On Some Properties Of $x^2+y^2+z^2+v^2=dXYZV$; And $x^2+y^2+z^2+v^2+dXYZVU$, And $x^i+y^i+z^i + v^i =dXYZV$.

Michael C. Nwogugu
Address: Enugu 400007, Enugu State, Nigeria
Emails: mcn2225@gmail.com; mcn2225@aol.com
Skype: mcn1112
Phone: 234-909-606-8162 or 234-814-906-2100.

Abstract.
This article develops “existence” properties for the equations $x^2+y^2+z^2+v^2=dXYZV$; And $x^2+y^2+z^2+v^2+dXYZVU$, and $x^i+y^i+z^i + v^i =dXYZV$ (where i is a positive integer). Collectively and individually, these equations have wide applications in Computer Science, Physics, Applied Math and Finance/Economics.

Keywords: Markoff Equation; Prime Numbers; Dynamical Systems; Mathematical Cryptography; Beal Conjecture; Diophantine Equations; Nonlinear Equations.

1. Introduction.
Equations such as $x^2+y^2+z^2+v^2=dXYZV$; and $x^2+y^2+z^2+v^2+dXYZVU$; and $x^i+y^i+z^i + v^i =dXYZV$ (where i is a positive integer) have not been studied in detail in the literature.

2. Existing Literature.
Silverman (1990), Abram, Lapointe & Reutenauer (2020), Bourgain, Gamburd & Sarnak (2016), Chen & Chen (2013), Gaire (2018), González-Jiménez & Tornero (2013), Jiang, Gao & Cao (2020), McGinn (2015) and Togbe, Kafle & Srinivasan (2020) analyzed the Markoff Equation $X^2 + Y^2 + Z^2 = aXYZ$; which perhaps is the most popular equation that is structurally similar to the equations studied in this article. However, the properties and methods introduced herein are new.

On other approaches to solving Diophantine Equations, see: Rahmawati, Sugandha, et. al. (2019), and Ibarra & Dang (2006). On Homomorphisms, see: Wang & Chin (2012). Zadeh (2019) notes that Diophantine equations have been used in analytic functions. Chu (2008) and Lu & Wu (2016) studied dynamical systems pertaining to Diophantine equations (and equations such as $x^2+y^2+z^2+v^2=dXYZV$, and $x^2+y^2+z^2+v^2+u^2=dXYZVU$, and $x^i+y^i+z^i + v^i =dXYZV$ can approximate Dynamical Systems). Luca, Moree & Weger (2011) discussed Group Theory. Elia (2005), Jones, Sato, et. al. (1976) and Matijasević (1981) noted that primes can also be represented as Diophantine equations or as polynomials (ie. each of the equations $x^2+y^2+z^2+v^2=dXYZV$, and $x^2+y^2+z^2+v^2+u^2=dXYZVU$, and $x^i+y^i+z^i + v^i =dXYZV$, can represent a prime). On uses of Diophantine Equations in Cryptography see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012) (ie. each of the the equations $x^2+y^2+z^2+v^2=dXYZV$, and $x^2+y^2+z^2+v^2+u^2=dXYZVU$, and $x^i+y^i+z^i + v^i =dXYZV$ can be used in cryptoanalysis, and in the creation of public-keys). Zadeh (2019) notes that Diophantine equations have been used in analytic functions.

The Beal Conjecture states that if a, b, c, x, y, z are positive integers where $a^x+b^y=c^z$, and $x, y, z > 2$, then a, b and c have a common prime factor. The methods introduced in this article may help resolve the Beal Conjecture and similar problems.
3. The Theorems.

Theorem-1: For the equation \(X^2+Y^2+Z^2+V^2=XYZVg\), if \((n-f)\) is a multiplicative component of each of \(X, Y, V & Z\) (each of \(X, Y, V\) and \(Z\) are derived by multiplying \((n-f)\) by another real number), then \(XYZVg = (n-f)\), for some real number \(g\).

Proof:

Let:
\[X = (n-f)a\]
\[Y = (n-f)b\]
\[Z = (n-f)c\]
\[V = (n-f)j\]

Let: \(X/a = Y/b = Z/c = V/j = (n-f) = XYZVg\)

Where \(-\infty < n, f, a, b, c, j < +\infty\); and \(n, f, a, b, j\) and \(c\) are real numbers.

Thus:
\[X^2 + Y^2 + Z^2 + V^2 = n^2(a^2 + b^2 + c^2 + j^2) - 2nf(a^2 + b^2 + c^2 + j^2) + f^2(a^2 + b^2 + c^2 + j^2)\]

Then:
\[a = 1/YZVg\]
\[b = 1/XZVg\]
\[c = 1/XYVg\]
\[j = 1/XYZg\]

\[X^2 + Y^2 + Z^2 + V^2 = (n^2 - 2nf - f^2)(a^2 + b^2 + c^2 + j^2)\]

Theorem-2: For the equation \(X^2+Y^2+Z^2+V^2=?\), and for all values of \(X, Y, V\) and \(Z\) that are real numbers, if \((n-f)=gXYZV\), and \((n-f)\) is a multiplicative component of each of \(X, Y, V\) and \(Z\), then there exists a real number \(d\) such that \(X^2+Y^2+Z^2+V^2 = dXYZV\); where for all \(g\) that are real numbers, \(g \in d\).

Proof:

As stated herein and above:
\[X/a = Y/b = Z/c = V/j = (n-f) = XYZVg\]
\[a = 1/YZVg\]
\[b = 1/XZVg\]
\[c = 1/XYVg\]
\[j = 1/XYZg\]

\((n-f) = gXYZV\)

Thus, \(gXYZV\) is a multiplicative component of each of \(X, Y, V\) and \(Z\). That is:
\[X=(gXYZV)(a); \text{ and } Y=(gXYZV)(b); \text{ and } Z=(gXYZV)(c); \text{ and } V=(gXYZV)(j)\]

If \(X^2+Y^2+Z^2+V^2 = dXYZV\);
Then by substitution:
\[([g^2X^2Y^2Z^2V^2](a^3)] + ([g^2X^2Y^2Z^2V^2](b^3)] + ([g^2X^2Y^2Z^2V^2](c^3)] + ([g^2X^2Y^2Z^2V^2](j^3)] = dXYZV \]

Then by dividing both sides of the equation by dXYZV and substituting a=(1/YZg), b=(1/XZg) and
\[c=(1/XYg), and j = 1/XYZg, the result is: \]
\[\{([g^2X^2Y^2Z^2V^2](1/(Y^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Y^2Z^2g^2))/dXYZV)\} = 1; \]
and thus: \[[(X/dYZV)+(Y/dXZV)+(Z/dXYZV)+(V/dXYZV)]= 1 \]

By taking a common denominator dXYZV for the left-hand side of the equation, the result is:
\[[(X^2+Y^2+Z^2+V^2)/dXYZV] = 1; \]
and by multiplying both sides of the equation by dXYZV, the result is: \[X^2+Y^2+Z^2+V^2 = dXYZV \]

d can be expressed solely in terms of g, X, Y, V and Z as follows:
\[\{([g^2X^2Y^2Z^2V^2](1/(Y^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Y^2Z^2g^2))/dXYZV)\} = d \]

Similarly, d can also be expressed solely in terms of X, Y, V and Z as follows:
\[\{([g^2X^2Y^2Z^2V^2](1/(Y^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Z^2V^2g^2))/dXYZV)\} + \{([g^2X^2Y^2Z^2V^2](1/(X^2Y^2Z^2g^2))/dXYZV)\} = d \]

Given the foregoing and since X=(gXYZV)(a); and Y=(gXYZV)(b); and Z=(gXYZV)(c); and V=(gXYZV)(j); and \[X^2+Y^2+Z^2+V^2 = dXYZV, for all g, X, Y, Z and V that are real numbers, g < d; and g \in d \]

Theorem-3: For The Equation X^i+Y^i+Z^i+V^i=?, And Given Theorem-7 Above, And For All Values Of X, Y, V And Z That Are Real Numbers, If (n-f)=gXYZV, And (n-f) Is A Multiplicative Component Of Each Of X,Y, V and Z, Then There Exists A Real Number d Such That X^i+Y^i+Z^i+V^i= dXYZV; Where For All g, X, Y, V and Z That Are Real Numbers, g \in d; And d Can Be Expressed as d = [(X^i-1/YZV)+(Y^i-1/XZV)+(Z^i-1/XYV)+(V^i-1/XYZV)].

Proof: The proof is straightforward and follows from prior proofs above.

Theorem-4: For The Equation X^2+Y^2+Z^2+V^2+U^2=?, If (n-f) Is A Multiplicative Component Of Each Of X, Y, V, U And Z (Each Of X,Y, V, U And Z Are Derived By Multiplying (n-f) By Another Real Number), Then XYZVUg = (n-f), For Some Real Number g.

Proof:

Let:
\[X = (n-f)a \]
\[Y = (n-f)b \]
\[Z = (n-f)c \]
\[V = (n-f)j \]
\[U = (n-f)k \]

Where -\(\infty < n,f,a,b,c,j < +\infty \) are real numbers.

\[X^2 = (n-f)a^2 \]
\[Y^2 = (n-f)b^2 \]
\[Z^2 = (n-f)c^2 \]
\[V^2 = (n-f)j^2 \]

Where -\(\infty < n,f,a,b,c,j < +\infty \) are real numbers.
\[U^2 = (n-f)k^2 = (n-f)(n-f)k^2 = (n^2-nf+nf^2)k^2 = n^2k^2 - 2nfk^3 + f^2k^2 \]

Thus:
\[X^2 + Y^2 + Z^2 + V^2 + U^2 = n^2(a^2+b^2+c^2+j^2+k^2) - 2nf(a^2+b^2+c^2+j^2+k^2) - f^2(a^2+b^2+c^2+j^2+k^2) = (n^2-2nf-f^2)(a^2+b^2+c^2+j^2+k^2) \]

Given the foregoing, let:
\[X/a = Y/b = Z/c = V/j = U/k = (n-f) = XYZVg \]

Then:
\[a = 1/YZUVg \]
\[b = 1/XZUVg \]
\[c = 1/XYZVg \]
\[j = 1/XYZUg \]
\[k = 1/XYZVg \]

\[X^2 + Y^2 + Z^2 + V^2 + U^2 = n^2(1/YZVg)^2 + (1/XZVg)^2 + (1/XYZVg)^2 + (1/XYZUg)^2 + (1/XYZVg)^2 \]

\[= (XYZVg)^2(1/YZVg)^2 + (XYZVg)^2(1/XZVg)^2 + (XYZVg)^2(1/XYZVg)^2 + (XYZVg)^2(1/XYZUg)^2 \]

\[= (XYZVg)^2(1/(XYZVg)^2) + (XYZVg)^2(1/XYZVg)^2 + (XYZVg)^2(1/XYZUg)^2 \]

\[= X^2 + Y^2 + Z^2 + V^2 + U^2 \]

Theorem 5: For the equation \(X^2 + Y^2 + Z^2 + V^2 + U^2 = 2 \), and for all values of \(X, Y, V, U \) and \(Z \) that are real numbers, if \((n-f)=gXYZVU \), and \((n-f) \) is a multiplicative component of each of \(X, Y, V, U \) and \(Z \), then there exists a real number \(d \) such that \(X^2 + Y^2 + Z^2 + V^2 + U^2 = dXYZVU \); where for all \(g \) that are real numbers, \(g \in d \).

Proof:

As stated herein and above:
\[X/a = Y/b = Z/c = V/j = U/k = (n-f) = XYZVg \]
\[a = 1/YZUVg \]
\[b = 1/XZUVg \]
\[c = 1/XYZVg \]
\[j = 1/XYZUg \]
\[k = 1/XYZVg \]
\[(n-f) = gXYZVU \]

Thus, \(gXYZVU \) is a multiplicative component of each of \(X, Y, V \) and \(Z \). That is:
\[X = (gXYZVU)(a); \quad Y = (gXYZVU)(b); \quad Z = (gXYZVU)(c); \quad \text{and} \quad V = (gXYZVU)(j); \quad \text{and} \quad U = (gXYZVU)(k) \]

If: \(X^2 + Y^2 + Z^2 + V^2 + U^2 = dXYZVU \);

Then by substitution:
\[\{ g^2X^2Y^2Z^2V^2U^2(a^2) \} + \{ g^2X^2Y^2Z^2V^2U^2(b^2) \} + \{ g^2X^2Y^2Z^2V^2U^2(c^2) \} + \{ g^2X^2Y^2Z^2V^2U^2(j^2) \} + \{ g^2X^2Y^2Z^2V^2U^2(k^2) \} = dXYZVU \]

Then by dividing both sides of the equation by \(dXYZVU \) and substituting \(a = (1/YZUVg) \), \(b = (1/XZUVg) \) and \(c = (1/XYZVg) \), and \(j = (1/XYZUg) \), and \(k = (1/XYZVg) \) into the result, the result is:
\[\{ (g^2X^2Y^2Z^2V^2U^2)(1/(Y^2Z^2V^2U^2g^2)) \}/dXYZVU \] + \[\{ (g^2X^2Y^2Z^2V^2U^2)(1/(X^2Z^2V^2U^2g^2)) \}/dXYZVU \] + \[\{ (g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2V^2U^2g^2)) \}/dXYZVU \] + \[\{ (g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2Z^2U^2g^2)) \}/dXYZVU \] + \[\{ (g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2Z^2U^2g^2)) \}/dXYZVU \] = 1;

and thus:
\[\{(X/dYZVU)(Y/dZVU)(Z/dXYVU)(V/dXYZU)(U/dXYZVU) \} = 1 \]
By taking a common denominator \(dXYZVU \) for the left-hand side of the equation, the result is:
\[
(X^2+Y^2+Z^2+V^2+U^2)/dXYZVU = 1;
\]
and by multiplying both sides of the equation by \(dXYZVU \), the result is:
\[
X^2+Y^2+Z^2+V^2+U^2 = dXYZVU
\]

\(d \) can be expressed solely in terms of \(g, X, Y, V, U \) and \(Z \) as follows:
\[
\{(g^2X^2Y^2Z^2V^2U^2)(1/(Y^2Z^2V^2U^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Z^2V^2U^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2Z^2V^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2Z^2V^2g^2))\}]/XYZVU = d;
\]

Similarly, \(d \) can also be expressed solely in terms of \(X, Y, V, U \) and \(Z \) as follows:
\[
\{(g^2X^2Y^2Z^2V^2U^2)(1/(Y^2Z^2V^2U^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Z^2V^2U^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Z^2V^2U^2g^2))\} + \{(g^2X^2Y^2Z^2V^2U^2)(1/(X^2Y^2Z^2V^2g^2))\}]/XYZVU = d =
\[
(X/YZVU) + (Y/XZVU) + (Z/XYVU) + (V/XYZU) + (U/XYZV)
\]

Given the foregoing and since \(X=(gUYZV)(a) \); and \(Y=(gXYZV)(b) \); and \(Z=(gXYZV)(c) \); and \(V=(gXYZU)(j) \); and \(U=(gXYZV)(k) \); and \(X^2+Y^2+Z^2+V^2+U^2 = dXYZVU \), for all \(g, X, Y, Z, U \) and \(V \) that are real numbers, \(g<d \); and \(g \in \mathbb{D} \).

Conclusion.
Some relevant properties of the equations \(x^2+y^2+z^2+v^2 = dXYZV \) and \(x^2+y^2+z^2+v^2+u^2 = dXYZVU \) and \(x^4+y^4+z^4+v^4 = dXYZV \) (where \(i \) is a positive integer), have been introduced and which can help in solving those and related equations.

Bibliography.

