additional requirement of the conservation of the norm ψ+ψ for every class
of solutions, SU(3)C × SU(2) will be the global symmetry group, the chiral
properties of solutions are already discussed. The solutions Ukψ, k = 1, 2, 3,
form the SU(3)-triplets, while ψ and Uψ form its singlets and the doublet of
one of SUR∨L, Ukψ and UUkψ will be the doublets of the last, too. Let us note
that [V,Uk] �= 0, [V,U ] = 0.

The discrete group of 16×16 matrices: S = {I, Uk, UUk, U |k = 1, 2, 3} forms
the representation of the groups of transformations of the coordinates (x, y) by
8 × 8 matrices S = {I, uk, uuk, u} and of the coordinates (x1μ, x2μ) by 8 × 8
matrices S

′
= {I, u′

k, u′u′
k, u′} with the same algebra (22). To reconstruct

the last group by s, let us use the following reduction method. Note that
U represents the inversion (x, y) → (x,−y), and the last is equivalent to the
display (x1μ, x2μ) → (x2μ, x1μ). Let us introduce the continuous numbering of
the coordinates (xiμ: zα+1 = (x1α, zα+5 = (x2α, α = 0, 1, 2, 3, their transforms
will be written as a substitutions (we will write k instead of zk). The matrix
u′ corresponding to the inversion we get if to assign numbers 1, 2, ..., 8 to the
spinors components in the first raw of (19), and to identify the substitution of
these numbers by (19) with u′:

u′ =
1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4 .

This reduction method lets to write all matrices uk
′ by the substitutions (21):

u1
′ =

1 2 3 4 5 6 7 8
2 5 4 7 6 1 8 3 ,
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u2
′ =

1 2 3 4 5 6 7 8
1 6 3 8 5 2 7 4 ,

u3
′ =

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7 .

By them one can reconstruct the matrices uk of the group s taking into
account relations of xμ, yμ with x1μ, x2μ:

u1 =
x0 x1 x2 x3 y0 y1 y2 y3

x1 x0 x3 x2 y1 −y0 y3 −y2
,

u2 =
x0 x1 x2 x3 y0 y1 y2 y3

x0 x1 x2 x3 y0 −y1 y2 −y3
,

u3 =
x0 x1 x2 x3 y0 y1 y2 y3

x1 x0 x3 x2 y1 y0 y3 y2
.

Two of these transforms affect the sector of coordinates xμ, and all of them
affect the sector of yμ; Eqs. (13 - 16) are invariant under such the transforms.
From the geometrical point of view, the sets {Uk}, {uk}, {u′

k} are the genera-
trix sets of some algebras which are homomorphic to the Clifford algebra C(2, 1)
corresponding to the 3-dimensional color space with the signature (+ + −) [3].
The discrete groups S, s, s

′
are isomorphic to the dihedron group D4 [6].

Some further development of this model can be found in the author’s later
paper [7].
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