A New Proof Of Fermat’s Last Conjecture, And A Corrected Solution For ax²+bx+c=0.

Michael C. Nwogugu
Address: Enugu 400007, Enugu State, Nigeria
Emails: mcn2225@gmail.com; mcn2225@aol.com
Skype: mcn1112
Phone: 234-909-606-8162 or 234-814-906-2100.

Abstract.
In this article, a new proof for Fermat’s Last Conjecture is introduced. Also the widely popular “traditional” solution for the quadratic equation ax²+bx+c=0, is corrected (a new solution is introduced).

Keywords: Nonlinearity; Fermat’s Last Conjecture; Quadratic Equations; Mathematical Cryptography; Prime Numbers; Adomian’s Method; Beal Conjecture; Iterated Solutions.

1. Introduction.

Chu (2008) and Lu & Wu (2016) studied dynamical systems pertaining to Diophantine equations. Luca, Moree & Weger (2011) discussed Group Theory as it relates to Diophantine Equations. On Homomorphisms, see: Wang & Chin (2012), Elia (2005), Jones, Satto, et. al. (1976) and Matijasevič (1981) noted that primes can also be represented as Diophantine equations or as polynomials (such as in Fermat’s equation). On uses of Diophantine Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012). Zadeh (2019) notes that Diophantine equations have been used in analytic functions.

The quadratic equation ax²+bx+c=0, and its standard solutions are perhaps some of the most widely used equations. The error in its standard solutions is corrected in this article (a new solution is introduced). See: Adomian (1985), Abbaou & Cherruault (1994), Otadi & Mosleh (2011), Kajania, Asady & Venchek (2005), López, Robles & Martínez-Planel (2016), and Sastry (1988).

2. Fermat’s Last Conjecture.

For the equation aˣ+bˣ=cˣ in positive integers, the following are combinations of a,b,c and x that appear to nullify Fermat’s Last Conjecture (but only in the Domain-Of-Real-Numbers), but the issue is that for each such combination, (c/a)ˣ-(b/a)ˣ≈1.00000000000000000000000000000000 (the equation is not exactly equal to 1.00000000000000000000000000000000 like in pythagorean triples):

i) a = 71; b= 72; c = 90; x=3; and (c/a)ˣ-(b/a)ˣ = 0.993967774.

ii) a = 380; b= 412; c = 500; x=3; and (c/a)ˣ-(b/a)ˣ = 1.003525878.

iii) a = 3,816; b= 4,110; c = 5,000; x=3; and (c/a)ˣ-(b/a)ˣ = 1.000097655.

iv) a = 482,950; b= 613,000; c = 700,000; x=3; and (c/a)ˣ-(b/a)ˣ = 1.0000088826.

v) a = 3,811,500; b= 4,113,160; c = 5,000,000; x=3; and (c/a)ˣ-(b/a)ˣ = 1.000749834.

vi) a = 56,590,000; b= 62,199,000; c = 75,000,000; x=3; and (c/a)ˣ-(b/a)ˣ = 1.000106785.

vii) a = 583,000,000; b= 680,202,900; c = 800,500,000; x=3; and (c/a)ˣ-(b/a)ˣ = 1.000463103.
\[a = 280.010; b = 357.010; c = 360.060; x = 10; \text{ and } (c/a)^x - (b/a)^x = 1.007959. \]
\[a = 2,800.100; b = 3,570.100; c = 3,600.390; x = 10; \text{ and } (c/a)^x - (b/a)^x = 1.0001752. \]
\[a = 2,800.100; b = 3,570.100; c = 3,600.360; x = 10; \text{ and } (c/a)^x - (b/a)^x = 0.999723. \]
\[a = 42,400; b = 42,500; c = 43,443; x = 30; \text{ and } (c/a)^x - (b/a)^x = 0.99986336. \]
\[a = 4,240,000; b = 4,250,000; c = 4,345,000; x = 30; \text{ and } (c/a)^x - (b/a)^x = 1.009908. \]
\[a = 43,448; b = 43,379; c = 43,000; x = 150; \text{ and } (c/a)^x - (b/a)^x = 1.004094906. \]
\[a = 4,300,000; b = 4,337,990; c = 4,344,850; x = 150; \text{ and } (c/a)^x - (b/a)^x = 1.000648. \]
\[a = 424,400; b = 425,000; c = 425,005; x = 2,500; \text{ and } (c/a)^x - (b/a)^x = 1.020488. \]
\[a = 42,440,000; b = 42,500,000; c = 42,500,496; x = 2,500; \text{ and } (c/a)^x - (b/a)^x = 1.000135569. \]
\[a = 424,999,999; b = 425,004,800; c = 425,007,071; x = 70,000; \text{ and } (c/a)^x - (b/a)^x = 1.0002. \]
\[a = 424,499,92; b = 425,000,02; c = 425,000,293; x = 100,000; \text{ and } (c/a)^x - (b/a)^x = 1.006591792. \]
\[a = 425,006,108; b = 425,006,999; c = 425,007,011; x = 1,500,000; \text{ and } (c/a)^x - (b/a)^x = 1.0042. \]
\[a = 42,500,228,00; b = 42,500,229,00; c = 42,500,231,800; x = 9,000,000; \text{ and } (c/a)^x - (b/a)^x = 1.000173356. \]
\[a = 425,006,999,145; b = 425,006,999,280; c = 425,007,011,000; x = 25,000,000; \text{ and } (c/a)^x - (b/a)^x = 1.006653657. \]
\[a = 425,006,999,145; b = 425,006,999,280; c = 425,007,011,000; x = 25,000,000; \text{ and } (c/a)^x - (b/a)^x = 1.0004. \]

See the results and cited articles in Jones & Rouse (2013). Given the foregoing, Fermat’s Last Conjecture is or can be valid only in the Domain-Of-Integers, but not in the Domain-Of-Real-Numbers. Lolja (2018) explained the differences between the Domain-Of-Integers and the Domain-Of-Lines. The new proof introduced here pertains only to the Domain-Of-Integers.

Theorem-1: Fermat’s Last Conjecture Which States That No Three Positive Integers a, b And c Satisfy The Equation a^x+b^y=c^z (Where x>2 Is A Positive Integer) Is Correct Only In The Domain-Of-Integers.

Proof:
In order for a^x+b^y=c^z, to be valid, the two conditions c>b,a; and c>b≥a must hold, partly because 1=(c/a)^x-(b/a)^x.

a^x+b^y=c^z, and then divide both sides of the equation by a^x, and subtract 1 from each side of the equation:

\[b^y/a^x = (c^z/a^x)-1; \text{ and } 1 = (c/a)^x-(b/a)^x. \]
\[(b/a)^x = (c^z/a^x)-1, \text{ and } (b/a)^x = x [(c^z/a^x)-1]. \]

In equation b^y/a^x = (c^z/a^x)-1, for all positive integers (a,b,c) ∈ (1,+∞) and x ∈ (3,+∞), integer x cannot be less than three because of the following reasons:

i) b^y/a^x = (c^z/a^x)-1 is equivalent to \(x = (c/a)^x - (b/a)^x \). The two terms \(b^y/a^x \) and \((c^z/a^x)-1 \) must be equal, or the condition \(x = (c/a)^x - (b/a)^x \) must exist and that cannot occur if \(x>2 \) because c>b>a, and because of compounding implicit in the polynomial. See Chapters 4, 5, 7 & 8 in Nwogugu (2017). That is, because c>b>a and for all x>2, as \(a, b, c, x \rightarrow +\infty \), \((c^z/a^x) \rightarrow +\infty \); \(((c/a)^x-(b/a)^x) \rightarrow +\infty \); and \(((c/a)^x-(b/a)^x) \rightarrow +\infty \); and \(((c/a)^x-(b/a)^x) \rightarrow +\infty \) and \(((c/a)^x-(b/a)^x) \rightarrow +\infty \). There is a threshold at which such compounding takes effect and the smallest positive-integer value at which compounding can possibly start is x=2; and the smallest positive-integer values at which compounding can substantially distort the equation is x=2.3. Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

ii) a^y/b^x = 1/[(c^z/a^x)-1]; and (a/b)^x = 1/[(c^z/a^x)-1]; and thus:
\[\ln(a/b)^x = \exp(1/[(c^z/a^x)-1]). \] However, this foregoing condition doesn’t hold.
For all x>2, the term \(1/[(c^z/a^x)-1] \) will always be greater than one and \(\exp(1/[(c^z/a^x)-1]) \) will be in the (2.718, +∞) range.
On the other hand, \((a/b)^x\) will always be less than one because \(c>b>a\), and for all \(x>2\), \((a/b)^x\) will also be less than one. As \(x\to+\infty\), \((a/b)^x\)→0. Thus, \(\ln(a/b)^x\) is likely to be less than one for all \(x>2\). Therefore, \(\ln(a/b)^x\neq \exp(1/[(c/a^x)-1])\) for all \(x>2\); and thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

Also:
\[
\begin{align*}
(b/a)^x & = (c^y/a^x)-1, \quad \text{and} \quad (b/a)^x = \sqrt[3]{(c/a^x)-1}, \\
(a/b)^y & = 1/[(c^y/a^x)-1]; \quad \text{and} \quad (a/b)^y = 1/[(c^y/a^x)-1]; \\
(a/b)^\sqrt[3]{1/[(c^y/a^x)-1]} & = \sqrt[3]{1/[(c^y/a^x)-1]}, \\
(a/b)^\sqrt[3]{1/[(c^y/a^x)-1]} & = \sqrt[3]{1/[(c^y/a^x)-1]}, \\
(b/a)^{\sqrt[3]{1/[(c^y/a^x)-1]}} & = \sqrt[3]{1/[(c^y/a^x)-1]}; \quad \text{or} \quad b = a^{\sqrt[3]{1/[(c^y/a^x)-1]}},
\end{align*}
\]

Given the foregoing, the following additional are component “Sub-Theorems” (each of which can be presented as a separate complete theorem) that prove that Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

Sub-Theorem #1:
First, in equations \(a^x+b^x=c^x\) and \(b^y/a^x = (c^y/a^x)-1\), for all positive integers \((a,b,c) \in (1,+)\) and \(x \in (3,+)\), as \(x,a,b,c \to +\infty\), (and for medium and large values of \([a,b,c])\), \(1+b^y/a^x \to b^y/a^x\), and the above implies that \(b^y/a^x = c^y/a^x\), or that \(b^x = c^x\), which is wrong because that condition/equation can exist iff \(a=0\). Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

Sub-Theorem #2:
Second, in equation \(a^x+b^y = c^x\), \(c>b\geq a\), and for all positive integers \((a,b,c) \in (1,+)\) and \(x \in (3,+)\), as \((a,b,c,x) \to +\infty\) (and for medium and large values of \([a,b,c])\), \(a=b^{\sqrt[3]{1/[(c/a^x)-1]}})\) which is equivalent to \(a=b^{\sqrt[3]{1/[(c/a^x)-1]}})\) which is equivalent to \(a=(ba)/c\), or \(a=b/c\); all of which are not feasible since \(c>a,b\); and \(c>b\geq a\). Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

Sub-Theorem #3:
Third, in equation \(a^x+b^y=c^x\), \(c>b\geq a\), and for all positive integers \((a,b,c) \in (1,+)\) and \(x \in (3,+)\), the amount \(a\) cannot be a positive integer, because in equation \(a=b^{\sqrt[3]{1/[(c^y/a^x)-1]}}, \) the amount \(1/[(c^y/a^x)-1]\), will always be greater than one \((c>b\geq a)\) but may or may not be an integer, and thus the amount \(1/[(c^y/a^x)-1]\) may or may not be an integer. Also, the amount \(b^{\sqrt[3]{1/[(c^y/a^x)-1]}\) \to -\infty\) as \(x \to +\infty\), thus \(a\) is not guaranteed to be an integer for all \(x \in (3,+)\). Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.

Sub-Theorem #4:
Third, in equation \(a^x+b^y=c^x\), \(c>b\geq a\), and for all positive integers \((a,b,c) \in (1,+)\) and \(x \in (3,+)\), the amount \(b\) cannot be a positive integer, because in equation \(b=a^{\sqrt[3]{1/[(c^y/a^x)-1]}}, \) and for all \(x>2\), the amount \(1/[(c^y/a^x)-1]\) will be greater than one, and the amount \(\sqrt[3]{1/[(c^y/a^x)-1]}\), may or may not be an integer and thus \(b\) is not guaranteed to be an integer for all \(x \in (3,+)\). Thus, Fermat’s Last Conjecture is correct.

■

3. A Critique Of The Traditional Solution For The Equation \(ax^2+bx+c=0\) And Why Its Wrong.

Theorem-2: The Quadratic Equation \(ax^2+bx+c=0\), Has The Solutions \(x = [-2ab \pm (\sqrt[3]{-c/a} + (b/2a)^3 \times 4a^3)]\),

Proof:
In the existing literature, the quadratic equation \(ax^2+bx+c=0\) is traditionally solved as follows.

Divide both sides of the equation by \(a\):

1. \(x^2+bx/a +c/a = 0\)

Move the last term in the left hand side to the right hand side of the equation:
2.2) \(x^2 + bx/a = -c/a \)

Add \((b/2a)^2\) to both sides of the equation:

2.3) \(x^2 + bx/a + (b/2a)^2 = -(c/a) + (b/2a)^2 \)

Convert the left hand side into an equation of the type \((x+y)^2\):

2.4) \([x+(b/2a)]^2 = -(c/a) + (b/2a)^2 \)

Use square-root format to simplify both sides of the equation:

2.5) \(x+(b/2a) = \sqrt{-(c/a)+(b/2a)^2} \)

Subtract \((b/2a)\) from both sides of the equation

2.6) \(x = -(b/2a) \pm \sqrt{-(c/a)+(b/2a)^2} \)

However, the foregoing purportedly results in the traditional and popular simplification \(x=\{-b \pm (\sqrt{b^2 - 4ac})/2a\},\) which is wrong. The mistake in the traditional calculation is that its erroneously assumed that:

2.7) \(\sqrt{(x+y)}*a = \sqrt{(x*a)+(y*a)} \)

On the contrary, the correct simplification is as follows:

Multiply the right hand side of the equation by \(2a/2a:\)

2.8) \(x = -(2ab/4a^2) \pm \sqrt{-(c/a)+(b/2a)^2} \)

Use a common denominator \((4a^2)\) for all terms in the right hand side of the equation:

2.9) \(x = [-2ab \pm (\sqrt{-(c/a)+(b/2a)^2})*4a^2]] \)

The above is the correct simplification. ■

4. Conclusion.
Fermat’s Last Conjecture is or can be correct but only in the Domain-Of-Integers, and the correct solution to the quadratic equation \(ax^2+bx+c=0\), is introduced herein.

5. Bibliography.

Nemron, I. (2008). An original abstract over the twin primes, the Goldbach conjecture, the friendly numbers, the perfect numbers, the Mersenne composite numbers, and the Sophie Germain primes. Journal of Discrete Mathematical Sciences and Cryptography, 11(6), 715-726.

