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Abstract  
 

A local hidden variables solution of Malus’s Law and a circumvention of Bell’s Theorem.  The 

solution for Bell assumes that antiparticles actually do travel backwards in time and therefore 

a Bell experiment begins not at the usual source of particle pairs but at the measurement of 

positrons and ends at the measurement of their paired partner electrons.  The solution for 

Malus’s Law assumes that the distribution of hidden variables in a polarised beam can be 

deduced by reverse-engineering Malus’s Law intensity calculations.  Malus’s Law and Bell’s 

Experiment can therefore each be explained using local hidden variables.  A computer 

program is given to provide results of a Stern Gerlach detector using local hidden variables in 

a particle-at-a-time simulation. 

  

Introduction 
 

Several difficulties arose in my previous attempts (Refs. 1 and 2) to simulate Bell experiments 

(Ref. 3) using local hidden variables.   

A.    Generating pairs of simulated particles in Reference 1 (with local hidden variables being 

vectors representing particle spin) using a random-on-a-sphere method did not lead to a 

breaking of Bell’s Inequalities.   As the name suggests, random-on-a-sphere data produces an 

unpolarised beam with a random distribution of spin vectors pointing from the origin of a 

sphere to points on the surface of the sphere.   

In the simulation in Reference 1, the correlation coefficient between Alice’s and Bob’s 

measurements was 0.4994 (ignoring arithmetical sign) for a total of one million pairs of 

particles.  This simulation was carried out for a single pair of detector settings with a 

difference of 45o separating the two detector setting angles.  This correlation fails to break 

Bell’s Inequality and would need to reach a value of 0.707 to achieve the quantum mechanics 

target correlation.  By comparison, in a CHSH Bell experiment there are four pairs of detector 

setting per analysis and my result of 0.5 above is equivalent to  CHSH S statistic of 2 whereas 

an S value of 2.8 is required as the quantum mechanical target.    

B.    The simulation for Bell’s experiment in Reference 1 can also be used for a test of Malus’s 

Law (Refs. 2 and 4).  Malus’s Law calculations, however, should be based on an incoming beam 
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of polarised particles and the random-on-a-sphere method of generating particle hidden 

variables will not produce a polarised beam.  It is shown in Reference 2 that a Malus intensity 

of 0.75 would be equivalent to a Bell quantum mechanics correlation of 0.5.  To be equivalent 

to a Bell correlation of 0.707 the Malus intensity would need to be 0.8536.  This can be seen 

because, for electrons, the Malus intensity at an angle of 45 degrees is the same as an 

intensity for an angle of 22.5 degrees for photons, which is cos2 22.5o = 0.8536 (using the two-

hundred-year-old Malus’s Law empirical calculation).  This means that the results for an 

actual, and successful, Bell experiment and for Malus’s Law are equivalent when a polarised 

beam is used for Malus’s Law.   

C.    So how can a successful result for a Bell experiment possibly be achieved without using 

an inputted polarised beam for each of Alice and Bob?  And how does one generate a 

polarised beam in a computer simulation of either a Bell or a Malus experiment? 

 

Summary  
 

A huge assumption in this paper is that positrons physically do travel backwards in time.  The 

effect of the time reversal is to dissociate ‘entanglement’ from the A and B measurements of 

Alice and Bob in a Bell experiment, so these measurements are no longer based on entangled 

pairs of particles. 

The entanglement is still present in the experiment but is only important in creating a 

polarised antiparticle beam travelling from Alice to the Source which evolves into an equally 

(but anti-)polarised electron beam from the Source to Bob.  The Bell experiment defaults to 

a Malus experiment with an added measurement of the unpolarised (time reversed and 

incoming) beam of positrons.  Because it is, in this view, so directly connected to a Malus 

experiment, there is little surprise that the results break Bell’s inequalities (see Tables 1 and 

2).  The Bell inequalities are based on experiments with entangled pairs whereas the new 

explanation of the experiment circumvents the inequalities by showing that the 

measurements are not made on entangled pairs and the results are caused by measurements 

on polarised beams.  Entanglement is only important because it enforces polarised beams of 

electrons.  

Probability is an essential feature of the use of local hidden variables in the Malus’s Law 

calculation and this feature means that counterfactual definiteness should not be true for Bell 

experiments with time-reversal, and also why the Quantum Randi challenge cannot be met.  

But local hidden variables nevertheless explain Bell Experiment results, with some intrinsic 

lack of calculability during their times of flight in the experiment. 
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A computer program is shown in the Appendix which generates local hidden variable data 

made particle-at-a-time for a polarised beam of electrons which is inputted into a Stern 

Gerlach detector.  The program counts the electrons passing through the detector and shows 

that the count gives an intensity of beam which agrees with Malus’s Law.  Although the 

calculation is for individual electrons, and that gives the correct results, it is probable that the 

static distribution of hidden variables (Figure A) masks an underlying dynamic occupation of 

that distribution by the individual electrons so that it is ultimately a probabilistic result which 

leads to uncertainty as to which hidden variables are passing through the detector/filter. 

 

Polarised beams and Malus’s Law calculations 
 

Distribution of particles within a polarised beam 
 

A polarised beam is a collection of particles after they have passed through a filter or a 

detector, such as a Stern Gerlach detector.  The degree of uniformity of alignment for each 

particle depends on how much effort is put into controlling/measuring the beam.  For the 

purposes of this paper it is assumed that in a polarised beam the particles have local hidden 

variables which are vectors with a range of spin axes centred on a vector axis of polarisation.  

The Malus’s Law formula can be used to reverse engineer the distribution of spin axes in an 

incoming polarised beam.   

In 1808 Malus showed empirically that the intensity of plane polarised light after being passed 

through a polarising filter at an angle of θ to the plane polarised light had an intensity equal 

to cos2 θ times the original intensity (Ref. 4, Wikipedia).  It is assumed here that Malus’s Law 

is experimentally correct and that the intensity of the filtered light is dependent on the 

number of photons passing through the filter.   

For Malus’s Law, if vector a is the initial polarisation direction of a beam of photons, and if 

vector b is the polarisation direction of the subsequent filter, then if angle a – b is 45o there 

will be a proportion equal to cos245o [that is, 0.5, or 50 per cent] of the beam passing through 

the filter.  When angle a – b is 90o no photons will pass through the filter as cos290o is zero.  

The simplest way to visualise this is if the initial polarised beam of photons has a spread of 

spin axes pointing not over an entire hemisphere but over a cone taking in the polar region 

down to the 45o parallel, or circle of latitude, by analogy with the earth’s globe.  This cone 

subtends (in a two-dimensional projection) an angle of 90o at the central point of the 

hemisphere. 

For electron beams, the corresponding angle in Malus’s Law is halved, so that when angle 

a – b is 90o then cos2(90o/2) = 0.5 which allows half of the electrons through the filter.  For 

electrons, the modified Malus’s Law becomes Intensity = Io cos2 (θ/2), where Io is the initial 
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intensity.  The visualisation for the electrons is a beam occupying a full hemisphere 

subtending a (two-dimensional) angle of 180o at the centre of the hemisphere.   

It has already been noted above that a random distribution of local hidden variables does not 

explain Malus’s Law using my simulations so now the actual distribution of hidden variables 

of a polarised beam needs to be investigated.  Fortunately, the Malus’s Law calculations can 

indicate the distributions of local hidden variables in polarised beams.  The resulting 

distributions are shown in Figure A. 

 

Figure A Plots of the intensity of particles within polarised beams for photons 

(polarised along polar axis represented by 45 o) and electrons (polarised along 

polar axis represented by 90o) 

Photons     Electrons 

  

 

In Figure A, the intensity of electrons at angles 0o or 180o is zero which means that there are 

very few electrons with hidden variables pointing at or near the equator of the hemisphere.  

An angle of 90o represents hidden variables pointing at the (say) north pole, and this is the 

region for maximum intensity and is along the vector of polarisation.  For photons, the 

intensity is minimum for hidden variables pointing at 0o or 90o which are photons pointing at 

the 45th parallel or circle of latitude.  The maximum intensity is reached for photons pointing 

direct along the axis of polarisation, here represented by the direction of the north pole 

which, for photons, is represented by the angle of 45o.  These curves are proportional to the 

derivatives of sin2 θ and sin2 (θ/2) respectively:  they are sin 2θ and 0.5 * sin θ respectively.   

(Further explanation of these formulae are given at the end of the Appendix.)   These curves 

can be used in a simulation of a Malus Experiment to represent the distribution of local hidden 

variables in a polarised beam of photons or electrons. 
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Polarised particles passing through a filter at angle θ 
 

In the ‘electrons’ diagram in Figure A, the distribution of electrons is at a maximum when the 

hidden variables point at the north pole (at 90o).  Say a filter is set at an angle of 10o to the 

pole and we wish to see how many of these electrons pass through this filter.  To see this, 

rotate the electron figure in Figure A by 10o clockwise and see where the polarised and filtered 

areas overlap.   The electron spins originally pointing between 0o and 10o for the initial 

polarised beam are no longer pointing in the 0o to 180o range of the filtered beam and so do 

not pass through the filter.  All the other electrons in the polarised beam are pointing within 

the hemisphere of the filter beam and so all polarised electrons pointing between 10o and 

180o pass through the filter.  This amount can be found by integrating between 10o and 180o 

on the intensity curve in Figure A or simply by calculating cos2 (10o/2) using Malus’s Law for 

electrons, which gives a cumulative total. 

The same procedure works for photons.  In general, if the filter is rotated θ degrees clockwise 

away from the polarisation pole vector then the amount of photons passing through the filter 

is found by integrating the curve between θ and 90o or by calculating cos2 θ. 

 

Distribution of polarised particle spin vectors after passing through a filter at angle θ 
 
 
After passing through the filter, the particles will redistribute to be as in Figure A but with the 

maximum intensity now pointing along the filter vector angle instead of along the initial 

polarisation angle.  It is not known how the particles rearrange themselves into this pattern.  

This is the point at which knowledge about the evolution of individual local hidden variables 

breaks down.  After the filtering, or a measurement, there is only statistical information about 

the distribution of hidden variables for the filtered beam as a whole.  It is also assumed here 

that even in the initial polarised beam there may be an underlying and unknown dynamic for 

individual particles.  The overall patterns in Figure A may be static but the picture for 

individual particles may be dynamic.  This dynamism means that there is uncertainty as to 

which individual particles would pass through a second filter.  Moreover, even if we were to 

know that an individual particle passed through a filter, we could not later re-identify that 

particular particle’s hidden variable in the filtered beam and so cannot track an individual 

simulated particle’s local hidden variable throughout the measurement.  
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Computer program to simulate a particle-at-a-time Malus’s Law experiment using local 
hidden variables 
 

Code for a computer program is given in the Appendix to simulate Malus’s Law results for 

passing a beam of particles through a filter or a Stern Gerlach detector.  More details of the 

program are also given in the Appendix.  Rather than just use Malus’s Law formula direct, the 

formulae underlying Figure A have been used to generate distributions of local hidden 

variables in a polarised beam in a particle-at-a-time simulation.  The outcomes are shown in 

Table 1.   

Table 1 Simulation of Malus’s Law results for electrons, with filter angle of θ   

Polarisation 

angle * 

 θo   

Numbers of electrons 

passing through filter, 

out of an incident 

100000 electrons in a 

simulation 

Malus intensity 

= cos2(θ /2) 

(or 0.5 + 0.5*cos θ) 

Equivalent Bell 

correlation 

= -1 + 2 * Malus 

intensity 

(or simply cos θ) 

30 93377 

 
0.933 

 

 

0.866 
 

 

45 85627 0.854 

 
0.707 

 

60 75007 

 
0.75 

 
0.5 

 

90 50098 
 

0.5 0 

*  To get the equivalent complete table for photons, divide the polarisation angle, in the first 

column only,  by 2. 

Although local hidden variables are generated for individual simulated particles in the 

computer program, it is likely that the individual particles have variables which are not static.  

This introduces probability into the results and implies non-calculability of maintaining track 

of spins of individual particles. 

In the next section, Bell’s Experiment results will be shown to depend on Malus’s Law. That is 

why it was thought to be important to derive Malus’s Law here based on local hidden 

variables in a particle-at-a-time simulation so that local hidden variables could be the basis 

for an explanation of Bell’s Experiment as well as Malus’s Law.  
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A re-casting of the time order of events in a Bell’s Theorem experiment 
 

The re-casting of the time direction for antiparticles 
 

In a Bell Experiment two researchers, Alice and Bob, make sets of measurements A and B 

independently on the spins of entangled pairs of particles (Ref. 3).  The particle pairs are 

created at a source and are entangled as they travel to the detectors of Alice and Bob.  The 

measurement results of Alice and Bob are put into contingency tables after the experiment 

and correlation coefficients are calculated.  For a single pair of detector settings, a typical 

difference in detector angles used is 45o.  Bell’s Theorem shows that, when using local hidden 

variables to represent particle spin axes, this correlation cannot exceed 0.5 in absolute 

magnitude.  But actual experiments result in a correlation coefficient of up to 0.707. 

One way of having polarised beams in a Bell experiment is to assume that antiparticles travel 

backwards in time.  So that when Alice measures positrons, they have travelled from outside 

the normal scope of the experiment and then became polarised on measurement by Alice, 

after which (in reverse time) they travelled back to the Source of the emission of the pairs.  

The positrons give rise to electrons at the Source and the electrons are also polarised (due to 

entanglement) along Alice’s spin vector setting.  So Bob measures electrons polarised in the 

direction of Alice’s setting.  In the converse situation, Alice similarly measures electrons 

polarised in the direction of Bob’s setting.   Although entanglement is necessary to enforce 

the polarisations, the cause of the breaking of Bell’s Inequalities is polarisation of the 

incoming electron beams.  Entanglement, in this setting, plays an important but secondary 

role.  As the beams of electrons are polarised there is no difficulty in explaining results which 

break Bell’s inequalities as Malus’s Law provides such results as indicated in Table 1.  In 

Table 1 the Malus results for a detector setting of 45o for electrons is shown to be equivalent 

to a Bell correlation of 0.707, which exceeds the Bell Inequality limit of a correlation of 0.5.  

But Bell’s Inequalities are more circumvented than broken as the measurements are not 

made on a pair of entangled particles.  The electrons are entangled and polarised on 

measurement but the partner positrons are not polarised and not entangled on their 

measurement. 

A traditional view of a Bell experiment or simulation starts with the creation of a particle-

antiparticle entangled pair.  The two particles undergo a time of flight towards researchers 

Alice and Bob who each measure one of the entangled pair with measurement apparatuses 

set at angles a and b respectively to a given reference axis. Alice makes measurement A and 

Bob makes measurement B where A and B take the values (+1, +1) or (+1, -1) or (-1, +1) or (-

1, -1). This is repeated for a population of particle pairs.  The correlation coefficient between 

the set of A and B experimental values is given by –cos (a-b) verified using experiments.  This 

correlation is in general larger (in absolute magnitude) than what might be expected in 
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classical physics, which corresponds to the value given by 2*θ/π - 1 on a zig-zag curve, where 

θ is in radians.  This exceeding of the classical expectation involves breaking Bell’s Inequalities.  

It is commonly required that the breaking of the inequalities requires one or more of the 

following conditions to fail: locality, reality, counterfactual determinism, and no-conspiracy.  

(Ref. 3, Wikipedia) 

The purpose of this paper is not to deny Bell’s Theorem as the truth of that Theorem is here 

accepted.  For simulation calculations, though, it is simpler to use a quarter of the normal Bell 

experiment in which Alice makes measurements only at a single angle a and Bob makes 

measurements only at a single angle b.  Where the optimum value of a-b is 45 degrees.  In a 

CHSH experiment, with a-b= 45 degrees, using a quarter experiment revises the target 

experimental S statistic to 0.5 * sqrt 2 (= 0.707) which is larger than the classical result of 0.5.  

This result is equal to the absolute magnitude of the correlation between Alice’s and Bob’s 

measurements.  In simulations one can alternatively use cloned pairs of particles and a target 

correlation of cos θ rather than – cos θ so the overall sign of the target correlation is 

dependent on context. 

Let us assume that a positron is travelling backwards in time and say a photon with, say, +1 

spin is also travelling backwards in time.  The electron and the photon with spin -1 both travel 

forwards in time.  (See Discussion section.) 

The time-reversed Bell experiment starts with incoming antiparticles measured as +1 by, say, 

Alice.  Alice will in addition measure some antiparticles as -1 and also Bob will measure some 

antiparticles as +1 and others as -1.  But staying with Alice’s measurements of +1 antiparticles, 

these antiparticles travel backwards in time to the ‘source’ of the pairs.  Next, electrons travel 

forwards in time from the Source to Bob and these electrons are entangled with their 

antiparticle positron partners such that their local hidden variables will be the same for the 

particles as for the antiparticles except for a sign change in their spin vector directions.  This 

beam of particles will be polarised in the vector a direction, as the partner antiparticles will 

be polarised in the –a direction. 

As noted in the section on Malus’s Law, local hidden variables cannot be identified for an 

individual particle after a measurement, even in a computer simulation.  Alice has made a 

measurement on a positron and Bob has made a subsequent measurement on its paired 

electron and so individualised local hidden variables cannot be used here in a particle-at-a-

time simulation.  However, this experiment is treatable as a local hidden variable situation 

where the hidden variables do exist but are not calculable for individual particles.  The 

particles are treated probabilistically in their distributions of hidden variables before and after 

measurement and this is the same probabilistic treatment as used in the Malus’s Law section. 
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Reversed-time Bell experiment results expressed as intensities and as correlation 
coefficients 
 

Alice measured A = +1 for her half of her antiparticles.  These antiparticles were precursors of 

a beam of particles travelling towards Bob as a beam polarised along vector -a.    Malus’s Law 

shows that the intensity of the beam measured by Bob is cos2 (θ/2) for electrons where θ = 

angle a – b.  This value is needed for the cell of Table 1 where A = +1 and B = -1.  As noted 

earlier, Alice’s measurements of A = +1 on her antiparticles form one quarter of the total 

measurements so she contributes 0.25*cos2 θ/2 to this cell of Table 2.  Similarly Bob’s 

measurement of B = -1 on his antiparticles contributes another 0.25*cos2 θ/2 to this cell 

making a total of 0.5*cos2 θ/2 for the final cell value.  Table 2 only has one degree of freedom 

as the marginal values are fixed, so the other three cells of results are filled in automatically 

once one cell value is known. 

 

Table 2 Bell results for electrons with a – b = θ  (using a negative correlation target) 

Results as 

proportions 

B = 1 B = -1 Total 

A = 1 P++ = 0.5*sin2 θ/2 0.5*cos2 θ/2 0.5 

A = -1 0.5*cos2 θ/2 0.5*sin2 θ/2 0.5 

Total 0.5 0.5 1.0 

 

It is easy to show that p++ = (1 + correlation coefficient)/4         and, conversely, 

the correlation coefficient = 4 * p++  - 1 

So, the correlation coefficient between A and B measurements = 4 * 0.5* sin2 θ/2  - 1 

=  2* sin2 θ/2  - 1 =  (sin2 θ/2  - 1) + sin2 θ/2  =  sin2 θ/2  - cos2 θ/2  = - cos θ. 

This agrees with the Quantum Mechanical result for the correlation in a Bell test and exceeds 

the attenuated correlation found for the classical calculation where the Bell’s Inequalities are 

not exceeded. 

Note that the intensity in a cell of a 2x2 Bell table is only half of the directly equivalent 

intensity in the cell in a 2x1 Malus table. 
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Discussion 
 

My paper (Fearnley, 2017) gives a computer program to simulate a particle-at-a-time Bell 

experiment for electrons where θ = 45o.  Generating local hidden vectors to simulate 

individual particles failed to produce a correlation of  -cos 45o in a particle-at-a-time 

simulation of a Bell experiment for electrons.  That paper showed that Bell’s Inequalities were  

not broken in that random-on-a-sphere simulation of a Bell Experiment. 

My paper (Fearnley, 2019) links results of simulations of Bell’s Experiments to results from 

Malus’s Law and shows that, despite interesting interconnections of the tables of results for 

the two experiments, the Bell’s inequalities were still not broken in particle-at-a-time local 

hidden variable simulations and also that Malus’s Law was not explained by such a local 

hidden variable simulation using random-on-a-sphere unpolarised data.  The latter failure is 

not surprising as Malus’s Law requires the inputted beam to be polarised which is not the 

case for random-on-a-sphere simulated data. 

The Feynman and Stueckelberg interpretation proposed a positron to be a positive energy 

electron travelling backwards in time.  A positive energy electron travelling backwards in time 

can also be interpreted as a positive energy ‘electron’ (that is, a positron) travelling forward 

in time but with a reversed electric charge.  Feynman also used advanced and retarded (in 

time) waves in his PhD thesis (Refs. 7 and 8) although this is not generally regarded as a 

physical reversal of time. 

 An assumption in my paper is that positrons physically do travel backwards in time.  The 

effect of the time reversal is to dissociate ‘entanglement’ of pairs from the A and B 

measurements of Alice and Bob in a Bell Experiment.  In the time-reversed experiment, Alice’s 

measurement does not depend on the path between the Source and her detector apparatus, 

as that path is reached by the antiparticles after her measurement A.  So the measurements 

A and B are not measured on entangled pairs in the time-reversed experiment. 

The entanglement is important so that the polarised nature of the antiparticle beam travelling 

from Alice to the Source after measurement A evolves into an equally (but anti-)polarised 

particle beam from the Source to Bob.  So Bob, who measures at spin angle vector b, receives 

a beam of electrons polarised in direction vector a.  The distribution of local hidden variables 

for positrons before they arrive at Alice is completely unknown.  They can be assumed to be 

unpolarised and described by ‘random-on-a-sphere’ and that half of the antiparticles will be 

measured as +1 by Alice and the remainder will be measured to be -1.   
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I have not been able to devise an experiment to demonstrate which way the positrons are 

travelling in time.  To determine the direction of travel through time requires proving that an 

incoming beam is unpolarised, and unpolarised beams always pass 50 per cent of the beam 

through a filter at any polarisation angle.  All outgoing beams are polarised.  Of course 

incoming and outgoing are time-direction dependent terms themselves.  The demonstration 

would need to be carried out ideally on a beam of antiparticles.  Is a beam of antiparticles, 

coming (in our macroscopic time direction) from a source of their creation, polarised or not? 

In the time-reversed explanation of the Bell Experiment, entanglement is only used to provide 

a beam of electrons polarised along vector a to be subsequently measured by Bob along 

vector b.  So the Bell experiment defaults to a Malus experiment with an added measurement 

of an inputted unpolarised beam of positrons.  Because it is, in this view, so directly connected 

to a Malus experiment, there is little surprise that the results break Bell’s inequalities.  The 

Bell inequalities are based on experiments with entangled pairs whereas the new explanation 

of the experiment circumvents the inequalities by showing that the measurements are not 

made on entangled pairs.  (See Tables 1 and 2.) 

Measurements, A and B, are correlated to obtain a Bell Experiment result but hidden variables 

cannot be followed/calculated through a measurement and so an individualised and trackable 

local hidden variable simulation cannot be made for a Bell experiment.  Probability is 

introduced into the Malus’s Law calculation and this feature means that counterfactual 

definiteness should not be true for Bell experiments with time-reversal, and also why the 

Quantum Randi challenge cannot be met. 

With respect to a second assumption, the distributions of local hidden variables or spin axis 

densities in a polarised beam (Figure A) have fixed density patterns but a fixed pattern could 

be based on a static underlying cloud of particles or a dynamic aggregate of underlying 

particles.   Whichever is the case, an individual particle’s local hidden variable cannot be 

tracked through a measurement because probability is required in deciding the outcome of 

the measurement.  Outcomes of measurements are calculable for aggregates but not for 

individuals. 

An unusual assumption in the paper is that a photon with spin +1 is the antiparticle of a 

photon with spin -1.  Reference 6 (Fearnley, 2019), however, details his preon model in which 

these two entities are exact antiparticles of one another.   

  

Conclusion 
 

1. In conclusion, the results of a time-reversed Bell experiment is explainable using a 

probabilistic treatment of local hidden variables.   
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2. The empirical formula for Malus’s Law has been used to reverse-engineer a 

distribution of local hidden variables of particles in polarised beams.  A Visual Basic (MS Excel) 

computer program has been created using a particle-at-a-time simulation to replicate Malus’s 

Law results, using local hidden variables.  Although described as particle-at-a-time, the 

calculation uses an element of probability such that the destination (‘filtered in’ or ‘filtered 

out’) of an individual particle after encountering the filter is not calculable despite the 

existence of the local hidden variables.  This software can be used to calculate intensities of 

polarised beams passing through Stern Gerlach detectors.  (The Appendix gives the software 

coding and an explanation of the formulae used.) 
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APPENDIX  Computer program to produce results for Malus’s Law 

intensities using local hidden variables in a particle-at-a-time simulation 
 

See end of program for an explanation of the formulae and method used.  Any text on a line 

after an apostrophe is only a commentary and not executed by the program.  This simulation 

is for electrons, not for photons, but it is easy to calculate results for photons direct from 

those for electrons.   

Sub AJFModel() 
' ------------------------------------------------------------------------------------------------------------------- 
' Microsoft Excel visual basic program to produce results for Malus intensities using 
' local hidden variables in a particle-at-a-time simulation 
' 
' Simulates a Stern-Gerlach detector 
' ------------------------------------------------------------------------------------------------------------------- 
' PRELIMINARY WORK: 
 
' Set the dimensions of variables, their sizes and types 
  Dim nb As Long  ' B measurement 
  Dim np, nm As Long ' counts of filtered particles 
  Dim ithparticle As Long   ' ithparticle is the index of the ith particle 
  Dim TotalNoOfParticles As Long   ' a long integer used to store the total number of particles to be generated in one run 
  Dim x, ya, za, yb, zb, length, meanB, total As Double  '  double length real numbers 
  Dim theta, cumprobability, pi, p, pp As Double   '  double length real numbers 
 
  Randomize ' this randomizes the random-number generator, to avoid using the same set of random numbers in every run 
 
' Define constants to be used in the program 
  TotalNoOfParticles = 100000 ' this sets the total number of particles which are to be generated   <<<*******INPUT 
  pi = 3.1415926535         ' pi radians is equivalent to an 180 degree angle 
   
' Set angle theta (angle in 2D between incoming polarisation angle and the polarisation angle of the filter) 
  theta = 45  ' This inputs the polarisation angle to be used in this run, in degrees               <<<*******INPUT 
  theta = theta * pi / 180  ' this converts the polarisation angle from degrees to radians 
  
' Set counters to zero before use 
  np = 0   ' count of number of particles passing through the filter 
  nm = 0   ' count of number of particles failing the filter 
     
' Pick a polarisation vector for detector b (Bob).  This is the filter vector. 
' Bob's unit vector has components yb and zb calculated to give theta.  Theta was inputted earlier. 
' Alice's vector a is represented by a constant unit vector along the Z axis so za = 1 and ya = 0, in all runs. 
' The 2D plane used here is the (y,z) plane. 
                ya = 0 
                za = 1 
                yb = Sin(theta) 
                zb = Cos(theta) 
     
  x = ya * yb + za * zb   'a step in the calculation of angle between spin vectors a and b, intended to be theta. 
  theta = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)   '  excel's formula to give the arccos function 
' Need now to turn theta (decimal in radians) into IntegerTheta (an integer angle in degrees) 
  theta = theta * 180 / pi 
 
' END OF PRELIMINARY WORK 
' ----------------- 
 
'  ----------------- 
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'  MAIN PART OF PROGRAM 
      
'  Generate particles in a for/next loop 
   For ithparticle = 1 To TotalNoOfParticles 
   
'  generate cumulative probability value at random between 0.001 and 0.999 
   cumprobability = Rnd  '  cumulative probability is a random number on a uniform distribution between 0 and 1 
   p = cumprobability 
   pp = 1 - 2 * p  '  see end of program for an explanation of formulae 
     
   Angle = Atn(-pp / Sqr(-pp * pp + 1)) + 2 * Atn(1)   '  excel's formula to give the arccos function in radians 
   nb = -1      ' alternatively value could be set at 0 instead of -1.  For a particle which fails the filter 
       
   If Angle > theta * pi / 180 Then nb = 1  '  for a particle which passes through the filter 
         
'  INCREMENT THE PLUS AND MINUS ARRAY COUNTERS FOR THE iTH PARTICLE 
   If nb < 0 Then nm = nm + 1  '  accumulator for particles which  fails to pass the filter 
   If nb > 0 Then np = np + 1  ' accumulator for particles which pass through the filter 
     
10 Next ithparticle  ' jump to top of FOR/NEXT loop for generation of the next particle 
'END OF MAIN PART OF PROGRAM  --------------------------------- 
 
 
' WRITE RESULTS TO SPREADSHEET ' set which row and column will be used as starting point to write results to spreadsheet 
    Range("a1").Select 
 
    ActiveCell.Offset(0, 1).Formula = "theta = " 
    ActiveCell.Offset(6, 2).Formula = "frequencies" 
'   A =1 always in a malus experiment.  Indicating particles have initially been polarised by Alice. 
'   So the measurement, B, at the filter is made on an already polarised beam. 
'   Calculation of B.  B = 1 if the particle passes the filter and zero if not. 
    ActiveCell.Offset(6, 3).Formula = "B = 1" 
    ActiveCell.Offset(6, 4).Formula = "B = 0"    'using zero rather than -1 
    ActiveCell.Offset(6, 5).Formula = "Total" 
    ActiveCell.Offset(12, 2).Formula = "mean of B"    'using zero rather than -1 
    ActiveCell.Offset(15, 2).Formula = "Total N of particles" 
    ActiveCell.Offset(20, 2).Formula = "cos squared (theta/2) =" 
    ActiveCell.Offset(21, 2).Formula = "notional Bell correlation =" 
     
    ActiveCell.Offset(0, 2).Formula = theta 
    ActiveCell.Offset(7, 3).Formula = np         '  A=1 and B=1 
    ActiveCell.Offset(7, 4).Formula = nm         '  A=1 and B=0 
    ActiveCell.Offset(7, 5).Formula = np + nm    'total number of particles 
      total = np + nm 
      meanB = np / total 
    ActiveCell.Offset(12, 3).Formula = meanB 
    ActiveCell.Offset(15, 3).Formula = total 
      theta = theta * pi / 180 
    ActiveCell.Offset(20, 3).Formula = Cos(theta / 2) * Cos(theta / 2)    '  Malus formula applied direct 
    ActiveCell.Offset(21, 3).Formula = 2 * Cos(theta / 2) * Cos(theta / 2) - 1  '  the equivalent Bell correlation 
 
'  NOW USER CAN GO TO RESULTS SPREADSHEET TO INSPECT 2X1 MALUS TABLE AND EQUIVALENT BELL CORRELATION 
 
 
'  EXLANATION OF FORMULAE 
 
'  See Figure A of the report: "Malus's Law and Bell's Theorem with local hidden variables". 
 
'  Malus's law uses a formula for the intensity of a polarised beam of electrons passing through a filter at an angle 
'  phi as being proportional to cos squared (phi/2) where phi is the angle between the polarisation vector of the 
'  incoming beam and the polarisation vector of the filter. 
' 
'  A perhaps simpler way of writing cos squared (phi/2) is 0.5 + 0.5 * cos phi. 
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' 
'  This function is high valued near to zero degrees because a small angle of phi (between beam and filter) passes many 
'  particles.  But this means that there are few particles incoming with local hidden variables (or spin vectors) 
'  pointing away from the incoming polarisation vector.  This means that electrons with spin vectors pointing at zero or 
'  180 degrees in Figure A are scarce while the bulk of them have a central tendency pointing at around 90 degrees, 
'  which is the direction of the polarising vector. 
' 
'  Another way of seeing this is that the intensity for angle theta can be derived by integrating the distribution of 
'  individual spin vectors between theta and 180 degrees in Figure A. 
' 
'  To find the distribution of individual spin vectors (at angles of  phi) is is necessary to differentiate not 
'  cos squared (phi/2) 
'  but 1 - cos squared (phi/2), 
'  and 1 - cos squared (phi/2) = 0.5 - 0.5 * cos phi 
'  which differentiates to  0.5 sin phi. 
'  This is the curve which is plotted for electrons in Figure A of the report: "Malus's Law and Bell's Theorem with 
'  local hidden variables". 
' 
'  Next we need to know how this curve was implemented in this simulation. 
'  Spin vectors for particles have been generated at random. 
' 
'  First, by generating a random number between 0 and 1 to represent a random cumulative probability of a particle 
'  lying on the spin vector distribution curve.  Next, we need to find out what the spin vector angle (psi) is, for the 
'  generated particle, corresponding to that random cumulative probability (p). 
' 
'  If we integrate the electron spin vector density 0.5 * sin x  between x = 0 and x = psi, we get 0.5(-cos psi - -cos(0)). 
'  = -0.5 * cos psi +0.5. 
' 
'  Set this integral to be p, the random cumulative probability for the generated electron. 
' 
'  So  p = -0.5 * cos psi +0.5 
'  and hence cos psi = 1-2p. 
' 
'  and psi is the angle whose cosine is 1-2p. 
' 
' That is commonly called arccos(1-2p) 
' 
' But in MS visual basic the arccos function does not exist and so the function used is a convoluted, but standard, 
' combination of arctan functions. 
' 
'  So now we have a particle with a known spin vector angle psi.  If this angle is greater than theta then the particle 
'  passes the filter, where theta is the angle between the incoming polarisation vector and the filter spin vector axis. 
' 
'  This software can be used to find intensities of polarised beams passing through combinations of Stern Gerlach 
'  detectors.  This software does not deal with unpolarised beams but any unpolarised beam is known to pass 50 per cent 
'  of its particles through a filter set at any spin angle. 
' 
'  These formula and the distribution of individual particle's spin vectors in Figure A are two dimensional.  The 
'  polarising filters are set in a real experiment using three dimensions.  A two dimensional treatment is satisfactory 
'  however because the three dimensional distribution of spin vectors in a polarised beam is symmetrical about its 
'  polarisation axis.  Take any 2D plane where the polarisation spin vector lies completely on that plane and the 
'  distribution of particle spin vectors has 2D form 0.5 * sin theta.  So in a sequence of 3D polariation vectors in 
'  a Stern Gerlach experiment, each succeeding filtered intensity can be treated in the 2D plane defined by containing 
'  both incoming and outgoing polarisation vectors. 
 
End 
End Sub 


