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Abstract  

The special problem we try to get at with these lectures is to maintain the interest of the very 

enthusiastic and rather smart people trying to understand physics. They have heard a lot about how 

interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern 

ideas—and spend many years studying textbooks or following online courses. Many are discouraged 

because there are really very few grand, new, modern ideas presented to them. Also, when they ask too 

many questions in the course, they are usually told to just shut up and calculate. Hence, we were 

wondering whether or not we can make a course which would save them by maintaining their 

enthusiasm. This paper is a draft of the second chapter of such course.  
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Preface1 
To explain what a probability amplitude might actually be, one has to get into the specifics of the 

situation: explaining how an ammonia maser might work as opposed to, say, having a look at 

Schrödinger’s hydrogen atom, are very different endeavors. However, despite the very different 

physicality of these two systems, they allow for a similar approach in terms of their quantum-mechanical 

analysis. The question is: why is that so? The preliminary answer is this: both phenomena involve 

periodicity and regularity – some oscillation – which, mathematically, can be represented by the same 

mathematical functions: a sinusoid or – what Nature seems to prefer – a combination of a sine and a 

cosine: Euler’s a·eiθ = a·(cosθ + i·sinθ) function.2  

In our previous lecture (chapter I), we showed how we may use the elementary wavefunction to 

represent an elementary particle: we looked at the electron and its smaller more massive and unstable 

variant⎯the muon. We also discussed protons and neutrons⎯modeling the latter as composite 

particles, which are stable inside of a nucleus only.3 We concluded all should be thought of as ring 

currents which can, effectively, be represented by Euler’s function: we may, effectively, interpret r = 

a·eiθ as the r = (x, y) position of the electric charge as it orbits around some center with radius a = ħ/mc 

and frequency ω = E/ħ. There is more than one way to represent this model but we think the easy 

formulas and derivation below do the trick rather well4: 

𝑐 = 𝑎ω
E = ℏω

 } ⇒
𝑐

𝑎
=

E

ℏ
⟺ 𝑎 =

ℏ𝑐

E
=

ℏ

m𝑐
 

This should – by now – come across as rather intuitive: Einstein and de Broglie’s intuition in regard to 

the wave-nature of matter was essentially correct, but they should have thought of a stationary circular 

 
1 This is the second chapter of a rather ironic re-write of Feynman’s iconic lectures series on quantum mechanics. 
The reader will not be able to make sense of this chapter without a thorough reading of our first chapter. 

2 The sine and cosine function are the same function but with a phase difference of 90 degrees. We, therefore, 
may think of some kind of perpetuum mobile: two oscillations working in tandem and transferring (potential 
and/or kinetic) energy to and from each other. We developed this metaphor in one of very first papers which, if 
only because of its naïve simplicity, we may still recommend.  

3 The negative charge inside of a neutron may help to keep the nucleus together. We can, therefore, think of this 
charge as some kind of nuclear glue. We tentatively explored this idea in a paper: Electrons as gluons? The basic 
idea is this: the electromagnetic force keeps electrons close to the positively charged nucleus and we should, 
therefore, not exclude that a similar arrangement of positive and negative charges – but one involving some 
strong(er) force to explain the difference in scale – might exist within the nucleus. One can effectively never find a 
proton pair without one or more neutrons: the main isotope of helium (4He), for example, has a nucleus consisting 
of two protons and two neutrons, while a helium-3 (3He) nucleus consists of two protons and one neutron. When 
we find a pair of nucleons, like in deuterium (2H), this will always consist of a proton and a neutron. The idea of a 
negative charge acting as an in-between to keep two positive charges together is, therefore, quite logical. Think of 
it as the opposite of a positively charged nucleus keeping electrons together in a multi-electron atom. 

4 This derivation shows our model applies Wheeler’s ‘mass without mass’ idea: all of the mass is in the energy of 
the oscillation. A dimensional analysis of the two sides of the c/a = E/ħ equation is interesting too. We have the 
inverse of a time unit on the left-hand side because we are dividing a (tangential) velocity by a distance unit (the 
Compton radius): c/a = ω = 2π·f = 2π/T. The latter is, effectively, the inverse of what is sometimes referred to as an 
angular period (T/2π), as opposed to a linear period (T). Energy is expressed in N·m, while Planck’s (reduced) 
quantum of action is expressed in N·m·s. Hence, these physical dimensions make sense. 

https://www.feynmanlectures.caltech.edu/III_toc.html
https://vixra.org/pdf/2006.0068v3.pdf
https://vixra.org/pdf/1806.0106v1.pdf
https://vixra.org/pdf/1908.0430v4.pdf
https://en.wikipedia.org/wiki/Frequency#/media/File:Commutative_diagram_of_harmonic_wave_properties.svg
https://en.wikipedia.org/wiki/Frequency#/media/File:Commutative_diagram_of_harmonic_wave_properties.svg
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oscillation instead of trying to adapt the linear wave concepts that we associate with photons or, more 

generally, with electromagnetic and all other physical waves. The conceptual switch that has to be made 

here is to think of c as a tangential rather than a linear velocity: that is all⎯nothing more, nothing less. 

So let us turn the page on this and move to the next⎯the topic of this chapter: the concept of 

probability amplitudes. 

Indeed, using Euler’s function to describe a particle and using it in what is commonly referred to as a 

probability amplitude are two very different things. Let us look at the latter in more detail by analyzing a 

particular two-state system and then see whether or not we can generalize whatever results we might 

get.  

2-1 A two-position system 
A state may refer to a position so we will take an easy two-position system5 as an example of a two-

state system: an ammonia molecule in an electric field (Figure 1).6 

 

Figure 1: An ammonia molecule in an electrostatic field7 

We choose this example for the same reason as why Feynman uses it in his introduction to two-state 

systems: the ammonia maser is one of the very first practical applications of the theory of quantum 

mechanics. It was built in the early 1950s and its inventor, Charles Townes, wanted the m in maser to 

refer to molecular. The mechanism is similar to that of a laser: the a, s, e, r in maser effectively refer to 

the same as in laser (amplification by stimulated emission of radiation). However, instead of 

electromagnetic waves in the frequency spectrum of visible light, a maser produces micro-, radio- or 

infrared frequencies. These are associated with lower energies, which correspond to the smaller 

differences between the energies that are associated with the position of the nitrogen atom in the 

ammonia (NH3) molecule. 

 
5 In case the reader wonders: yes, we just invented this term. 

6 In case you wonder what an electric field actually is, we mean an electrostatic field, which originates from static 

charges−as opposed to a magnetic field, which originates from moving charges. 

7 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration. 

https://www.feynmanlectures.caltech.edu/III_09.html
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The state concept 
Figure 1 clearly shows position states 1 and 2 have nothing to do with the spin state of the molecule 

as a whole: that is the same in the right- and left-hand side illustrations, as shown by the rotation arrow 

around the symmetry axis of this molecule. There is no spin flip, and you should also not think that this 

NH3 molecule goes from state 1 to 2, or vice versa, by flipping over as a whole⎯by changing its 

orientation its space, that is. No! What happens here is that the nitrogen atom (N), somehow, manages 

to tunnel through the plane that is formed by the three hydrogen atoms (H3). We will come back to this. 

Before we do so, we should note that we have not introduced much quantum-mechanical symbolism 

yet, so let us quickly do this now. 

The 1 and 2 notation represent physical base states here. This ϕ notation is known as the ket in 

Dirac’s bra-ket notation and always refers to some initial state that may or may not change. In contrast, 

the 〈χ| notation is a bra-state and refers to some final state. These initial and final states are separated 

by time – states may change as the clock keeps ticking without us intervening in any way – or, 

alternatively, because we put the particle through some apparatus, process, or force field⎯which we 

may denote by A or S. We may, therefore, say some apparatus or process will operate on some (initial) 

state ϕ to produce some (end) state 〈χ|. We write that like this: 

⟨ χ | A | ϕ ⟩ 

Note you need to read this from right to left, like Arabic or Hebrew. Because this looks quite formidable, 

we should give a practical example: if the electric field – the Ɛ in the illustration8 – is very strong or, if it 

is being applied long enough, then an atom in the 1 state will go into the 2 state so as to ensure the 

electric dipole moment of the ammonia molecule () is aligned with the electric field.9 This is all quite 

logical because the energy of the ammonia molecule as a whole will be lower if and when it can align its 

dipole moment with the field. 

We should, of course, note that the notion of an energy difference between the two states can only be 

defined with reference to some external field: we can say that the NH3 molecule has more energy in 

state 1 than in state 2 because its polarity in state 1 opposes the field. We may, therefore, say that 

the external field establishes the frame of reference: what is up or down, left or right, and back or front 

can, effectively, only be defined with a reference to this externally applied field.10 This may seem to be a 

trivial philosophical remark but physicists sometimes seem to lose sight of this when doing more 

 
8 We usually use E for an electric field but we use the Ɛ symbol here so as to ensure there is no confusion with the 
E that is used to denote energy. 

9 Notation is tricky once again because we use the same  symbol to refer to a magnetic moment in another 
context. However, we trust the reader is smart enough to know what is what here. 

10 The reader may think this electric field has the same axis of symmetry as the NH3 molecule and that we may, 
therefore, not be able to distinguish left from right or vice versa. However, this problem is solved because it is 
assumed we have knowledge of the spin direction (see the rotation arrow in Figure 1). We also know what is back 
and front because we are doing this experiment and we, therefore, have some idea of our own relative position 
vis-à-vis the electric field and the ammonia molecule. In short, we may say that the experiment as a whole comes 
with the relevant frame of reference for the measurement of position, energy and whatever other physical 
property or quantity we would want to observe here. 
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complicated abstract mathematical calculations.  

We need to make a second remark here: are we talking the dipole moment of the molecule or the 

nitrogen atom? It is an electric dipole moment, so it must be the dipole moment of the molecule, right? 

Atoms may have a magnetic moment11 but they would not have an electric moment, right? The answer 

is: yes, and no. Something must cause the ammonia molecule to be polar and that something is the 

configuration of the system: nitrogen has 7 electrons, which are shared with the hydrogen nuclei in 

covalent bonds. A covalent bond blurs the idea of an electron belonging to one atom only. You may 

think of it like this: the valence electrons allow the hydrogen to also (partly) fill its shell with paired 

electrons.   

 

Figure 2: The charge distribution in an ammonia molecule12 

We will let you google more details of the structure of this system.13 At this point, you should just note 

an analysis in terms of individual atoms is not all that useful: the ideas of positively charged nuclei and 

electron densities are far more relevant than the idea of an individual nitrogen atom flipping through 

some potential barrier⎯although the latter idea is what we are going to be talking about, of course! 

Just remember this when you are getting confused or if we would happen to be using non-specific 

language ourselves14: we are talking the state of the ammonia molecule (or the molecular system, we 

should say) but this state – in this discussion, at least – is determined by the relative position of the 

nitrogen. 

 
11 All atoms with an uneven number of electrons have a magnetic moment because electrons in a pair (remember 
the standard configuration of a electron orbital has two electrons) will have opposite spin. The silver atoms which 
Otto Stern and Walther Gerlach sent through their apparatus in 1922, for example, have 47 electrons. It is 
interesting to note that a similar line-up happens if we consider the nucleus alone: when applying an external 
magnetic field, pairs of nucleons will line up so as to lower the joint energy of the system.    

12 We gratefully acknowledge the source of this illustration: the virtual Elmhurst College Chemistry Book, Charles H. 
Ophardt, 2003. 

13 There are various ways to look at it. The Chembook illustration shows a lonely electron pair but you should note 
the nitrogen atom also wants fully-filled (sub-)shells. Its 1s and 2s subshells have two, but the three 2p (subshells) 
each lack one electron, and then the 1s orbitals of the three hydrogen atoms lack one too. We, therefore, have five 
valence electrons. The nitty-gritty of the charge distribution is, therefore, quite complicated.  

14 This inevitably happens when getting into quantum-mechanical descriptions so we will not apologize for it. 

http://chemistry.elmhurst.edu/vchembook/212inorganic.html
http://chemistry.elmhurst.edu/vchembook/212inorganic.html
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Potential wells and tunneling 
If there is an energy difference between state 1 than in state 2, then how can we explain the nitrogen 

atom tends to stay where it is? How is that possible? The reader will be familiar with the concept of a 

potential well – if not, google it – and the reader should, therefore, note that the potential energy of the 

N atom will effectively be higher in state 1 than in state 2 but, because of the energy barrier (the wall 

of the potential well), it will tend to stay where it is⎯as opposed to lowering its energy by shifting to the 

other position, which is a potential well itself! 

Of course, you need to read all of the above carefully: we wrote that the nitrogen atom will tend to stay 

where it is. From time to time, it does tunnel through. The question now becomes: when and how does 

it do that? That is a bit of a mystery, but you should think of it in terms of dynamics. We modeled 

particles as charges in motion. Hence, we think of an atom as a dynamic system consisting of a bunch of 

elementary (electric) charges. These atoms, therefore, generate an equally dynamic electromagnetic 

field structure. We, therefore, have some lattice structure that does not arise from the mere presence of 

charges inside but also from their pattern of motion.15 

Can we model this? Feynman did not think this was possible.16 In contrast, we believe recent work on 

this is rather promising⎯but we must admit it has not been done yet: it is, effectively, a rather 

complicated matter and, as mentioned, work on this has actually just started!17 We will, therefore, not 

dwell on it here: you should do your PhD on it!       The point is this: you should take a dynamic view of 

the fields surrounding charged particles. Potential barriers – and their corollary: potential wells – should, 

therefore, not be thought of as static fields: they vary in time. They result from or more charges that are 

moving around and thereby create some joint or superposed field which varies in time. Hence, a particle 

breaking through a ‘potential wall’ or coming out of a potential ‘well’ is just using some temporary 

opening corresponding to a very classical trajectory in space and in time.18  

There is, therefore, no need to invoke some metaphysical Uncertainty Principle: we may not know the 

detail of what is going on⎯but we should be able to model it using classical mechanics!  

Modeling uncertainty 
The reader should, once again, note that the spin state or angular momentum state is the same in the 

1 and 2 states. Hence, the only uncertainty we have here is in regard to the position of the nitrogen 

atom (N) vis-à-vis the plane that is formed by the three hydrogen atoms (H). As long as we do not 

actually investigate, we cannot know in what state this nitrogen atom – or the molecule as a whole – 

 
15 You should also do some thinking on the concept of charge densities here: the different charge densities inside 
of the ammonia molecule do not result from static charge distribution but because the negative charges inside 
(pointlike or not) spend more time here than there, or vice versa. 

16 We will soon quote his remarks on this, verbatim, so be patient for the time being! 

17 In case you would want to have an idea of the kind of mathematical techniques that are needed for this, we 
hereby refer you to a recent book on what is referred to as nuclear lattice effective field theory (NLEFT).  

18 You should also do some thinking on the concept of charge densities here: the different charge densities inside 
of the ammonia molecule do not result from static charge distribution but because the negative charges inside 
(pointlike or not) spend more time here than there, or vice versa. 

https://www.springer.com/gp/book/9783030141875
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actually is. Paraphrasing Wittgenstein19, we can say our theory tells us what might be the case: it is only 

some measurement that can establish what actually is the case. We can, of course, also prepare the NH3 

molecule by polarizing it in a strong-enough electric field. However, in either case, we will, of course, 

disturb the system and, by doing so, put it in some new state.  

We do not want to do that. Instead, we will try to model our uncertainty in regard to the position of the 

nitrogen atom, in the absence of a measurement or polarization, by thinking of it in very much the same 

way as the proverbial cat in the equally proverbial Schrödinger box: because we do not know if it is dead 

or alive, we can only associate some abstract logical state with it⎯a combination of being dead and 

alive which exists in our mind only. Fortunately, the state of the ammonia molecule is much less 

dramatic or critical as that of Schrödinger’s cat, and we will simply write it as: 

|ϕ⟩ = C1·1 + C2·2 

This looks like a very simple formula but it is actually quite frightening what we are doing here: 

1. The 1 and the 2 states are (logical) representations of what we think of as a physical state: they are 

possible realities⎯or real possibilities, whatever term you would want to invent for it. When using them 

in a mathematical equation like this, we will think of them as state vectors. There is a lot of 

mathematical magic here, and so you should wonder: what kind of vectors are we talking about? 

Mathematicians refer to them as Hilbert vectors20 and Figure 3 shows why Schrödinger liked them so 

much: whatever they might represent, we can effectively add and multiply them, somehow. 

 

Figure 3: Adding cats dead, alive or in-between21 

 
19 We refer to Wittgenstein’s theses in his Tractatus Logico-Philosophicus, which our reader may or – more likely – 
may not be familiar with. 

20 This is actually incorrect: they are referred to as being vectors in a Hilbert space. It depends on what you think of 
as being special: we think it is the vectors, rather than the space, so we add Hilbert’s name to the vectors rather 
than the space. In case you wonder, David Hilbert is not English. He was German. He died in 1943 and his tomb 
carries these words: Wir müssen wissen. Wir werden wissen, which we may translate as: “We must know. We will 
know.” 

21 We saw this cartoon on MathExchange, which references AbstruseGoose as the source. The date on this cartoon 
(1935) is somewhat weird: Paul A.M. Dirac published the first edition of his Principles of Quantum Mechanics in 
1930. It may also be mentioned that, while the cat seems to be Schrödinger’s alright (the man who puts the cat in 

https://math.stackexchange.com/questions/416551/what-is-a-hilbert-space
https://abstrusegoose.com/
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It is really like adding apples and oranges. What do you get when you do that? Some fruits, right?       So 

we will talk about fruits but we should not forget they consist of apples and oranges. That is the fruit 

menu of today. You might get grapes and bananas tomorrow.  

2. Where were we? Yes. Physical states. In this case, we multiply them with C1 and C2, which are usually 

referred to as complex numbers (or complex functions, to be precise) but – because we are multiplying 

them with these state vectors – you will want to think of them as vectors too. That is not so difficult: 

complex numbers have a direction and a magnitude, so they are vectors alright! 

So what happens when we multiply apples or oranges with some number? We get two apples, or half an 

orange. It depends on the fruit and the number. But so here we multiply with some complex number. 

That is hard to visualize: we know a complex number includes the idea of an orientation in space (a 

complex number is defined by its length and its direction in space) but this idea does not help us very 

much here. 

3. The sum of the C1·1 + C2·2 then gives us the |ϕ⟩ state. This is a logical state: it exists in our mind 

only.22 Why in our mind only? Because we are not trying to measure anything so we are in a state of 

uncertainty ourselves: we think of some fruit but we are not being specific⎯we are not talking apples or 

oranges here.23   

Let us stop the philosophy here: let us present a few calculations instead. 

2-2 An intuitive explanation 

What is that we want to calculate? 
Because calculation is very boring and, more importantly, because it is important to not lose track of 

whatever is that we want to calculate24, we will give you a sneak preview of the result that we want. It 

looks like this⎯two probabilities ‘sloshing back and forth’, as Feynman would say, as a function of time: 

 
the box wears Schrödinger’s glasses), the bra-ket notation was invented by Dirac. Schrödinger’s seminal paper for 
the 1927 Solvay Conference (La Mécanique des Ondes) makes use of wave functions only. One of the reasons we 
like Feynman’s Lectures on Quantum Mechanics is him going from discrete states (mostly two-state systems) to 
then generalize to an infinite number of discrete states what, in practice, amounts to continuous states, which are 

modeled by wave mechanics⎯as opposed to matrix mechanics. It, therefore, bridges the two approaches, which 
complement each other, of course!  

22 You may think we should distinguish a third physical state: the state of our nitrogen atom while it is moving from 
position 1 to position 2 or vice versa. However, we assume this happens so quickly that the time that is spent in 
this state is negligible. We think the state itself is, therefore, negligible. 

23 We are not talking an apple-orange smoothie either! 

24 You will be surprised but people do sometimes forget what they want to get at. I sometimes do, at least.       

http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html


8 
 

 

Figure 4: Probabilities sloshing back and forth25 

The illustration triggers an obvious question: how do we know our nitrogen atom will be at position 1 or, 

we should say, in state 1 at t = 0, π, 2π,… as measured in the relevant unit here, which is ħ/A? The 

graph assumes we do: perhaps we had switched on some strong electric field for a while so as to 

polarize the ammonia molecule⎯and then we switched it off at t = 0. It does not matter⎯not at this 

point, at least: probabilities are probabilities, so there is, perhaps, no reason why we must be so sure. 

The important thing is the periodicity of these functions: the cycle time πħ/A.26 That is what we want 

to calculate.  

So how do we find that cycle time, and what is the value of A?27  

We will tell you. Let us just quickly also answer the latter question: A is equal to μƐ0. Of course, this is no 

real answer because the question now becomes: what is Ɛ0? We can, effectively, measure the (electric) 

dipole moment μ, but Ɛ0 must be related to the strength of the external field Ɛ. What field are or should 

we be applying here? Feynman is rather vague about that, but we get some kind of answer in the next 

lecture28: it turns out that, when actually operating an ammonia maser, we will apply an electric field 

that varies sinusoidally with a frequency that is equal or very near to the so-called resonant frequency of 

the molecular transition between the two states. So this is what Feynman gives us29: 

Ɛ = Ɛ0·2cos(ωt) = Ɛ0·(ei·ωt + e−i·ωt) and ω = ω0 = 2A/ħ 

 
25 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too. 

26 When expressing the cycle time, the factor 2 vanishes because we must measure the cycle time from peak to 
peak, or from trough to trough. 

27 We will quickly tell you the answer: A is equal to μƐ0. Of course, this is no real answer because the question now 
becomes: what is Ɛ0? We can, effectively, measure the (electric) dipole moment μ, but Ɛ0 must be related to the 
strength of the external field Ɛ. What field? Feynman is remarkably and mysteriously vague about that. πħ/A 

28 This chapter deals with a number of chapters in Feynman’s Lectures (about half of his lectures discuss some kind 
of two-state system) but Feynman’s Chapter 8 and 9 are the basic ones, because they both deal with the 

mechanics of the ammonia maser⎯which we, just like Feynman, think of representing the basics of a quantum-
mechanical discussion of any two-state system. 

29 The reader should note the interesting formula for the sum and/or the difference of conjugate complex numbers 
or functions here, because we may need it later: 

ei·θ + e−i· θ  = cosθ + i·sinθ + cosθ − i·sinθ = 2·cosθ 

ei·θ − e−i· θ  = cosθ + i·sinθ − cosθ + i·sinθ = 2·i·cosθ 

https://www.feynmanlectures.caltech.edu/III_09.html
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The question now becomes: what is that resonant frequency? Feynman just writes it down⎯with no 

explanation: . That’s what was experimentally measured apparently. 

The reader will (or should) note there is some circularity in the argument here, but we cannot help that: 

we stick quite closely to Feynman’s rather heuristic approach to explaining quantum math, and so it is 

what it is and we request the reader to try to get through it and make sense of it. 

What are those amplitudes? 
Let us, before we move to the meat of the matter, also give you a sneak preview of the result we should 

obtain for those C1 and C2 coefficients: these weird probability amplitudes. We are going to get this: 

𝐶1 = 𝑒−𝑖
E0
ℏ

𝑡cos (
A

ℏ
𝑡) 

𝐶2 = 𝑖 ∙ 𝑒
−𝑖

E0
ℏ

𝑡
sin (

A

ℏ
𝑡) 

Time is the variable, so you may want to think of the 𝑒−𝑖
E0
ℏ

𝑡 function as representing the hand of an old-

fashioned stopwatch: its length is 1 (unity) and its angular or rotational frequency is equal to E0/ħ. What 

is E0? Feynman defines E0 as the average energy of the ammonia molecule but you should just think of it 

as an average tout court: the average of E0 + A and E0 − A: 

E0  +  A + E0 −  A

2
= E0 

Why are we saying this? Because we do not have to be specific about what energy we are talking about 

when introducing E0: we may or may not include the rest mass of the nuclei, for example30. The point is: 

what we include or not, does not matter: our choice will determine the zero point on the energy scale 

but there is no need in our calculations for an absolute zero point: all that matters is this energy 

difference A.31 Let us get back to those amplitudes. 

The cos(A·t/ħ) function is going to modulate the length of our stopwatch hand: it goes from 1 (for t = 0) 

to zero (for t = π/2), to −1 (t = π), zero again (t = 3π/2), and back to 1 (t = 2π). How can a length be 

negative? It cannot be, of course: the minus sign is directional only: −1 is +1 in the opposite direction.32 

 
30 We may think of the nuclei as the stationary components of the molecule, so it makes sense to only talk about 
their rest mass. In contrast, we think of the electrons as pointlike charges whizzing around at lightspeed, so all of 
their energy is kinetic. We also have energy in the electromagnetic field(s), of course! Any other energy? Yes: 
vibrational, rotational, whatever! Why are we making things complicated? We are not. We just want to point out 
that the energy concept can be quite complicated when discussing a full-blown system of particles! 

31 You may think we should get into trouble when setting E0 to zero, because the argument in this complex 
exponential vanishes: e0 = 1. Our stopwatch stops! We will let you think about this as an exercise: you should walk 
through the math of this chapter once more when you are done with it and check what an E0 = 0 assumption 

would do to it. You should find it doesn’t matter⎯but it might take a while before you see why.  

32 This may come across as a trivial remark but the point is quite deep, because we should also note we can go 

from +1 to −1 in clockwise or in counterclockwise direction: these are two opposite rotations – modeling very 
different things, in other words. Unfortunately, mainstream quantum theorists usually treat them as common 
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Let us now look at the function for C2: the 𝑖 ∙ 𝑒−𝑖
E0
ℏ

𝑡 function is the same stopwatch hand but it is 90 

degrees out of phase with the other stopwatch. We have the same phase difference between the sine 

and cosine functions that we are multiplying these stopwatch hands with.33 

We must note a last thing: the periodicity of the probability functions (P1 and P2) is π, so that is half of 

the usual period of (co)sine and complex exponentials (2π). In other words, it is half of the period of our 

C1 and C2 amplitude functions. That is why the factor 2 in the ω = ω0 = 2A/ħ formula for the resonant 

frequency makes sense: the resonant frequency and the probability functions have the same period (π). 

Of course, a squared sine (or cosine) also has the same period (π). The math is wondrous but works! 

 

Figure 5: The sin(θ), sin(2θ) and sin2(θ) functions and their periodicity34 

Before we present the quantum-mechanical machinery – Hamiltonian matrix and all that – we should 

make one more point. It is a very simple one. We obviously have some kind of oscillator here: a 

positively charged nucleus flipping back and forth and dragging some negative charge with it as it does 

its dance. We may, therefore, wonder we could, perhaps, just use the Planck-Einstein relation once 

more to model all of this. If everything inside of this molecule – the electrons, protons, neutrons, and 

the fields in-between them – have some frequency which is given by the Planck-Einstein relation (ω = 

E/ħ) – because we are talking stable stuff, right?35 – then we might just try to use the Planck-Einstein 

relation once again to determine the frequency of this particular system, isn’t it? 

The thought is very logical – so we think – entirely justified: the energy difference here resembles the 

energy difference between, say, two electron orbitals in the Rutherford-Bohr model of an atom and we 

may, therefore, calculate the frequency as: 

ω =
E

ℏ
=

2A

ℏ
 

Why the factor 2, and what is the relation with Ɛ0? We are not calculating an average here, so there is no 

1/2 factor: E0 + A − (E0 − A) = 2A, and the difference between +Ɛ0 and −Ɛ0 is 2Ɛ0 as well, isn’t it? Yes. And 

 
phase shifts. See our paper on Euler’s Wavefunction and the Double Life of −1, which also deals with the false 720-
degree symmetries mainstream quantum theorists play with. 

33 This sounds trivial too but we request the reader to quickly verify the relations: sin(θ) = cos(θ − π/2) and i·e−i·θ = 

i·e−i·θ = ei·π/2·e−i·θ = e−i·(θ − π/2) so as to get a feel for the geometry of these coefficients and wavefunctions.  

34 We gratefully acknowledge the online Desmos.com graphing tool. 

35 See the first chapter of this two-chapter series: stable particles are stable because their frequency is right 

on⎯their energy is in the oscillation, so they must be right on, of course! In contrast, unstable systems die out, so 
to speak, or, else, fragment into stable(r) sub-systems: transients, which then further disintegrate into stable 
elementary particles. Whatever excess energy there may be – electromagnetic or strong – radiates away as 
photons or neutrinos. 

https://vixra.org/pdf/1810.0339v2.pdf
https://www.desmos.com/calculator
https://vixra.org/abs/2006.0068
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no. The 2A makes sense, but the 2Ɛ0? Perhaps we should think of it like this: if A is the potential barrier, 

then we need a field that is at least as strong to break through it, right? Maybe. Maybe not. Let us be 

precise here. The argument should, perhaps, more be like this: the energy of an electric dipole moment 

μ36  in some electric field Ɛ is equal to μ·Ɛ·cos and, hence, to flip the dipole moment, we will need an 

energy that is equal to (at least) 2μƐ.37 So we have a factor 2 here too… But – Hey! – what is this 

potential barrier, exactly? The dipole moment and this potential barrier must be two sides of the same 

coin, isn’t it? 

Good thinking! We can now, effectively, not worry too much about Feynman casually mentioning A 

should be equal to μƐ0. In fact, we should probably define Ɛ0 as Ɛ0 = A/μ. 

Does stuff like this matter? A and μ are the physical variables that characterize the system: the Ɛ0 field is 

just some field that we – the observer – applies to it. The argument should, therefore, be driven by A 

and μ, not by Ɛ0.38 

The Planck-Einstein explanation 
What we just wrote above amounts to an intuitive classical explanation of the maser: the Planck-

Einstein relation gives us the resonant frequency of the maser – ω0 = E/ħ = 2A/ħ = 2μƐ0/ħ – and now 

we need to get those probabilities. What are probabilities anyway? A probability is some number 

between 0 and 1 and, in this case, we have two – P1 and P2 – and we need them to slosh back between 

each other. We can now easily calculate the period of the probability (T) from the ω = 2π·f = 2π/T 

flipping frequency: 

ω0 = 2π ∙ 𝑓 =
2π

T
=

2A

ℏ
⟺ T =

ℏ

A
π 

So that is what Figure 4 shows: when expressing time in units equal to ħ/A, the periodicity of these 

probability functions is equal to π. Why a squared sine and cosine? That is just geometry: probability 

functions should be smooth but cannot be negative and, yes, the periodicity of the sine and cosine is 2π. 

So what is the point? 

The point is this: these probability amplitudes are, perhaps, just irrelevant. We can calculate them from 

the probabilities by taking their square root, of course, but why would we do that? No one knows what 

these probabilities actually are anyway, right?  

Right. 

[…]  

 
36 The dipole moment is a vector quantity: it has got direction and, hence, we write it in boldface. The same is true 
for the electric field. 

37 The  is the angle between the dipole and field directions. Hence, the energy will be equal to −μƐ when the 
dipole is aligned with the field direction (lowest energy possible) and μƐ when its direction is opposite to that of 
the field (it can then lower it by flipping over). The energy difference is, therefore, 2μƐ. 

38 Why do we mention this? Because Feynman does not do that, and we want to alert the smart student to the 
difference between a theory, a calculation and an explanation.  

https://vixra.org/pdf/2004.0347v7.pdf
https://vixra.org/pdf/2004.0347v7.pdf
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So what? Do we need all of that quantum-mechanical machinery? Frankly, we do not think so, but we 

are here to give it to you and so that is what we will do. Let us get on with it. 

2-3 Amplitude math 

Coefficients and the Hamiltonian matrix 
If someone has talked to you about quantum mechanics at all, chances are he or she mentioned the 

Hamiltonian. So what is this (in)famous Hamiltonian? It has got little or nothing to do with classical 

Hamiltonian mechanics, so we recommend you do not try to compare too much: one can, actually, but it 

will probably only confuse you if you try to do this at this stage of your studies.39 To explain what it is all 

about, we will review that formula we started out with: 

|ϕ⟩ = C1·1 + C2·2 

You may want to think of C1·1 and C2·2 as two vector products, and you may think this is consistent 

with the notion of probabilities being calculated as the (absolute) square of some probability amplitude. 

To be precise, a probability will generally be calculated as something like this40: 

P = 2 = a·eiθ2 = a2·eiθ2 = a2  

We may remind ourselves also of some other formula here, which might or might not help us to get a 

more intuitive grasp of the rather special math we are going to use⎯Pythagoras’ formula in vector 

format41: 

c2 = a2 + b2  c2 = a2 + b2  c2 = a2 + b2  c·c = a·a + b·b2  

Needless to say, the a and b vectors are orthogonal or perpendicular vectors here. It is interesting to 

write c more generally as the sum of any two vectors a and b – orthogonal or not – and to square this 

sum: 

c2 = (a + b)2 = a2 + b2 + 2a·b = a2 + b2 + a·b·cosθ = a2 + b2 if and only θ = ±π/2   

 
39 Sir William Rowan Hamilton, whose name is associated with this, died long ago (in 1865, or be precise) and was, 
therefore, aware of classical mechanics only. In fact, Hamiltonian mechanics refers to a reformulation of good old 
Newtonian mechanics. Most relevant for quantum mechanics is his great work in regard to complex number 
theory: he actually extended the concept of complex numbers to quaternions, which have found renewed usage in 
the programming of computer video games. 

40 You should probably review some of the basic rules in regard to complex numbers, basic trigonometry, and 
various other related and unrelated rules, such as the rule for squaring absolute values and all that. Note that we 

must not necessarily assume the coefficient a is a real but positive number⎯although it usually is: a2 will always 

be equal to a2, even if a is a negative real number. As for eiθ2 being equal to 1, we should remind ourselves of the 
definition of the absolute value of a complex number: it is the length of the associated vector, which we find by 
taking the positive square root of the sum of the squares of cosθ and sinθ. Let us write this out for clarity: 

|𝑒𝑖θ| = +√cos2θ + sin2θ ⟺ |𝑒𝑖θ|
2

= |+√cos2θ + sin2θ|
2

= |+√1|
2

= 1 

41 We are deliberately a bit sloppy in using the dot for a product, or not⎯because we want you to think about the 
difference between a vector dot product and the usual scalar product. A vector dot product involves a cosine 

factor: a·b = a·b·cosθ. The θ is, of course, not the phase but the angle between the two vectors.   

https://en.wikipedia.org/wiki/Quaternion
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We get the same result: Pythagoras formula is valid if and only if a and b are orthogonal vectors. This 

condition is valid in quantum math too: a system – any system, really – will always be described in terms 

of base states which will be orthogonal one to another. This matches the condition of linear 

independence for any set of base vectors in any mathematical space. So far, so good.  

Let us think about what we wanted to think about here: those coefficients C1 and C2. They will be 

complex functions of time as well, so we should write them as C1(t) and C2(t). We will also have time 

derivatives dC1(t)/dt and dC2(t)/dt. What can we do with this? I must refer to Feynman’s lecture on how 

states change with time42 here for a great but rather complicated abstract logical argument which 

involves time as an apparatus. I will just note Feynman’s introduction to it⎯and the grand result, of 

course: 

“We have already talked about how we can represent a situation in which we put something 

through an apparatus. Now one convenient, delightful “apparatus” to consider is merely a wait 

of a few minutes; that is, you prepare a state ϕ, and then before you analyze it, you just let it sit. 

Perhaps you let it sit in some particular electric or magnetic field—it depends on the physical 

circumstances in the world. At any rate, whatever the conditions are, you let the object sit from 

time t1 to time t2.”   

Then follows the mentioned brilliant exposé⎯which we will not copy here.43 We just copy the grand 

 
42 See: Feynman’s Lectures on Quantum Mechanics, Chapter 8, section 4. The argument is quite dense and we, 
therefore, produced one or two explanatory blog articles on it. However, we will not repeat those here because 
Caltech objected to us using some of Feynman’s original material. 

43 To be frank, we were actually very tempted to copy and discuss it here. It is quite instructive and intellectually 
challenging. However, we will leave it as an exercise for the reader to review Feynman’s original lecture on this. 

Here, we will just identify the one deus ex machina moment in the argument⎯just in case the reader would not 

recognize it as such. After one or two pages of theory, Feynman introduces Uij = ⟨ i  U  j  coefficients to describe 
the system (he does it for a n-state system, so we have states i or j = 1, 2, 3,…, n). These represent the ‘time 

apparatus’: the state may remain the same or go into another state as time passes by and so that is what the nn 
matrix, operator, process or whatever you want to call it describes. Now, we have all of the coefficients Ci that 
describe the amplitude to be in state i. These are functions of time and so we should think of their time derivatives 
(yes, the differential equations are round around the corner now). Feynman thinks of the time derivatives in terms 
of (infinitesimally small) differentials and, hence, writing something like this makes sense (we know we are terribly 

abstruse here⎯just check out Feynman himself for the nitty-gritty): 

𝐶𝑖(𝑡 + ∆𝑡) = ∑ Uij

𝑗

(𝑡 + ∆𝑡, 𝑡)𝐶𝑗(𝑡) 

The Uij(t+t, t) element is a differential itself, and the next step in the argument (you are probably totally lost now 
but we are getting to the Hamiltonian here) is to write it as the following first-order approximation: 

Uij(𝑡 + ∆𝑡, 𝑡) = δij + KijΔ𝑡 

This is all a bit mysterious, but so far so good. Feynman’s deus ex machina move is to replace the Kij coefficients by 

“taking the factor −i/ħ out of these coefficients.” He writes he does “for historical and other reasons” but, of 
course, this is the point at which he actually uses the Planck-Einstein relation to define natural time units: why 
suddenly divide by ħ otherwise? It also ensures we must use imaginary numbers for these Hamiltonian 

coefficients, so the two imaginary units cancel each other: −i·i = +1. To make a long story short, Feynman re-writes 
the above as: 

https://www.feynmanlectures.caltech.edu/III_08.html#Ch8-S4
https://readingfeynman.org/2016/01/21/the-hamiltonian-coefficients-what-are-they/
https://readingfeynman.org/2020/06/18/the-dark-forces/
https://www.feynmanlectures.caltech.edu/III_08.html
https://www.feynmanlectures.caltech.edu/III_08.html
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result: 

𝑖ℏ
𝑑𝐶1

𝑑𝑡
= 𝐻11𝐶1 + 𝐻12𝐶1 

𝑖ℏ
𝑑𝐶2

𝑑𝑡
= 𝐻21𝐶1 + 𝐻22𝐶1 

You may wonder: what is this? It does not define those Hamiltonian coefficients Hij, does it? The answer 

is: it actually does.44  We must move and so we will not dwell on this.45 The coefficients C1 and C2 vary in 

time and to find them, we must solve for these Hamiltonian coefficients, which relate the C1(t) and C2(t) 

functions to their (time-)derivatives. These Hamiltonian coefficients are not time-dependent: they are 

constants and one can show they are related to the energy levels and/or the energy difference between 

them. To be precise, one can show46 that, in this particular case, the coefficients in the Hamiltonian will 

be equal to: 

[
𝐻11 𝐻12

𝐻21 𝐻22
] = [

E0 −A
−A E0

] 

What this energy E0 and the energy difference A actually means, should be clear from the illustration 

below, which shows what happens in the absence and/or presence of an external electric field. 

 

Figure 6: Separation of energy states when applying an external field47 

 

Uij(𝑡 + ∆𝑡, 𝑡) = δij −
𝑖

ℏ
HijΔ𝑡 

Re-inserting this expression in the very first and some re-arranging then gives the set of differential equations with 
the Hamiltonian coefficients you are probably waiting for: 

𝑖ℏ
𝑑𝐶𝑖(𝑡)

𝑑𝑡
= ∑ 𝐻𝑖𝑗(𝑡)

𝑗

𝐶𝑗(𝑡) 

This is the very same set of differential equations we will use for this two-state system too.  

44 See footnote 43. We get the Hamiltonian coefficients from a rather random substitution (not-so-random, I 
should say) of Kij coefficients by –i·Hij/ħ coefficients in Feynman’s ‘time-machine equations’.  

45 If Feynman skips steps and logic, we can do so too. 

46 See the above-mentioned reference to Feynman’s Chapter 8. 

47 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too. 

https://www.feynmanlectures.caltech.edu/III_09.html
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Indeed, Figure 6 shows we can actually not talk of separate energy states if no external field is being 

applied: the energy of the ammonia molecule is just E0 and there is no such thing as a higher or a lower 

energy state. In contrast, when an external field is being applied, we will have a higher or lower energy 

state depending on the position of the nitrogen atom and, therefore, of its position state. Feynman no 

longer refers to these energy states or levels as 1 or 2 but as state I and II, respectively.48 Why is that so? 

Because the nitrogen atom will no longer equally divide its time over position 1 and 2: if possible, at all, 

it will want to lower its energy permanently by staying in the lower energy state. This is, effectively, how 

we can polarize the ammonia molecules in a maser. Hence, the illustration below – which basically 

recopies Figure 4 – is valid only for very small values of Ɛ0: if we apply a stronger field, all ammonia 

molecules will align their dipole moment and stay aligned. 

But so we will assume we are applying a very small field only⎯or no field at all, in which case we can 

calculate C1 and C2 as follows: 

𝐶1 = 𝑒
−𝑖

E0
ℏ

𝑡
cos (

A

ℏ
𝑡) 

𝐶2 = 𝑖 ∙ 𝑒
−𝑖

E0
ℏ

𝑡
sin (

A

ℏ
𝑡) 

How did we calculate that? We cannot say because we did not calculate anything here: we refer to 

Feynman for a rather ingenuous solution to that set of differential equations above.49 The point is this: 

we can now take the absolute square of these amplitudes to get the probabilities: 

|𝐶1|2 = cos2 (
A

ℏ
𝑡) 

|𝐶1|2 = sin2 (
A

ℏ
𝑡) 

Those are the probabilities shown in Figure 4. The probability of being in state 1 starts at one (as it 

should), goes down to zero, and then oscillates back and forth between zero and one, as shown in that 

P1 curve, and the P2 curve mirrors the P1 curve, so to speak. We can also see they respect the 

requirement that the sum of all probabilities must add up to 1: cos2θ + sin2θ = 1, always. That is 

Pythagoras’ theorem once more.   

Is that it? Yes. We must conclude our remarks here. We will do so by re-asking the question we started 

 
48 We have no idea why Feynman thinks it is necessary to switch to a supposedly new set of base states, which he 

writes as I + II respectively and which are associated with two new amplitudes CI and CII, respectively. It confuses 
the argument greatly and we do not see any added value. In any case, the reader should note Figure 6 gives us the 
formulas for these two energy levels: 

E𝐼  =  E0 + √A2 + μ2Ɛ2  

E𝐼𝐼  =  E0 − √A2 + μ2Ɛ2 

In the absence of an external field (Ɛ = 0), these formulas reduce to E0 + A and E0 − A, which correspond to the 

energy levels that are associated with the original 1 and 2 position states as well as with the C1 and C2 
amplitudes, respectively. 

49 Reference above: Feynman’s Lectures, Volume III, Chapter 8, pages 8-11 to 8-14. 
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out with. 

What is that we want to calculate? 
We wanted to calculate that cycle time πħ/A, and so we did that. And then we did not, of course. We 

are still stuck with that circular A = μƐ0 equation. In fact, we need to ask ourselves: what determines E0? 

At the very end of his argument, Feynman writes this50: 

“In the discussion up to this point, we have assumed values of E0 and A without knowing how to 

calculate them. According to the correct physical theory, it should be possible to calculate these 

constants in terms of the positions and motions of all the nuclei and electrons. But nobody has 

ever done it. Such a system involves ten electrons and four nuclei and that’s just too 

complicated a problem. As a matter of fact, there is no one who knows much more about this 

molecule than we do. All anyone can say is that when there is an electric field, the energy of the 

two states is different, the difference being proportional to the electric field. We have called the 

coefficient of proportionality 2μ, but its value must be determined experimentally. We can also 

say that the molecule has the amplitude A to flip over, but this will have to be measured 

experimentally. Nobody can give us accurate theoretical values of μ and A, because the 

calculations are too complicated to do in detail.” 

This basically amounts to admitting defeat: we cannot calculate what we wanted to calculate based on 

first principles. Not a great success! In addition, we are still left with this great mystery: why do we need 

to take the (absolute) square of some complex-valued amplitude to get a probability? 

Conclusions 
We did not manage to clearly answer the question we started out with: what are those probability 

amplitudes, exactly? And why should we square them to get some probability? We cannot really answer 

this question because, while thinking of C1·1 and C2·2 as two vector products, we did not associate any 

mathematical function with 1 and 2. We therefore feel that we have just been blubbering around 

without being able to offer any real interpretation of what those probability amplitudes actually are: 

talking about these coefficients C1 and C2 without clearly stating what these C1·1 and C2·2 products 

represent results in the whole argument coming across as vague and mysterious. We must assume that 

is how the author of the arguments we presented here – Richard Feynman – wanted it to be. 

We will try to come up with some better definitions of what a state or base vector might actually be 

here. We suspect it will depend on the specifics of the situation which, in this case, is the modeling of a 

maser: as long as long as we do not come up with a better description or definition of these state or 

base vectors, the concept of a probability amplitude is bound to remain as vague as the 1 and 2 

notation that we have been using.  

In the absence of such more precise description, we may just as well say we are looking at some 

oscillation here, and that we may use the Planck-Einstein relation once again to determine its frequency. 

The relevant energy to be used is an energy difference and the situation, therefore, resembles the 

 
50 To be truthful, it is not at the very end of his exposé⎯but just quite late in the game (section 9-2), and what 
follows does not give us anything more in terms of first principles. 
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energy difference between, say, two electron orbitals in the Rutherford-Bohr model of an atom. We 

write: 

ω =
E

ℏ
=

2A

ℏ
=

2μƐ0

ℏ
 

The particular form of the Planck-Einstein relation above may, therefore, be equivalent to a classical 

description of the situation at hand. Such simpler classical description has the added advantage that it 

avoids ill-defined concepts such as state vectors and probability amplitudes. 


