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Kepler summarised Brahe and others record of planetary trajectories into 3 simple laws.

Newton further reduced them into 1 little equation, ~F = m d2~r
dt2

= −GMsm
|~r|3 ~r, where ~F =

Force on a planet due to Sun, m = Mass of the planet, ~r = Position vector of the planet,
G = Universal Gravitational Constant and Ms = Mass of Sun. Newton henceforth setup

the idea that the entity m d2~r
dt2

defined as Force(~F ) is somehow more fundamental than
all other quantities and a physical interaction essentially involves a law governing the

evolution of m d2~r
dt2

term.
Newton successfully applied the equation inspired by Kepler’s celestial laws to explain
terrestrial phenomena such as the parabolic trajectory of cannonballs, the period of
a pendulum, ... Yet he was not successfull in extending his equation to explain the
precessions in Moon’s orbit. Further, it was found that Newton’s equation produce
unstable solutions when extended to 3 or more interacting objects. And his method
leaves us with ill-posed equations in 3D and N-body cases because Kepler’s datasets
were limited to flat 2D space with 2-body type interactions where one of the interacting
mass is extremely heavy. Newton built his theories based upon Kepler’s observational
analysis. We show here that Newton’s law of Gravity is not universal. And his method
of framing problems of motion in terms of force balance equations only captures one
small subset of all possible processes in which Energy is conserved.

For example the uniform gravitational acceleration(i.e. d2~r
dt2

= Constant = −gĵ, here ĵ
is the unit vector along vertical axis pointing upwards) condition observed near Earth’s
surface is only true when the object is not interacting with any other object. If the
object is interacting with an inclined plane, where inclination is represented by angle θ0

then d2~r
dt2

= −gSin(θ0)[Cos(θ0 )̂i+Sin(θ0)ĵ]. If the object is interacting with a Brachis-

tochrone then d2~r
dt2

= −g[Sin(ωt)̂i + Cos(ωt)ĵ]. In contrast the form of graviational
potential energy (near Earth surface) remains fixed, P = −mgy or P = P0 − mgy.
Perhaps this hints at an Universal Law of Gravitational Potential(not Force).
Infact starting from Kepler’s laws we can not only derive Newton’s Force balance
equation but also the Energy(E) conservation equation. We can derive that, E =
1
2
m
(

d~r
dt
• d~r
dt

)
+P , where P = Potential Energy = −GMm

r
and E = Constant. Note that,

~F = m d2~r
dt2

, ~Fg = −GMm
r3

~r and dP
dt

= −~Fg• d~rdt . Thus, we get dE
dt

=
[
m d2~r

dt2
− ~Fg

]
• d~r
dt

this is true even when E 6= Constant. Since E = Constant, dE
dt

=
[
~F − ~Fg

]
• d~r
dt

= 0.

This in general means, ~F − ~Fg ⊥ d~r
dt

. Not always m d2~r
dt2
− ~Fg = 0 as Newton’s Universal

law of Gravity is stated. Hence Newton’s equation encompass only a small subset of all
the phenomena covered by the equation dE

dt
= 0. The equation ~F = ~Fg in that form is

not even applicable for all 2-body problems in 2D. In general, ~F = Some component of
~Fg . Since ~Fg = −∇P we also get that, in general, ~F = m d2~r

dt2
= Some component of

−∇P . Thus assuming ~F = −∇P is not valid in general. Determining which component
of ~Fg is causing the body to accelerate is non-trivial. The free-body diagrams are of
limited use and the principle of least action - Lagrangian calculations employ energy
terms but in a much more complicated manner. We can achieve better results directly
using the Energy conservation equation.
Further we extend the analysis to include Lagrange type 3-body periodic orbit solutions
with equilateral configuration and show that Lagrangian/Newtonian method gives some
sporadic, apparently unstable solutions, where as the Energy method provides the entire
set of stable elliptical orbit solutions including non-equilateral configurations. With
Energy method we can also derive a condition which determines whether the 3-bodies
end up in an orbit with 1 center of revolution(like in Lagrange type periodic orbits) or
end up with 2 centers of revolution(like in the Sun-Earth-Moon system).
In case of restricted 3-body problem such as the Sun-Earth-Moon system or in case of
(J1, J2, ..)perturbations of Artificial satellites due to Earths non-spherical shape, using
Newton’s method gives wrong results unless we tamper his equation with non-Newtonian
terms as has been done historically. In the method used here, we show the solutions
using just 3 variables, i.e. r = Distance, θ = Longitude, φ = Latitude of the Spherical-
Polar coordinate system instead of the standard 6 Elements of Orbit approach. This
reduces mathematical complexity and helps in clearly identifying the dynamical terms
behind apsidal and nodal precession.
We also note that the term Inertia coined by Galileo to explain the height conserving
property of balls rolling down inclined planes has to be properly interpreted as energy.
That is, Inertia = Energy. And we point at the need to replace Newton’s Laws of
Motion(and Gravity) by the Energy conservation principle. And principle of angular
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momentum conservation or angular velocity conservation and such.

I. KEPLER’S LAWS

The main dataset analysed by Johannes Kepler for over
30 years was collected by Tycho Brahe meticulously for
over 40 years using Quadrants and Sextants before Tele-
scopes were in vogue. Brahe was the first to properly
record the Earth-Mars distances on a regular basis using
the Parallax method which greatly contributed in Ke-
pler working out his 3 laws (Dillon, 2016; Dreyer, 1906;
Lankford and Rothenberg, 1997; Thoren, 1973).

Kepler’s I Law The Planetary Orbits are Elliptical

r =
r0

1 + εCos(θ)
, Or, Cos(θ) =

1

ε

(r0

r
− 1
)

(1)

Eqn(1) represents an elliptic curve. Here, r = Radial
distance from the Center of Revolution, θ = Angular dis-
placement in the plane of revolution, ε = Eccentricity
and r0 = Semi-latus rectum. Also note, Semi-major axis
= Xm = r0

1−ε2 and Semi-minor axis = Ym = r0√
1−ε2 (Bate

et al., 1971; Curtis, 2013; Goldstein et al., 2001; Sinha,
2013; Vallado et al., 1997). In Eqn(1) at ε = 0 the equa-
tion becomes r = r0 =⇒ a Circle.

Kepler’s II Law The Planets Sweep Equal Area in
Equal time intervals Or Area swept by a Planet in 1 Unit
Time is a Constant Assume that at a particular radius r
and angle θ we consider a short piece of trajectory cov-
ered in a time interval δt. Time in this case is measured
on the basis of the rotation/spin of Earth on its own axis,
assuming that rotation rate is constant. In the short time
interval δt, r is nearly constant and the angle swept is δθ.
Then Area covered in time interval δt = r2.δθ, consider
a quantity defined as, a = Area covered per Unit Time,
then according to the Kepler’s II Law, a = Constant.
(Bate et al., 1971; Curtis, 2013; Goldstein et al., 2001;
Sinha, 2013; Vallado et al., 1997)

a = r2 δθ

δt
= Constant

δt→ 0, a = r2 dθ

dt
(2)

In Eqn(2) a = angular momentum per unit mass.

Kepler’s III Law The square of the orbital period of a
planet is directly proportional to the cube of the semi-
major axis of its orbit. Which is equivalent to saying
that for the Planets in the Solar system, the constant
r0 used in First law(Eqn(1)) and the constant a used in
Second law(Eqn(2)) are connected by another constant,
which was argued to be related to the mass of Sun by
Newton inspired by Galileo’s experiments. (Bate et al.,
1971; Curtis, 2013; Goldstein et al., 2001; Sinha, 2013;
Vallado et al., 1997).

Suppose T = Period, then

4π2X3
m

T 2
=
a2

r0
= b = Constant,Kepler

a2

r0
= b = G.M = Constant,Newton (3)

G = Gravitational Constant, M = Mass of Sun.
Kepler’s Laws already specify the trajectory of plan-

ets. Newton surmised that we ought to be able to derive
the trajectories from some deeper elementary laws which
determine the instantaneous local behaviour of moving
objects. Based on Galileo’s and his own experiments
(Dreyer, 1906; Goodstein, 1985; Lankford and Rothen-
berg, 1997) Newton had axiomatized that an object with
constant velocity moving in a straight line does not need
any cause for its motion. It is only the changes from this
uniform straight line motion that needs any explanation.
Thus, Newton considered that a formula specifying the
evolution of acceleration terms might be an elementary
law. Instead of acceleration terms, Newton could have
as well assumed that laws governing the Energy terms
are the deeper principles. Because from Kepler’s I and
II Laws, Eqns(1,2) we can derive both the Force Bal-
ance and Energy Conservation Equations. While Eqn(3)
determines the value of constant G*M.

There are atleast 2 possible ways in which we can ar-
rive at the shape and nature of planetary orbits by using
elementary laws. Method A is the Newton’s method of
framing Force balance equation And Method B is the
method of framing Energy conservation equation using
the Potential energy term. We can derive the Energy
equation directly from Kepler’s laws(without resorting to
Work-Energy Theorem as done in Newtonian paradigm)
as shown in Eqn(14). Below we describe both the meth-
ods in detail.

II. FORCE AND ENERGY EQUATIONS

A. Method A: Force Balance

Consider d
dt and d2

dt2 of Eqn(1)

dr

dt
=

r0εSin(θ)

(1 + εCos(θ))2

dθ

dt
=
r2

r0

dθ

dt
εSin(θ)

Using,Eqn(2), Then,Eqn(1)

dr

dt
=

a

r0
εSin(θ) =

a

r0

√
ε2 −

(r0

r
− 1
)2

(4)

Again using Eqn(1) and Eqn(2)

d2r

dt2
=

a

r0
εCos(θ)

dθ

dt
=
a2

r3
− a2

r0r2

Using,Eqn(3),
d2r

dt2
=
a2

r3
− b

r2
(5)
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Using Newton’s form of Kepler’s III Law, from Eqn(3)
we can rewrite Eqn(5) as,

d2r

dt2
=
a2

r3
− GM

r2
, also

d2r

dt2
− r

(
dθ

dt

)2

= −GM
r2

(6)

Consider the first time derivative
(
d
dt

)
of Eqn(2)

da

dt
= r2 d

2θ

dt2
+ 2r

dr

dt

dθ

dt
= 0

So, r
d2θ

dt2
+ 2

dr

dt

dθ

dt
= 0 (7)

Eqn(6) and Eqn(7) can be elegantly combined together
into one vector equation.

Let, ~r = r[Cos(θ)̂i + Sin(θ)ĵ] = 2D Position Vector
r̂ = Cos(θ)̂i + Sin(θ)ĵ = Unit Vector,
q̂ = − Sin(θ)̂i + Cos(θ)ĵ = Unit Vector, Then

d2~r

dt2
=

[
d2r

dt2
− r

(
dθ

dt

)2
]
r̂ +

[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]
q̂

Therefore,
d2~r

dt2
= −GM

r2
r̂ (8)

We can also rewrite Eqn(8) as,

Force = ~F = m
d2~r

dt2
= −GMm

r2
r̂ (9)

We see that we can reduce the 3 laws of Kepler into one
little vector equation(Eqn(9)) valid for all planets in the
solar system. Newton considered Eqn(9) as the deeper
principle governing all objects in the universe and called
it the Universal Law of Gravity. We show here that
Newton’s formulation is not the Universal law.

Eqn(9) is the Newton’s method of framing the Equa-
tion of Motion. The beauty of this method is its brevity.
One equation, Eqn(9), encompasses all the 3 Kepler’s
Laws. But the method has very limited applicability. It
is applicable only for problems involving 2 masses with
angular momentum conservation and Energy conserva-
tion. Eqn(9) is certainly not universal for it can not be
readily applied in that form to solve problems involv-
ing inclined planes (Goldstein et al., 2001) and brachis-
tochrones (Radhakrishnamurty, 2019) where angular mo-
mentum is not conserved.

N-body case: In general if there are N-masses interact-

ing and mi, mj are the ith and jth mass located at po-
sitions ~ri, ~rj respectively then, Newtonian Gravitational

Force on mi due to mj can be written as ~Fij ,

~Fij = − Gmimj

|~ri − ~rj |3
(~ri − ~rj) = −~Fji

~Fi =

j=N∑
j=1,j 6=i

~Fij = −
j=N∑

j=1,j 6=i

~Fji

~Fi is the sum of all the Newtonian (gravitational) force
balance terms on mass mi. Therefore using Newton’s
Law,

mi
d2~ri
dt2
− ~Fi = mi

d2~ri
dt2

+

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj) = 0

(10)

This(Eqn(10)) is how we frame equations of motion
in Method A for an N-body system. (Bate et al., 1971;
Goldstein et al., 2001; Sinha, 2013; Vallado et al., 1997)

B. Method B: Energy Conservation

Continuing with the dr
dt term from Eqn(4),

(
dr

dt

)2

=
a2

r2
0

[
ε2 −

(r0

r
− 1
)2
]

1

2

(
dr

dt

)2

+
1

2

a2

r2
=
b

r
− a2(1− ε2)

2r2
0

Apply,Eqn(2), on, LHS

1

2

(
dr

dt

)2

+
1

2
r2

(
dθ

dt

)2

=
b

r
− b(1− ε2)

2r0
(11)

LHS is the total kinetic energy per unit mass of the
planet. Eqn(11) indicates a conserved quantity,

1

2

(
dr

dt

)2

+
1

2
r2

(
dθ

dt

)2

− b

r
= −b(1− ε

2)

2r0
= Constant

(12)

So along with the total kinetic energy, the planet is
associated with an energy term − b

r . This can be inter-
preted as the potential energy of the Planet. Adding it
to the Kinetic Energy term gives a constant of motion.

Following Newton we replace b by GM in Eqn(12).

1

2

(
dr

dt

)2

+
1

2
r2

(
dθ

dt

)2

− GM

r
= −GM(1− ε2)

2r0
(13)

Eqn(13)looks alright mathematically. But if we inter-
pret that as actually representing the Energy, then phys-
ically we have problem because it has net negative en-
ergy(in RHS) when ε < 1. And has zero net energy at
ε = 1 even when the total kinetic energy is non-zero.
So, in order to interpret the energy correctly we need to
make a minute correction.

Using the intuition obtained from projectiles and es-
cape velocities on Earth surface we can cook up and add
a constant quantity GM

R to both LHS and RHS. Let E/m
= Net Energy per unit mass of m. Then,

E =
1

2
m

(
dr

dt

)2

+
1

2
mr2

(
dθ

dt

)2

+
GMm

R
− GMm

r

E =
GMm

R
− GMm(1− ε2)

2r0
≥ 0 (14)
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Where R is a representative radius of Sun. Then simi-
lar to the case of rocket escape velocity on Earth we get

an escape velocity value from Sun to be
√

2GM
R . And a

binding energy per unit mass of GM
R . Let us assume the

Gravitational Potential Energy(P) of mass m under the
influence of another mass M is given by Eqn(15)

P =
GMm

R
− GMm

r
(15)

Thus, Pr=R = 0 = Zero Potential Energy at the Surface
of M. Assume r ≥ R. At a great distance (r →∞) there
is a finite non-zero amount of potential energy, Pr=∞ =
GMm
R . This can be interpreted as the binding energy,

i.e. this is the amount of energy that will be lost when
the smaller object falls from a great distance and onto
the surface of the larger mass. Consequently this is the
minimum amount of energy an object must possess in
order to escape the gravitational influence of M. In some
problems the binding energy term is important but for
problems solved in this article, it is not important.

Eqn(15) demonstrates Method B. i.e. Energy Method
for framing the equation of motion. Eqn(15) shows the
potential energy term that we should add to the kinetic
energy term in order to frame the energy equation.

In general if there are N-masses interacting instead
of 2 and mi, mj are the ith and jth mass located at
positions ~ri, ~rj respectively then,

N-body case: If E is the net energy of the N-body sys-
tem and the potential energy shared between mi, mj can
be written as Pij then,

Pij = −Gmimj

|~ri − ~rj |
= Pji,

dPij
dt

= −~Fij•
d(~ri − ~rj)

dt

E =

i=n∑
i=1

1

2
mi

(
d~ri
dt
•d~ri
dt

)
+

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Pij

E =

i=n∑
i=1

1

2
mi

(
d~ri
dt
•d~ri
dt

)
+

i=n∑
i=1

j=n∑
j=i+1

Pij (16)

This(Eqn(16)) is how we frame equations in Method B
for an N-body system.

C. Relationship between Force and Energy

Let K represent the Kinetic Energy, P represent the
Potential Energy and E represent the Net Energy in the
Kepler-1-Body approximation scenario.

From Eqn(15) we have P = GMm
R − GMm

r and

from Eqn(9) we have ~F = −GMm
r3 ~r.

Note that, ~r•d~rdt = r drdt

dP

dt
=
GMm

r3
r
dr

dt
=
GMm

r3
~r•d~r
dt

= −~F•d~r
dt

(17)

Since in Kepler-1-Body form E = 1
2m
(
d~r
dt •

d~r
dt

)
+ P

dE

dt
= m

d~r

dt
•d

2~r

dt2
+
dP

dt
dE

dt
=

[
m
d2~r

dt2
− ~F

]
•d~r
dt

(18)

If E is conserved,

dE

dt
=

[
m
d2~r

dt2
− ~F

]
•d~r
dt

= 0 (19)

Eqn(19) implies 2 scenarios

1) Newtonian: md2~r
dt2 − ~F = 0 ∀ i = 1,2,3,...,n

2) Perpendicular: md2~r
dt2 − ~F ⊥ d~r

dt ∀ i = 1,2,3,...,n

Thus, Newton’s method only deals with a subset of all
possible energy conserving processes even in 1-body ap-
proximation scenario. That is Energy conservation phe-
nomena is the superset of phenomena described by New-
ton’s force balance equation.

Suppose there are n masses labelled m1,m2,m3, ...,mn

located at ~r1, ~r2, ~r3, ..., ~rn. Let E represent the Net energy
of the n-nody system.

E =

i=n∑
i=1

1

2
mi

(
d~ri
dt
•d~ri
dt

)
+

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |
(20)

For example when n = 3

E =
1

2
m1

(
d~r1

dt
•d~r1

dt

)
+

1

2

Gm1m2

|~r1 − ~r2|
+

1

2

Gm1m3

|~r1 − ~r3|
1

2
m2

(
d~r2

dt
•d~r2

dt

)
+

1

2

Gm2m1

|~r2 − ~r1|
+

1

2

Gm2m3

|~r2 − ~r3|
1

2
m3

(
d~r3

dt
•d~r3

dt

)
+

1

2

Gm3m1

|~r3 − ~r1|
+

1

2

Gm3m2

|~r3 − ~r2|

dE

dt
=

i=n∑
i=1

mi
d2~ri
dt2
•d~ri
dt

+

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d(~ri − ~rj)
dt

Just consider the potential energy portion,

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d(~ri − ~rj)
dt

=

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d~ri
dt

+

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmjmi

|~rj − ~ri|3
(~rj − ~ri)•

d~rj
dt

(21)
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There is repetition of pairs in the summation above.
That is suppose (i=e,j=f) then on RHS we get 2 entries

(i)(~re−~rf )•d~redt and (ii)(~rf −~re)•d~rfdt and when (i=f,j=e)

we get 2 entires (iii)(~rf − ~re)•d~rfdt and (iv)(~re − ~rf )•d~redt .
This implies,

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d~ri
dt

=

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmjmi

|~rj − ~ri|3
(~rj − ~ri)•

d~rj
dt

Therefore we can rewrite Eqn(21) as,

i=n∑
i=1

1

2

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d(~ri − ~rj)
dt

=

i=n∑
i=1

j=n∑
j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)•

d~ri
dt

~Fi is the of sum of all the Newtonian gravitational force
balance terms on mi

~Fi =

j=n∑
j=1,j 6=i

~Fij = −
j=n∑

j=1,j 6=i

Gmimj

|~ri − ~rj |3
(~ri − ~rj)

If E is the net Energy of the system

dE

dt
=

i=n∑
i=1

[
mi

d2~ri
dt2
− ~Fi

]
•d~ri
dt

If E is conserved then,

dE

dt
=

i=n∑
i=1

[
mi

d2~ri
dt2
− ~Fi

]
•d~ri
dt

= 0 (22)

Eqn(22) implies several scenarios

1) Newtonian: mi
d2~ri
dt2 − ~Fi = 0 ∀ i = 1,2,3,...,n

2) Perpendicular: mi
d2~ri
dt2 − ~Fi ⊥ d~ri

dt ∀ i = 1,2,3,...,n
3) Mixed: Mixture of 1 and 2

4) Irregular:
[
mi

d2~ri
dt2 − ~Fi

]
•d~ridt 6= 0 ∀ i.

We can easily verify that in problems involving in-
clined plane near Earth surface and in the Brachis-

tochrone problem md2~r
dt2 − ~F 6= 0. Thus, Method(A) is

not Universal.

D. Partial Spatial Derivatives of Energy

It is usually assumed that Force(~F ) is equal to -ve Po-

tential energy gradient(−∇P ), that is ~F = −∇P . This

is in-general not true. By definition Force = ~F = md2~r
dt2

= mass × acceleration. Potential Energy = P = −GMm
r .

Let, Force due to Gravity be = ~Fg = −GMm
r2 r̂. Thus

~Fg = −∇P . So only whenever ~F = ~Fg we can write
~F = −∇P . But as noted in earlier sections, Newton’s
method is a subset of all Energy conserving phenomena,
what is in general true is ~F = Some component of −∇P .
Even though this equation(~F = −∇P ) can be written
down easily by utilising the quirks of partial derivatives
definition, ∇ = ∂

∂x î+ ∂
∂y ĵ + ∂

∂z k̂, taking gradients(∇) of

Kinetic energy(K ′is) of the individual particles and the
gradient of the Net energy(E) of the system may not
make much sense and may lead to inconsistent results.

With full(not partial) derivatives,

K =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

dK

dx
= m

(
d2x

dt2
+
d2y

dt2
dy

dx
+
d2z

dt2
dz

dx

)
So,m

d2~r

dt2
6= dK

dx
î+

dK

dy
ĵ +

dK

dz
k̂

With partial derivatives,

K =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

∂K

∂x
= m

(
d2x

dt2
+
d2y

dt2
∂y

∂x
+
d2z

dt2
∂z

∂x

)
Assume,

∂y

∂x
=
∂z

∂x
= 0, So,

∂K

∂x
= m

d2x

dt2

Similarly assume ∂x
∂y = ∂z

∂y = 0 and ∂x
∂z = ∂y

∂z = 0

Thus we get,

∂K

∂x
= m

d2x

dt2
,
∂K

∂y
= m

d2y

dt2
,
∂K

∂z
= m

d2z

dt2

And,m
d2~r

dt2
= ∇K =

∂K

∂x
î+

∂K

∂y
ĵ +

∂K

∂z
k̂

Note in the above equation we simultaneously assume
all these mutually contradictory criteria ∂x

∂y = ∂y
∂x = 0,

∂y
∂z = ∂z

∂y = 0 and ∂z
∂x = ∂x

∂z = 0 in one equation.

The contradiction becomes apparent when we try to
evaluate ∇K from the data or formulaically,

Consider for simplicity an uniform circular motion (we
know the final solution trajectory), ~r = r[Cos(θ)̂i +
Sin(θ)ĵ] with r = Constant. If we want to map it to
the rectangular co-ordinate system we get, x = rCos(θ)
and y = rSin(θ). Therefore kinetic energy = K =
1
2mr

2ω2 = 1
2m(x2 + y2)ω2, where ω = dθ

dt = Constant
and circular orbit implies x2 + y2 = r2 = Constant.

Now let us consider the full derivatives of K.
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K =
1

2
mr2ω2 =

1

2
m(x2 + y2)ω2 = Constant

dK

dx
= 0 = m

(
x+ y

dy

dx

)
ω2, and,

dy

dx
= −x

y

dK

dy
= 0 = m

(
x
dx

dy
+ y

)
ω2, and,

dx

dy
= −y

x

This makes sense since the object is confined to a cir-
cle and its kinetic energy is constant at every point on
that circle hence when we take deriatives dK

dx and dK
dy

we are still confined to that circle so we evaluate those
derivatives to be zero.

Now let us consider the partial derivatives of K.
In one form where we evaluate it from the data and do

not formulaically resolve the two variables x,y we get the
same result as we got in the case of full derivative above.

K =
1

2
mr2ω2 = Constant

∂K

∂x
= 0,

∂K

∂y
= 0

Thus,m
d2~r

dt2
6= ∇K =

∂K

∂x
î+

∂K

∂y
ĵ

In another form where we formulaically resolve the two
variables x,y we get a different result. In this form we
also drop the ‘Constant’ from the equation because we
are not confined to the circular path anymore, we are
assuming that K is defined everywhere in space by the
given formula.

K =
1

2
m(x2 + y2)ω2

∂K

∂x
= mxω2, as,

∂y

∂x
= 0

∂K

∂y
= myω2, as,

∂x

∂y
= 0

m
d2~r

dt2
= ∇K =

∂K

∂x
î+

∂K

∂y
ĵ = −∇P

If,E = Constant,∇E = 0

∇E = ∇K +∇P = 0, 1− body − approx

Note, partial derivatives of particle trajectories is
something physically impossible to measure. It is a ma-
noeuvre that can be done only mathematically. When we
do the partial derivative along some x axis, we assume
that the planet is moving only along x axis and not along
any other direction. But if the basic trajectory is ellip-
tic/circular or some such curve then we can not make this
assumption of motion being confined along only 1 axis.
Partial derivatives make sense on field variables extend-
ing in space, for example we can consider Temperature
variation only along some x axis but it can not be done

with an individual particle trajectory. Hence in these
problems ∇ is not defined.

The analysis done above is applicable for 1-
body approximation. We can already see that the
relationship(~F = −∇P ) is broken by considering the so-
lution to full 2-body problem in Eqn(33). We can write
the net energy E as the sum of energies of object 1(E1)
and object 2(E2), E = E1 +E2. We can write the sepa-
rate energy equations of the two objects as,

E1 =
E

1 + m1

m2

=
1

2
m1

(
d~r1

dt
•d~r1

dt

)
− Gm1m2

(r1 + r2)
(

1 + m1

m2

)
E2 =

E

1 + m2

m1

=
1

2
m2

(
d~r2

dt
•d~r2

dt

)
− Gm1m2

(r1 + r2)
(

1 + m2

m1

)
E =

1

2
m1

(
d~r1

dt
•d~r1

dt

)
+

1

2
m2

(
d~r2

dt
•d~r2

dt

)
− Gm1m2

(r1 + r2)

If taking the gradients is valid, assume Potential =
P = −Gm1m2

r1+r2
, evaluate ∇1E1 and ∇2E2,

∇1E1 = m1
d2~r1

dt2
+
∇1P

1 + m1

m2

= 0

∇2E2 = m2
d2~r2

dt2
+
∇2P

1 + m2

m1

= 0

Here consider,
~r1 = x1î+ y1ĵ + z1k̂ and ~r2 = x2î+ y2ĵ + z2k̂,
∇1 = ∂

∂x1
î+ ∂

∂y1
ĵ + ∂

∂z1
k̂ and ∇2 = ∂

∂x2
î+ ∂

∂y2
ĵ + ∂

∂z2
k̂.

Thus, Force on mass m1 is ~F1 = m1
d2~r1
dt2 = − ∇1P

1+
m1
m2

and

Force on mass m2 is ~F2 = m2
d2~r2
dt2 = − ∇2P

1+
m2
m1

. The rela-

tionship ~F = −∇P derived from 1-body approximation
is not valid for multi-body configurations.

III. 2-BODY SYSTEM IN 2D

A. 1-Body Approximation

Let us modify Eqn(2) to define a new constant A de-
pendent on the mass of the object as well. i.e. A =
mr2 dθ

dt = Constant. This quantity(A) is called the An-
gular momentum. Applying it on the rotational energy(

1
2mr

2
(
dθ
dt

)2)
term in Eqn(14) we get 1

2mr
2
(
dθ
dt

)2
=

1
2
A2

mr2 therefore,

E =
1

2
m

(
dr

dt

)2

+
1

2

A2

mr2
+
GMm

R
− GMm

r



7

Rearranging,

dr

dt
= ±1

r

√
2

(
E

m
− GM

R

)
r2 − A2

m2
+ 2GMr

dr

dt
= ±mr

A

dθ

dt

√
2

(
E

m
− GM

R

)
r2 − A2

m2
+ 2GMr

(23)

At this point we should recognize that Equation(23)
gives elliptic solutions when E < GMm

R .
If r = r0

1±εCos(θ) then,

dr

dt
= ± r

r0

dθ

dt

√
(ε2 − 1)r2 − r2

0 + 2rr0

Equate, with,Eqn(23)√
(ε2 − 1)

r2

r2
0

− 1 + 2
r

r0

=

√
2

(
Em

A2
− GMm2

RA2

)
r2 − 1 +

2GMm2

A2
r (24)

So, r0 = A2

GMm2 = a2

b and E = GMm
R − (1− ε2)GMm

2r0
At ε = 0 we get circular orbit solutions since r = r0

= Constant. At ε = 1 we get escape velocity trajec-
tories because r → ∞ for certain values of θ. There-
fore bounded orbits exist as long as 0 ≤ ε < 1 or
when GMm

R − GMm
2r0

≤ E < GMm
R we can also write

the Energy limits as GMm
R − G2M2m3

2A2 ≤ E < GMm
R

which implies that for a given angular momentum A

Emin = GMm
R − G2M2m3

2A2 is the least possible energy in
the Kepler-1-Body approximation. If the mass has to
lose further energy (below Emin), it has to lose angular
momentum also. However there is no such restriction
on acquiring more energy at the same angular momen-
tum. At the lowest energy state (for a given Angular
momentum) i.e. E = Emin we get circular orbit solu-
tion. Energy added above Emin at constant A goes into
increasing the eccentricity of the elliptical orbit. Con-
versely circular orbits are also states of highest angular
momentum for a given Energy. If we have to increase A
above this we also have to add energy.

When ε ≥ 1 or when E ≥ GMm
R we get a different so-

lution other than r = r0
1±εCos(θ) from the integral equa-

tion in Eqn(23). However, since we are interested in the
bounded orbits, we shall work in the limit 0 ≤ ε < 1.

B. 1-Body Apsidal Precession in 2D

With a little modification of Eqn(14) we can get pre-
cession. Let us write the modified equation as Eqn(25),

A = mr2

(
dθ

dt

)
E =

1

2
m

(
dr

dt

)2

+
1

2

A2κ2

mr2
+
GMm

R
− GMm

r
(25)

The solution to Eqn(25) is,

r =
r0

1 + εCos(κθ)
;κ 6= 1 =⇒ Precession

r0 =
A2κ2

GMm2
, E =

GMm

R
− (1− ε2)

GMm

2r0
(26)

Eqns(25,26) are what Newton called as Revolving or-
bits. This occurs when a disturbance alters rotational
energy term

(
A2

GMm2 → A2κ2

GMm2

)
in the Energy equation

without altering Angular momentum per unit mass.

C. 2-body problem, in 2D

Consider 2 bodies of mass m1 and m2 kg situated at
(r1, θ1) and (r2, θ2) respectively in the circular-polar co-
ordinate system. We can write the net energy(E) as,

E =
1

2
m1

(
d~r1

dt
•d~r1

dt

)
+

1

2
m2

(
d~r2

dt
•d~r2

dt

)
− Gm1m2√

r1
2 + r2

2 − 2r1r2Cos(θ1 − θ2)
(27)

Note that we have dropped the binding energy por-
tion from Eqn(27) just for some mathematical simplic-
ity. If R1 is the radius of mass m1 and R2 is the ra-
dius of mass m2 and if x is the distance between the
masses excluding the radial lengths then we can define
P = GMm

R1+R2
− GMm

R1+R2+x ≡
GMm
R − GMm

r .

In scalar form Eqn(27) is,

E =
1

2
m1

(
dr1

dt

)2

+
1

2
m2

(
dr2

dt

)2

+
1

2
m1r1

2

(
dθ1

dt

)2

+
1

2
m2r2

2

(
dθ2

dt

)2

− Gm1m2√
r1

2 + r2
2 − 2r1r2Cos(θ1 − θ2)

(28)

The total angular momentum(A) of the system is,

A = m1r1
2

(
dθ1

dt

)
+m2r2

2

(
dθ2

dt

)
(29)

The relative angle between the 2 masses remains π, i.e.
they are always on a straight line

θ2 − θ1 = π

So,
dθ1

dt
=
dθ2

dt
=
dθ

dt
(30)

Eqn(30) implies that the 2 masses have the same(but
not constant) angular velocity dθ

dt .
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Assume the center of mass is stationary at the origin.
Origin = Center of Revolution.

m1~r1 +m2~r2

m1 +m2
= 0̂i+ 0ĵ, So,m1r1 = m2r2

m1r1Cos(θ1) = −m2r2Cos(θ2)

m1r1Sin(θ1) = −m2r2Sin(θ2) (31)

Use Eqns(30,31) in Eqn(29) to reduce variables,

A = m1

(
1 +

m1

m2

)
r2
1

dθ

dt
= m2

(
1 +

m2

m1

)
r2
2

dθ

dt
(32)

Let us define ζ = 1 + m1

m2
and ζ ′ = 1 + m2

m1
. We can ex-

press energy(E) in two different forms, one with (m1, r1)
and another with (m2, r2) variables. Because we can re-
duce the 2-body problem to 1-body format.

Using Eqns(30-32) in Eqn(28)

E =
1

2
m1ζ

(
dr1

dt

)2

+
1

2

A2

m1ζr1
2
− Gm1m2

r1ζ

E =
1

2
m2ζ

′
(
dr2

dt

)2

+
1

2

A2

m2ζ ′r2
2
− Gm1m2

r2ζ ′
(33)

Apply Eqn(30) on Eqn(27),

E =
1

2
m1

(
d~r1

dt
•d~r1

dt

)
+

1

2
m2

(
d~r2

dt
•d~r2

dt

)
−Gm1m2

r1 + r2
(34)

Taking time derivative of Eqn(34)

dE

dt
=m1

d2~r1

dt2
•d~r1

dt
+m2

d2~r2

dt2
•d~r2

dt

+
Gm1m2

(r1 + r2)2

dr1

dt
+

Gm1m2

(r1 + r2)2

dr2

dt
(35)

Noting that m1
d~r1
dt = −m2

d~r2
dt and m1

d2~r1
dt2 = −m2

d2~r2
dt2

dE

dt
=m1

(
1 +

m1

m2

)[
d2~r1

dt2
+

Gm2r̂1

(r1 + r2)2

]
•dr1

dt
= 0

dE

dt
=m2

(
1 +

m2

m1

)[
d2~r2

dt2
+

Gm1r̂2

(r1 + r2)2

]
•dr2

dt
= 0

(36)

The 2 terms inside the square brackets in Eqn(36)
d2~r1
dt2 + Gm2r̂1

(r1+r2)2 and d2~r2
dt2 + Gm1r̂2

(r1+r2)2 are nothing but the 2

Force balance expressions that we would get by applying
Newton’s method on the 2-body system in 2D. As noted
wrt Eqn(19) here again we note that Newton’s method of

equating the 2 expressions to zero i.e. d2~r1
dt2 + Gm2r̂1

(r1+r2)2 = 0

and d2~r2
dt2 + Gm1r̂2

(r1+r2)2 = 0 is a subset of all possibilities of

Eqn(36). We could also get d2~r1
dt2 + Gm2r̂1

(r1+r2)2 ⊥
d~r1
dt and/or

d2~r2
dt2 + Gm1r̂2

(r1+r2)2 ⊥
d~r2
dt .

Below we briefly derive the Solution based on equiva-
lence with Eqns(23,24).

Define, m = m1ζ and M = m2

ζ2 .

Use it on Eqns(32,33) to get Eqn(37)

E =
1

2
m

(
dr1

dt

)2

+
1

2

A2

mr2
1

− GmM

r1
, A = mr2

1

dθ

dt
(37)

Eqn(37) has elliptic orbit solutions such that,

r10 =
A2

GMm2
=

A2

Gm2m2
1

, r20 =
A2

Gm1m2
2

r3
10ω

2
0 = GM = Gm3

2/(m1 +m2)2

r3
20ω

2
0 = Gm3

1/(m1 +m2)2

r1 =
r10

1 + εCos(θ)
, r2 =

r20

1 + εCos(θ)

r10 = Semi-latus rectum of m1

r20 = Semi-latus rectum of m2.

We get bounded orbits when, − G2m3
2m

3
1

2(m1+m2)A2 ≤ E < 0.

Or in other words when 0 ≤ ε < 1. If we had retained
the constant binding energy term Eb in Eqn(27) then

Eb − G2m3
2m

3
1

2(m1+m2)A2 ≤ E < Eb.

r1 and r2 show individual trajectories of masses m1

amd m2 respectively. In case of the generalized 2-body
system in 2D r1 and r2 are confocal ellipses sharing a
common focus and having the same eccentricity. But
size and orientation of the ellipses may be different.

IV. 3-BODY PROBLEM IN 2D

A. Lagrange type Periodic Orbits

Energy Method, Method B
Consider 3 bodies of mass m1, m2 and m3 Kg situated at
(r1, θ1), (r2, θ2) and (r3, θ3) respectively in the circular-
polar coordinate system. Then there exists 3 potential
energy components due to 3C2 combinations of masses.

P12 = − Gm1m2√
r1

2 + r2
2 − 2r1r2Cos(θ1 − θ2)

P23 = − Gm2m3√
r2

2 + r3
2 − 2r2r3Cos(θ2 − θ3)

P31 = − Gm3m1√
r3

2 + r1
2 − 2r3r1Cos(θ3 − θ1)

Then we can write the energy(E) conservation equation
of the system as,

E =
1

2
m1

(
d~r1

dt
•d~r1

dt

)
+

1

2
m2

(
d~r2

dt
•d~r2

dt

)
+

1

2
m3

(
d~r3

dt
•d~r3

dt

)
+ P12 + P23 + P31
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E =
1

2
m1

(
dr1

dt

)2

+
1

2
m2

(
dr2

dt

)2

+
1

2
m3

(
dr3

dt

)2

+
1

2
m1r1

2

(
dθ1

dt

)2

+
1

2
m2r2

2

(
dθ2

dt

)2

+
1

2
m3r3

2

(
dθ3

dt

)2

+ P12 + P23 + P31 (38)

The net angular momentum(A) of the system is,

A = m1r1
2 dθ1

dt
+m2r2

2 dθ2

dt
+m3r3

2 dθ3

dt
(39)

Assume, Center of Mass = Origin.

m1~r1 +m2~r2 +m3~r3

m1 +m2 +m3
= 0̂i+ 0ĵ

m1r1Cos(θ1) +m2r2Cos(θ2) = −m3r3Cos(θ3)

m1r1Sin(θ1) +m2r2Sin(θ2) = −m3r3Sin(θ3) (40)

r2 =
m1r1Sin(θ1 − θ3)

m2Sin(θ3 − θ2)
, r3 =

m1r1Sin(θ2 − θ1)

m3Sin(θ3 − θ2)
(41)

Rearranging Eqn(41)

m1r1

Sin(θ3 − θ2)
=

m2r2

Sin(θ1 − θ3)
=

m3r3

Sin(θ2 − θ1)

Like in the 2 body case where we see that the angle
between the 2 bodies remains constant (= π Radians)
here also we can assume that the relative angles between
the objects remains constant. That is,

Cos(θ2 − θ1) = Cos(α) = Constant

Cos(θ3 − θ2) = Cos(β) = Constant

Cos(θ1 − θ3) = Cos(γ) = Constant

α+ β + γ = 2π

Therefore,
dθ1

dt
=
dθ2

dt
=
dθ3

dt
(42)

Thus we get that, the three masses have the same an-
gular velocity(not constant, but same).

Using Eqn(40,42) we can express r2, r3 in terms of r1

r2 =
m1Sin(γ)

m2Sin(β)
r1, r3 =

m1Sin(α)

m3Sin(β)
r1 (43)

Let r2 = µ2r1 and r3 = µ3r1. Where µ’s are Constants.
Using Eqns(40-43) in Eqns(38,39) we can reduce the

3-body problem to Kepler 1-body format.
Eqn(39) becomes,

A = m1r
2
1

dθ1

dt

(
1 +

m2

m1
µ2

2 +
m3

m1
µ2

3

)
(44)

Let us define, m = m1

(
1 + m2

m1
µ2

2 + m3

m1
µ2

3

)
and,

M =
m1m2/m√

1 + µ2
2 − 2µ2Cos(α)

+
m2m3/m√

µ2
2 + µ2

3 − 2µ2µ3Cos(β)

+
m3m1/m√

µ2
3 + 1− 2µ3Cos(γ)

So Eqn(44) gets simplified as A = mr2
1
dθ1
dt .

Use Eqns(40-43) and the above definitions in Eqn(38),

E =
1

2
m

(
dr1

dt

)2

+
1

2

A2

mr2
1

− GMm

r1

dE

dr1
=
d2r1

dt2
− A2

1

m1r3
1

+
GM

r2
1

= 0 (45)

dE
dr1

= 0 =⇒ E = Constant

Eqns(44,45) have elliptical solution such that,

r1 =
r10

1 + εCos(θ1)
, r10 =

A2

GMm2

r2 =
r10ζ2

1 + εCos(θ2 − α)
, r3 =

r10ζ3
1 + εCos(θ3 + γ)

(46)

That is we get 3 ellipses with the same eccentric-
ity and sharing a common focus but with different
sizes/orientations. But from the work of Lagrange we
know that Newtonian equations give a very different so-
lution than Eqn(46).

Force Method, Method A
Let us find the scalar equation for the 3-body case formed

by using Newtons method i.e. mi
d2~ri
dt2 − ~Fi = 0. From

Eqn(9) applying angular momentum conservation and
using, ~r1 = r1[Cos(θ1)̂i+ Sin(θ1)ĵ],
~r2 = r2[Cos(θ2)̂i+ Sin(θ2)ĵ],
~r3 = r3[Cos(θ3)̂i+ Sin(θ3)ĵ] we get,

m1

[
d2r1

dt2
− A2

1

m1r3
1

]
r̂1

= − Gm1m2

|~r1 − ~r2|3
(~r1 − ~r2)− Gm1m3

|~r1 − ~r3|3
(~r1 − ~r3) (47)

Comparing the î component and rearranging,

m1

[
d2r1

dt2
− A2

1

m1r3
1

]

= −
Gm1m2[r1 − r2

Cos(θ2)
Cos(θ1) ]

[r2
1 + r2

2 − 2r1r2Cos(θ2 − θ1)]3/2

−
Gm1m3[r1 − r3

Cos(θ3)
Cos(θ1) ]

[r2
1 + r2

3 − 2r1r3Cos(θ1 − θ3)]3/2
(48)
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Comparing the ĵ component and rearranging,

m1

[
d2r1

dt2
− A2

1

m1r3
1

]

= −
Gm1m2[r1 − r2

Sin(θ2)
Sin(θ1) ]

[r2
1 + r2

2 − 2r1r2Cos(θ2 − θ1)]3/2

−
Gm1m3[r1 − r3

Sin(θ3)
Sin(θ1) ]

[r2
1 + r2

3 − 2r1r3Cos(θ1 − θ3)]3/2
(49)

Taking the difference of Eqns(48,49) and rearranging,

0 =
Gm1m2r2[ Sin(θ1−θ2)

Sin(θ1)Cos(θ1) ]

[r2
1 + r2

2 − 2r1r2Cos(θ2 − θ1)]3/2

+
Gm1m3r3[ Sin(θ1−θ3)

Sin(θ1)Cos(θ1) ]

[r2
1 + r2

3 − 2r1r3Cos(θ1 − θ3)]3/2

Using Eqn(41) in the above equation gives Equilateral
triangle solutions,

|~r1 − ~r2| = |~r2 − ~r3| = |~r3 − ~r1| = rC

Using this in Eqn(47) reduces it to,[
d2r1

dt2
− A2

1

m1r3
1

]
r̂ = −G(m1 +m2 +m3)

r3
C

~r1 (50)

Eqn(46) gives a family of solutions for a given set
of m1,m2,m3 values depending on α, β values whereas
Eqn(50) gives just one possible solution for a given set of
m1,m2,m3 values because it also determines unique val-
ues for α, β. Suppose m1 = m2 = m3 then from Eqn(43).

r1

Sin(β)
=

r2

Sin(γ)
=

r3

Sin(α)

the Equilateral triangle constraint implies

r2
1 + r2

2 − 2r1r2Cos(α) = r2
2 + r2

3 − 2r2r3Cos(β)

r2
1

r2
2

− 2r1

r2
Cos(α) =

r2
3

r2
2

− 2r3

r2
Cos(β)

Sin2(β)

Sin2(γ)
− 2Sin(β)

Sin(γ)
Cos(α) =

Sin2(α)

Sin2(γ)
− 2Sin(α)

Sin(γ)
Cos(β)

Sin2(β)− Sin2(α) = 2Sin(β − α)Sin(γ)

Sin2(β)− Sin2(α) = −2Sin(β − α)Sin(β + α)

Cos2(α) = Cos2(β)

α = β = γ, r1 = r2 = r3

Method A: In Eqn(47) when m1 = m2 = m3 the only
possible solution is r1 = r2 = r2, α = β = γ such that
the 3 masses are placed at the 3 vertices of an equilat-
eral triangle and are revolving about the center of mass.
The size of the triangle can be either static in time or
pulsating (imploding - exploding). If we slightly alter
the conditions such that r1 → r1 + δ, δ << r1 and inte-
grate Eqn(47) we get (wrong)unstable trajectories which

do not conserve energy. And do not resemble the Equi-
lateral triangle configuration.

Method B: In Eqn(46) When m1 = m2 = m3 we get
a family of solutions such that r1

Sin(β) = r2
Sin(γ) = r3

Sin(α) .

The configuration can be any general static/pulsating
triangle with the masses revolving around the center
of mass. If we slightly alter the conditions such that
r1 → r1+δ, δ << r1 then from Eqn(46) we get slightly al-
tered but stable orbits. But beyond a certain limit on the
perturbation, the solution shifts from the Lagrange type
periodic orbits with 1 center of revolution common to
all 3 mass to a state like the Sun-Moon-Earth restricted
3-body system with 2 centers of revolution. Method B
covers the entire possible solution space whereas Method
A catches only a few special cases. Most often Method
A gives wrong results.

From the Energy method we can derive elliptical orbits
with general N-gon configurations with N-masses. In this
solution all the masses are in one phase, moving in unison
around a single center of mass. But in case of restricted
N-body problems there are multiple centers of rotation
and the bodies are not moving in unison.

B. Switchover from 1 Center to 2 Centers of Revolution

In the condition inspired by Eqn(41),

m1r1

Sin(β)
=

m2r2

Sin(γ)
=

m3r3

Sin(α)
= Constant =

1√
Q

Of the 9 variables m1,m2,m3, r1, r2, r3 and α, β, γ
specifying only 6 of them determines the constant

√
Q

and also the remaining 3 variables.

Sin(β) =
√
Qm1r1, Sin(γ) =

√
Qm2r2, Sin(α) =

√
Qm3r3

Assume we specify m1,m2,m3, r1, r2, r3 and we have
to determine, α, β, γ

Sin(γ) =
√
Qm2r2 = −Sin(α+ β)

= −
√
Qm3r3Cos(β)−

√
Qm1r1Cos(α)

m2r2 = ±m3r3

√
1−Qm2

1r
2
1 ±m1r1

√
1−Qm2

3r
2
3

[
m2

2r
2
2 −m2

3r
2
3 −m2

1r
2
1

2m1m3r1r3

]2

+ [m2
2r

2
2]Q = 1

If Q > 0 then we get Lagrange type periodic orbits
with just one common center of revolution. If Q ≤ 0
then we get restricted 3-body type orbits with 2 centers
of revolution.

Suppose m1 = m2 = m3 = m = Constant and r1 =
r3 = r = Constant, we vary r2 from 0 to ∞ then Q
becomes 0 at r2 = 2r and Q < 0 when r2 > 2r.



11

[
m2r2

2 −m2r2 −m2r2

2m2r2

]2

+ [m2r2
2]Q = 1[

r2
2

2r2
− 1

]2

+ [m2r2
2]Q = 1

V. 2-BODY IN 3D, IDEALIZED PRECESSION

A. Unperturbed Orbit in 3D

  

O
X

Z

Y

R

B

C

A

FIG. 1 Motion on an inclined elliptic orbit. Lines OX, OY,
OZ represent the 3 geometric axis. OX and OY are in the
horizontal plane OZ is the vertical axis. The ellipse is inclined
to the horizontal plane at some angle. O is one of the foci of
the ellipse. OC is the semi-latus rectum in the horizontal
plane. R is the instantaneous position of the moving object.
BR is parallel to OZ. Point B is the projection of R on the
horizontal plane. Lines OB and AB are in the horizontal
plane. Line AB is perpendicular to Line OC. Angle RAB is
the Inclination of the ellipse and Angle AOR is the angular
displacement(λ) in the plane of revolution.

We observe Nodal and Apsidal Precession in case of
both Artificial Satellites in orbits around Earth and in
case of Moons orbit around Earth. In the Spherical-Polar
Co-ordinate system (r,θ,φ) where ~r is the position vector
θ = longitude angle and
φ = latitude angle such that the position vector ~r is,
~r = r[Cos(φ)Cos(θ)̂i+ Cos(φ)Sin(θ)ĵ + Sin(φ)k̂].

Let,
~u1 = Cos(θ)̂i+ Sin(θ)ĵ, ~u2 = −Sin(θ)̂i+ Cos(θ)ĵ

Let us find d~r
dt ,

d~r

dt
=
dr

dt
r̂ − rSin(φ)

dφ

dt
~u1

+rCos(φ)
dθ

dt
~u2 + rCos(φ)

dφ

dt
k̂ (51)

Let us also find d2~r
dt2 ,

d2~r

dt2
=

[
d2r

dt2
− r

(
dφ

dt

)2
]
r̂

−

[
2
dr

dt

dφ

dt
+ rCot(φ)

(
dθ

dt

)2

+ r
d2φ

dt2

]
Sin(φ)~u1

+

[
2
dr

dt

dθ

dt
+ r

d2θ

dt2
− 2Tan(φ)r

dφ

dt

dθ

dt

]
Cos(φ)~u2

+

[
2
dr

dt

dφ

dt
+ r

d2φ

dt2

]
Cos(φ)k̂ (52)

Let us also find, ~r × d~r
dt

m~r × d~r

dt
=mr2Cos2(φ)

dθ

dt
k̂

−mr2 dφ

dt
~u2 −

1

2
mr2Sin(2φ)

dθ

dt
~u1 (53)

From Eqn(53) we can define the î, ĵ, k̂ components of

angular momentum ~A = Aiî + Aj ĵ + Akk̂ where ~A =
~r ×md~r

dt . Note that,

A2 = A2
i +A2

j +A2
k =

A2
k

Cos2(φ)
+m2r4

(
dφ

dt

)2

(54)

Consider the energy equation,

E =
1

2
m

(
d~r

dt
•d~r
dt

)
+
GMm

R
− GMm

r

Assume the kth component Ak = mr2Cos2(φ)dθdt =
Constant.

E =
1

2
m

(
dr

dt

)2

+
1

2

A2
k

mr2Cos2(φ)
+

1

2
mr2

(
dφ

dt

)2

+
GMm

R
− GMm

r
(55)

If we assume A = Constant then we can reframe
Eqn(54) as,

1

2

A2
k

mr2Cos2(φ)
+

1

2
mr2

(
dφ

dt

)2

=
1

2

A2
kη

2

mr2
(56)

In Eqn(54) A = Akη =
√
A2
i +A2

j +A2
k

Using Eqn(56) in Eqn(55)

E =
1

2
m

(
dr

dt

)2

+
1

2

A2
kη

2

mr2
+
GMm

R
− GMm

r
(57)

Let λ be the angle wrt semi-minor axis in the plane of
revolution then

z = rSin(λ)Sin(φm) = rSin(φ) (58)
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From Eqn(56) we get,

1

2
mr2

(
dφ

dt

)2

=
1

2

A2
k

mr2

[
η2 − 1

Cos2(φ)

]
Ak = mr2Cos2(φ)

dθ

dt(
dφ

dt

)2

= Cos4(φ)

(
dθ

dt

)2 [
η2 − 1

Cos2(φ)

]
(59)

Note, 1
Cos2(φ) = Sec2(φ) = 1 + Tan2(φ)

dφ

dt
= ±Cos2(φ)

dθ

dt

√
η2 − 1− Tan2(φ)

Tan(φ) =
√
η2 − 1Sin(θc ± θ)

Tan(φ) = Tan(φm)Sin(θc ± θ) (60)

θc = Constant of integration. η = Sec(φm)
Let dν

dt = ηCos2(φ)dθdt , So, Akη = mr2 dν
dt

Differentiating Eqn(60)

Sec2(φ)dφ = Tan(φm)Cos(θc ± θ)(±dθ)
dφ = Tan(φm)Cos(θc ± θ)(±Cos2(φ)dθ)

Cos(φ)√
Sin2(φm)− Sin2(φ)

dφ = ±dν (61)

Integrating Eqn(61)

Sin(φ) = Sin(φm)Sin (νc ± ν) (62)

Equate Eqn(58) and Eqn(62) to get,

Sin(λ) = Sin (νc ± ν)

λ = νc ± ν
dλ

dt
= ±dν

dt
= ±ηCos2(φ)

dθ

dt
(63)

E =
1

2
m

(
dr

dt

)2

+
1

2

A2
kη

2

mr2
+
GMm

R
− GMm

r

Akη = ηmr2Cos2(φ)
dθ

dt
= mr2 dν

dt
= ±mr2 dλ

dt
(64)

The solution to Eqn(64) is,

r =
r0

1 + εCos(λc ± λ)
, r0 =

A2
kη

2

GMm2
(65)

B. Ideal Perturbation

The easiest way to induce nodal precession in
Eqn(55-56) is to introduce a disturbance of the
same form as the energy term due to (Ak)Angular

Momentum
(
i.e. 12

A2
k

mr2Cos2(φ)

)
. The Energy term

1
2

B
mr2Cos2(φ) in Eqn(66) is the added disturbance. B can

be both +ve or -ve.

And the easiest way to induce apsidal precession in
Eqn(55-56) is to introduce a disturbance of the form
1
2

C
mr2 (in Eqn(66)). C can be both +ve or -ve.

E =
1

2
m

(
d~r

dt
•d~r
dt

)
+

1

2

B

mr2Cos2(φ)
+

1

2

C

mr2

+
GMm

R
− GMm

r

E =
1

2
m

(
dr

dt

)2

+
1

2

A2
k

mr2Cos2(φ)
+

1

2

B

mr2Cos2(φ)

+
1

2

C

mr2
+

1

2
mr2

(
dφ

dt

)2

+
GMm

R
− GMm

r
(66)

Using ~r•d~rdt = r drdt and

(Cos(θ)̂i+ Sin(θ)ĵ)•d~rdt = rSin(φ)dφdt − Cos(φ)drdt

dE

dt
=

[
m
d2~r

dt2
− ~F

]
•d~r
dt

= 0 (67)

Where,
~F = −GMm

r3 ~r + C
mr4~r + B(Cos(θ)̂i+Sin(θ)ĵ)

mr3Cos2(φ) .

Let us extend the observation made about rotational
energy terms in Eqn(56),

1

2

(A2
k +B)

mr2Cos2(φ)
+

1

2

C

mr2
+

1

2
mr2

(
dφ

dt

)2

=
1

2

A2
kη

2
1

mr2

(68)

Note A2 = A2
i + A2

j + A2
k = A2

kη
2
1 . A and Aκ remain

constant, Ai, Aj get modulated by the additional B and
C terms in Eqn(66). From Eqn(68) we get the solution,

Tan(φ) =

√√√√η2
1 − 1− (B+C)

A2
k

1 + B
A2
k

Sin

(√
1 +

B

A2
k

[θc ± θ]

)

Tan(φ) = Tan(φm).Sin

(√
1 +

B

A2
k

[θc ± θ]

)
(69)

Eqn(69) is similar to Eqn(60) but with modifications

induced by the disturbance term B. The term
√

1 + B
A2
k

modulating θ indicates Nodal Precession. When B = 0,
there is no Nodal Precession and we get back the same
solution as in Eqn(60). η1 is some constant depending
on A2

k, B, C and Sec(φm). From Eqn(69) we get

η1 = ±
√[

1 + B
A2
k

]
Sec2(φm) + C

A2
k

.

Note that î and ĵ components of Ang. Mom are not
conserved separately but A2

i +A2
j = Constant.

Using Eqn(68) in Eqn(66)

E =
1

2
m

(
dr

dt

)2

+
1

2

A2
kη

2
1

mr2
+
GMm

R
− GMm

r

Akη = η1mr
2Cos2(φ)

dθ

dt
= mr2 dν

dt
(70)
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Differentiating the Tan(φ) Eqn in Eqn(69) and using
Ak = mr2Cos2(φ)dθdt we get,

1√
Tan2(φm)− Tan2(φ)

dφ = ±

√
1 +

B

A2
k

1

η1
dν (71)

Integrating Eqn(71) we get,

Sin(φ) = Sin(φm)Sin

(
λc ±

√
1 +

B

A2
k

Sec(φm)

η1
ν

)
(72)

Eqn(58) is still valid, if λ is the angle wrt semi-minor
axis in the plane of revolution then
Sin(φ) = Sin(φm)Sin(λ)

λ = λc ±

√
1 +

B

A2
k

Sec(φm)

η1
ν

ν = ±

√
1 +

C

(A2
k +B)Sec2(φm)

(λ− λc) (73)

Solving Eqn(70) we get,

r =
r0

1 + εCos(ν)
, r0 =

A2
kη

2
1

GMm2

r =
r0

1 + εCos
(√

1 + C
(A2
k+B)Sec2(φm)

(λ− λc)
) (74)

Eqn(74) is similar to Eqn(65) but with modifica-
tions induced by the disturbance terms B,C. The term√

1 + C
(A2
k+B)Sec2(φm)

modulating λ indicates Apsidal

Precession. When C = 0, there is no Apsidal Precession
and we get back the same solution as in Eqn(65).

In case of ideal perturbation we can verify that in

Eqn(67) md2~r
dt2 = ~F = −GMm

r3 ~r+ C
mr4~r+

B(Cos(θ)̂i+Sin(θ)ĵ)
mr3Cos2(φ)

or md2~r
dt2 − ~F = 0. Hence Newtonian method gives the

same precession rates as the Energy method. Possibly be-
cause Eqn(66) is a 2-body system which can be expressed
entirely in terms or one variable r using Eqn(68). Also
both the net Angular momentum(A) and kth component
Ak are conserved like in the 1-body approximation case.
But this is not true in case of precession of Moon or Arti-
ficial satellites around the Earth. The perturbations are
not ideal there.

VI. SUN-MOON-EARTH 3 BODY SYSTEM

A. Unperturbed Orbit

3 bodies with 2 different centers of revolution. Let us
denote Earth as mass m1 and Moon as mass m2. As-
sume that the Sun is stationary at the center of revolu-
tion(Origin) around which m1,m2 revolve together. Let
~x1, ~x2 be the position vectors of m1, m2 respectively.

  

r1

x1

Sun

θ

x2

x

Moon

ψ

r2

Earth

φ

x3
O A

C

FIG. 2 Sun-Moon-Earth 3-body System. O is the Origin of
3-axis, Vector X3(Sun) and Vector X lie on the horizontal
plane(as the page). Vertical axis is out-of-the-page. C is a
point along Vector X(Center of Earth Moon System) in the
horizontal plane. Moon is elevated up at an angle(φ) wrt
page(horizontal plane) and the Earth is below the horizontal
plane at the same angle(φ). Vector r1 connects C to Earth
and Vector r2 connects C to Moon. Note again vector r2 is
inclined up, vector r1 is inclined down. θ and ψ are angles
wrt a line parallel to OA.

Let ~x be the Center of Mass(CoM) of Earth+Moon
(m1+m2) system

(m1 +m2)~x = m1~x1 +m2~x2

~x+ ~r1 = ~x1, ~x+ ~r2 = ~x2

m1~r1 +m2~r2 = 0

The vectors ~r1, ~r2, ~x and ~x3 are described as below

The vectors ~x and ~x3 are co-linear

~r1 = −r1[Cos(φ)Cos(θ)̂i+ Cos(φ)Sin(θ)ĵ + Sin(φ)k̂]

~r2 = r2[Cos(φ)Cos(θ)̂i+ Cos(φ)Sin(θ)ĵ + Sin(φ)k̂]

~x = x[Cos(ψ)̂i+ Sin(ψ)̂i], ~x3 = −x3[Cos(ψ)̂i+ Sin(ψ)̂i]

The center of mass of Sun-Earth-Moon (m1,m2,m3)
system is stationary.

m1~x1 +m2~x2 +m3~x3 = (m1 +m2)~x+m3~x3 = 0

Let us find d~x1

dt and d~x2

dt ,
d~x1

dt = d~x
dt + d~r1

dt , d~x2

dt = d~x
dt + d~r2

dt

m1
d~x1

dt •
d~x1

dt = m1
d~x
dt •

d~x
dt +m1

d~r1
dt •

d~r1
dt + 2m1

d~x
dt •

d~r1
dt

m2
d~x2

dt •
d~x2

dt = m2
d~x
dt •

d~x
dt +m2

d~r2
dt •

d~r2
dt + 2m2

d~x
dt •

d~r2
dt
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The net Energy(E) equation is,

E =
1

2
m1

(
d~x1

dt
•d~x1

dt

)
+

1

2
m2

(
d~x2

dt
•d~x2

dt

)
+

1

2
Ms

(
d~x3

dt
•d~x3

dt

)
− GMsm1

|~x1 − ~x3|
− GMsm2

|~x2 − ~x3|
− Gm1m2

|~x2 − ~x1|
(75)

E =
1

2
(m1 +m2)

(
dx

dt

)2

+
1

2
(m1 +m2)x2

(
dψ

dt

)2

− GMsm1

|~x1 − ~x3|
− GMsm2

|~x2 − ~x3|
− Gm1m2

r1 + r2
+

1

2
m1

(
dr1

dt

)2

+
1

2
m1r

2
1Cos

2(φ)

(
dθ

dt

)2

+
1

2
m1r

2
1

(
dφ

dt

)2

+
1

2
m2

(
dr2

dt

)2

+
1

2
m2r

2
2Cos

2(φ)

(
dθ

dt

)2

+
1

2
m2r

2
2

(
dφ

dt

)2

+
1

2
m3

(
dx3

dt

)2

+
1

2
m3x

2
3

(
dψ

dt

)2

(76)

(m1 +m2)x = m3x3

Let us find ~x1 × d~x1

dt and ~x2 × d~x2

dt ,

m1(~x+ ~r1)×
(
d~x
dt + d~r1

dt

)
m1~x× d~x

dt +m1~x× d~r1
dt +m1~r1 × d~x

dt +m1~r1 × d~r1
dt

m2~x× d~x
dt +m2~x× d~r2

dt +m2~r2 × d~x
dt +m2~r2 × d~r2

dt

Ak =(m1 +m2)x2 dψ

dt
+m3x

2
3

dψ

dt

+
[
m1r

2
1 +m2r

2
2

]
Cos2(φ)

dθ

dt
(77)

Let γ = m1+m2+m3

m3
≈ 1, so x+ x3 = γx, and

GMsm1

|~x1 − ~x3|
=

GMsm1

|~x− ~x3 + ~r1|
=

GMsm1

|γ~x+ ~r1|
GMsm2

|~x2 − ~x3|
=

GMsm2

|~x− ~x3 + ~r2|
=

GMsm2

|γ~x+ ~r2|
(78)

GMsm1

|γ~x+ ~r1|
=

GMsm1√
γ2x2 + r2

1 − 2γxr1Cos(φ)Cos(θ − ψ)

GMsm2

|γ~x+ ~r2|
=

GMsm2√
γ2x2 + r2

2 + 2γxr2Cos(φ)Cos(θ − ψ)

Using Taylor Expansion upto 2nd order. No r1
γx terms

will be left in m1

x13
+ m2

x23
. Ignore the 3rd and higher order

terms. So the perturbation ∆ is given by,

∆ =
GMs(m1 +m2)

γx
− GMsm1

x13
− GMsm2

x23

∆ ≈ GMsm

2γx

(
r1

γx

)2 [
1− 3Cos2(φ)Cos2(θ − ψ)

]
(79)

Where, m = (m1 +m2)m1

m2
= m1ζ

In Eqn(79) we can express
Cos2(θ − ψ) = (1 + Cos(2[θ − ψ]))/2.
The averaged out value of Cos(2[θ − ψ])) is zero.
So the secular effect of the disturbance is ∆av,

∆av =
GMsm

2xγ3

(r1

x

)2
[
1− 3

2
Cos2(φ)

]
(80)

Using Eqn(80), Eqn(76) becomes

E =
1

2
(m1 +m2)γ

(
dx

dt

)2

+
1

2
(m1 +m2)γx2

(
dψ

dt

)2

−GMs(m1 +m2)

γx
+ ∆av −

Gm1m2

r1 + r2
+

1

2
m

(
dr1

dt

)2

+
1

2
mr2

1Cos
2(φ)

(
dθ

dt

)2

+
1

2
mr2

1

(
dφ

dt

)2

(81)

Assume Ak is not altered by ∆av, From Eqn(77)

Ak =(m1 +m2)γx2 dψ

dt
+mr2

1Cos
2(φ)

dθ

dt
(82)

ψ and θ are angles in the XY plane the CoM of m1+m2

system is revolving in the XY plane. φ is the angle of
elevation wrt the XY plane. θ is calculated wrt to the
line joining CoM to Sun. And ψ is the angle of the line
joining CoM to Sun wrt to some reference axis. The
angles θ and φ of m1 and m2 are offset by π Radians
such that they both have the same dθ

dt and dφ
dt values.

In Eqns(81,82) let us assume
x = Constant and dψ

dt = Constant. Therefore we can
define a new constant Eθ

From Eqn(81),

Eθ =
1

2
m

(
dr1

dt

)2

+
1

2
mr2

1Cos
2(φ)

(
dθ

dt

)2

+
1

2
mr2

1

(
dφ

dt

)2

− Gm1m2

r1 + r2
+ ∆av (83)

In Eqn(83) if ∆av = 0 then we recover the 2-body
configuration between Earth and Moon without the effect
of Sun.

Similarly from Eqn(82),

Aθ = mr2
1Cos

2(φ)
dθ

dt
(84)

The pair of Eqns [Aθ, Eθ] describe the altered elliptical
orbit of Moon including the effect of Sun to some degree
of approximation.
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B. Solar Gravitational Perturbation on Moon

Thus the Eθ eqn would be,

With ζ = 1 + m1

m2
, m = (m1 +m2)m1

m2
and M = m2

ζ2

Eθ =
1

2
m

(
dr1

dt

)2

+
1

2

A2
θ

mr2
1Cos

2(φ)
+

1

2
mr2

1

(
dφ

dt

)2

−GMm

r1
+
GMsmr

2
1

2γ3x3

[
1− 3

2
Cos2(φ)

]
(85)

In Eqn(85) we can not make a similar assumption as in
Eqn(68) because it gives contradictory results.

In vector form of kinetic energy term

Eθ =
1

2
m

(
d~r1

dt
•d~r1

dt

)
− GMm

r1

+
GMsmr

2
1

2γ3x3

[
1− 3

2
Cos2(φ)

]

Find dEθ
dt assuming x is constant

dEθ
dt

=m
d2~r1

dt2
•d~r1

dt
+
GMm

r3
1

~r1•
d~r1

dt
+
GMsm

γ3x3
~r1•

d~r1

dt

−3GMsmr1

2γ3x3
Cos(φ)

[
Cos(φ)

dr1

dt
− r1Sin(φ)

dφ

dt

]

(−Cos(θ)̂i− Sin(θ)ĵ)•d~r1dt = dr1
dt Cos(φ)− r1Sin(φ)dφdt

(Cos(θ)̂i+ Sin(θ)ĵ)•d~r2dt = dr2
dt Cos(φ)− r2Sin(φ)dφdt

dEθ
dt

= m
d2~r1

dt2
•d~r1

dt
+
GMm

r3
1

~r1•
d~r1

dt
+
GMsm

γ3x3
~r1•

d~r1

dt

−3GMsmr1

2γ3x3
Cos(φ)

(
−Cos(θ)̂i− Sin(θ)ĵ

)
•d~r1

dt
(86)

If energy is conserved then
[
md2~r1

dt2 − ~F1

]
•d~r1dt = 0. So

~F1 can be written as,

~F1 =−GMm

r3
1

~r1 −
GMsm

γ3x3
~r1

+
3GMsmr1

2γ3x3
Cos(φ)

(
−Cos(θ)̂i− Sin(θ)ĵ

)
(87)

~F1 =−Gm1m2

r3
1

m2

(m1 +m2)
~r1 −

GMsm1

x3

m2
2

(m1 +m2)2
~r1

+
3GMsm1r1

2x3

m2
2

(m1 +m2)2
Cos(φ)

(
−Cos(θ)̂i− Sin(θ)ĵ

)

C. Newton’s Method

We can write down the forces on mass m1 and m2

using Newton’s Law of Gravity. The reference frame in
a genuinely 3-body Sun-Earth-Moon problem must be
the center of mass of the 3-body system which will be
located close to the center of mass of Sun itself. Hence
for simplicity we can consider Sun as stationary at the
center(Fig-2). So the force balance equation on Moon
with reference to Fig-2 becomes (Brown, 2016; Curtis,
2010)

m1
d2~x1

dt2
= − GMsm1

|~x1 − ~x3|3
(~x1 − ~x3)− Gm1m2

|~r1 − ~r2|3
(~r1 − ~r2)

m2
d2~x2

dt2
= − GMsm2

|~x2 − ~x3|3
(~x2 − ~x3)− Gm1m2

|~r2 − ~r1|3
(~r2 − ~r1)

Using ~x1 = ~x+ ~r1, ~x2 = ~x+ ~r2, m1~r1 +m2~r2 = 0 and
~r = ~r1 + ~r2, we can rewrite the above eqn as,

m1
d2~x

dt2
+m1

d2~r1

dt2
= − GMsm1

|γ~x+ ~r1|3
(γ~x+ ~r1)− Gm1m2

r2
r̂

m2
d2~x

dt2
+m2

d2~r2

dt2
= − GMsm2

|γ~x+ ~r2|3
(γ~x+ ~r2) +

Gm1m2

r2
r̂

(88)

Note γ = m1+m2+m3

m3
≈ 1

By manipulating the 2 equations in Eqn(88) we get,

d2~r1

dt2
=

GMsm2

m1 +m2

[
1

|γ~x+ ~r2|3
− 1

|γ~x+ ~r1|3

]
γ~x

−Gm2

r2
r̂ − GMs~r1

m1 +m2

[
m1

|γ~x+ ~r1|3
+

m2

|γ~x+ ~r2|3

]
d2~r2

dt2
= − GMsm1

m1 +m2

[
1

|γ~x+ ~r2|3
− 1

|γ~x+ ~r1|3

]
γ~x

−Gm1

r2
r̂ − GMs~r2

m1 +m2

[
m1

|γ~x+ ~r1|3
+

m2

|γ~x+ ~r2|3

]
(89)

Using Taylor Expansion upto 2nd order,

d2~r1

dt2
≈−3GMsr1

γ3x3
Cos(φ)Cos(θ − ψ)x̂

−Gm2

r2
r̂ − GMsr1

γ3x3
r̂1

d2~r2

dt2
≈3GMsr2

γ3x3
Cos(φ)Cos(θ − ψ)x̂

−Gm1

r2
r̂ − GMsr2

γ3x3
r̂2 (90)

Let us define 2 unit vectors ~v1, ~v2,
~v1 = Cos(θ)̂i+ Sin(θ)ĵ and ~v2 = Sin(θ)̂i− Cos(θ)ĵ
x̂ = Cos(θ − ψ)~v1 + Sin(θ − ψ)~v2

Cos(φ)Cos(θ − ψ)x̂ =Cos(φ)Cos2(θ − ψ)~v1

+Cos(φ)Cos(θ − ψ)Sin(θ − ψ)~v2
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Averaged out (Secular) effect would be,
Cos(φ)Cos(θ − ψ)x̂ = 1

2Cos(φ)~v1

d2~r1

dt2
≈3GMsr1

2γ3x3
Cos(φ)[−Cos(θ)̂i− Sin(θ)ĵ]

−Gm2

r2
r̂ − GMs

γ3x3
~r1

d2~r2

dt2
≈3GMsr2

2γ3x3
Cos(φ)[Cos(θ)̂i+ Sin(θ)ĵ]

−Gm1

r2
r̂ − GMs

γ3x3
~r2 (91)

We can note that RHS of d
2~r1
dt2 equation in Eqn(91) and

RHS of ~F1 in Eqn(87) are the same, onlym1
d2~r1
dt2 − ~F1 6= 0.

By adding the m1,m2 equations in Eqn(88) we get,

(m1 +m2)
d2~x

dt2
= −GMsγ~x

[
m1

|γ~x+ ~r1|3
+

m2

|γ~x+ ~r2|3

]
−GMsm1~r1

[
1

|γ~x+ ~r2|3
− 1

|γ~x+ ~r1|3

]
Following the same procedure of Taylor approximation

and averaging out we get,

(m1 +m2)
d2~x

dt2
= −GMs(m1 +m2)

γ2x2
x̂

−3

2

GMsmr
2
1

γ4x4

[
1− 3

2
Cos2(φ)

]
x̂ (92)

Eqn(92) implies that in Newtonian method there is
an insignificant level of inherent Apsidal precession. In
principle we can not get rid off this precession. Hence
the similarity we noted between Eqn(91) and Eqn(87)
may not be really valid because Eqn(91) has an inher-
ent Apsidal Precession. And Eqn(87) was derived after
assuming a constant circular orbit for the Earth-Moon
system around the Sun.

Let us now find the scalar version of Eqn(91) to esti-
mate the precession rates predicted by it, By comparing
the î, ĵ, k̂ components on RHS and LHS of Eqn(91) and

Eqn(52) we get the scalar d2r1
dt2 equation.

d2r1

dt2
− r1

(
dφ

dt

)2

+
Gm2

(r1 + r2)2

= r1Cos
2(φ)

(
dθ

dt

)2

− GMsr1

γ3x3

[
1− 3

2
Cos2(φ)

]
(93)

Let us simplify the analysis of the 2 equations
Eqns(85,93) by splitting them into two limiting cases
case (i) when φ = 0(XY-plane orbit) and
case (ii) when r = r0(circular orbit).

(i), φ = 0, Apsidal Precession From Eqn(85) we get,

Eθ =
1

2
m

(
dr1

dt

)2

+
1

2

A2
θ

mr2
1

− GMm

r1
− 1

2

GMsm

2γ3x

(r1

x

)2

(94)

limit(i), r1 ≈ r10 and φ = 0
Use Eqn(94) the XY-plane orbit approximation to es-

timate the pure apsidal precession rate.
Let r1 = r10 + h, h << r10 and r10 = Constant. Let us
use some approximate expansion of r2

1 in Eqn(94)

r2
1 = r2

10
r21
r210

= r2
10

r21
(r1−h)2 = r2

10
1

(1− h
r1 )

2

r2
1 = r2

10

[
1 + 2 h

r1
+ 3h

2

r21

]
, r2

1 = r2
10

[
6− 8 r10r1 + 3

r210
r21

]
Introducing higher order 1

r31
, 1
r41
, .. terms into Eqn(94)

is undesirable and if we approximate them back to forms
with only 1

r1
and 1

r21
terms then the approximation more

or less reduces to the 2nd order approximation already
shown. So that seems to be the best approximation.

Eθ =
1

2
m

(
dr1

dt

)2

+
1

2

A2

mr2
1

[
1− 3

2

Ms

M

r3
10

x3

]
−GMm

r1

[
1− 2Msr

3
10

Mx3

]
− 3GMsmr

2
10

2x3
(95)

Comparing Eqn(95) with the analysis of Apsidal pre-
cession in Eqns(25-26) and Eqns(66-74) we get,

r1 ≈
r10

1 + εCos

(
θ1

√
1− 3

2
Ms

M
r310
x3

) (96)

At θ1 = 0, r = r10
1+ε . If there was no Apsidal pre-

cession then At θ1 = 2π we would get r = r10
1+ε again.

But in Eqn(96) when θ1

√
1− 3

2
Ms

M
r310
x3 = 2π we get back

r = r10
1+ε . Or when θ1 ≈ 2π

(
1 + 3

4
Ms

M
r310
x3

)
. That is there

builds up a phase difference of 2π
(

3
4
Ms

M
r310
x3

)
radians be-

tween the variation of θ1 and r1 in each cycle. That is
r1 gets delayed and the maxima(or minima) of r1 keeps
drifting from its previous position. It revolves in the same
direction as θ1. That is a prograde apsidal precession.
Ms = Mass of Sun = 1.989*1030 kg,

m1 = Mass of Earth = 5.972*1024 kg
m2 = Mass of Moon = 7.348*1022 kg,
ζ = 1 + m1

m2
= 82.27, M = m2

ζ2 = 0.1086 ∗ 1020 kg

x ≈ Distance between Sun and Earth = 147.1*109 m
r00 = Earth-Moon Distance = 0.3844*109 m
r10 = Distance between Earth and the Center of Mass of
Earth-Moon system = r00

ζ = 4.672*106 m

Therefore 1− 3
4
Ms

M
r310
x3 = 0.9956 Therefore,

r1 ≈
r10

1 + εCos(0.9956 ∗ θ1)
(97)

Phase difference in each cycle = Φ = 2π
(

3
4
Ms

M
r310
x3

)
Φ = 2π ∗ 0.0044 radians.
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No. of cycles needed for a phase difference of 2π = 2π
Φ =

1
0.0044 = 227.3 cycles.
Each Moon cycle (Synodic Month) = 29.5 Days
So, 227.3 cycles =⇒ 18.36 years... But the observed
Lunar apsidal precession rate is 8.85 years.

(i), φ = 0, Apsidal Precession From Eqn(93) we get,

d2r1

dt2
+

Gm2

(r1 + r2)2
= r1

(
dθ

dt

)2

+
GMsr1

2γ3x3
(98)

Because it is in 1 variable we can get away with the
following analysis, extending such equations through the
potential gradient method is flawed and should not be
used. So let us consider the dEθ

dr1
= 0 from Eqn(94).

1

m

dEθ
dr1

=
d2r1

dt2
− r1

(
dθ

dt

)2

+
Gm2

(r1 + r2)2
− GMs

2γ3x3
r1

i.e.,
d2r1

dt2
+

Gm2

(r1 + r2)2
= r1

(
dθ

dt

)2

+
GMsr1

2γ3x3
(99)

Both MethodA and B predict the same(wrong) apsidal
precession rate. Predicted precession rate 18.36 years.
Observed Lunar apsidal precession 8.85 years.

(ii), r1 = r10, Nodal Precession From Eqn(85) we get

Eθ =
1

2

A2
θ

mr2
10Cos

2(φ)
+

1

2
mr2

10

(
dφ

dt

)2

−GMm

r10
+
GMsmr

2
10

2γ3x3

[
1− 3

2
Cos2(φ)

]
limit(ii), r1 = r10 and φ ≈ 0 Using the approximation

1− 3
2Cos

2(φ) ≈ 3
2Cos2(φ) − 2 when φ ≈ 0

Eθ +
GMsm

γ3x

(r10

x

)2

+
GMm

r10
=

1

2
mr2

10

(
dφ

dt

)2

+
1

2

A2
θ

mr2
10Cos

2(φ)

[
1 +

3

2

Ms

M

r3
10

x3

]
(100)

Comparing Eqn(100) with the analysis of Apsidal pre-
cession in Eqns(25,26) and Eqns(66-74) we get,

φ ≈ φmaxSin

(
θ1

√
1 +

3

2

Ms

M

r3
10

x3

)
, φmax ≈ 0

φ ≈ φmaxSin (1.0044 ∗ θ1) (101)

Thus energy method predicts a retrograde nodal preces-
sion of 18.36 years period. The observed Lunar nodal
precession is retrograde with 18.6 years period.

limit(ii), r1 = r10 From Eqn(93) with Newton’s
method we get,

−r10

(
dφ

dt

)2

+
GM

r2
10

= r10Cos
2(φ)

(
dθ

dt

)2

− GMsr10

γ3x3

[
1− 3

2
Cos2(φ)

]
(102)

Multiply by × 1
2mr10

−1

2
mr2

10

(
dφ

dt

)2

+
1

2

GMm

r10

=
1

2

A2
θ

mr2
10Cos

2(φ)

(
dθ

dt

)2

− GMsmr
2
10

2γ3x3

[
1− 3

2
Cos2(φ)

]
limit(ii), r1 = r10 and φ ≈ 0, Eθ ≈ 1

2
GMm
r10

Using the

approximation 1− 3
2Cos

2(φ) ≈ 3
2Cos2(φ) − 2 when φ ≈ 0

−1

2
mr2

10

(
dφ

dt

)2

+
1

2

GMm

r10

=
1

2

A2
θ

mr2
10Cos

2(φ)

(
dθ

dt

)2 [
1− 3

2

Ms

M

r3
10

x3

]
+
GMsmr

2
10

γ3x3

Comparing Eqn(100) with the analysis of Apsidal pre-
cession in Eqns(25,26) and Eqns(66-74) we get,

φ ≈ φmaxSin

(
θ1

√
1− 3

2

Ms

M

r3
10

x3

)
, φmax ≈ 0

φ ≈ φmaxSin (0.9956 ∗ θ1) (103)

Newton’s method predicts a prograde nodal precession
of 18.36 years period. The direction of precession is op-
posite to that of the observed.

The value of apsidal precession rate predicted by both
Newton’s and Energy method is also 18.36 years instead
of the observed 8.85 years. Perhaps we might need to
reframe Eqn(75) itself as adding higher order approxi-
mations do not seem to improve the situation. Also we
can not solve the full equation Eqn(85) because we have
2 variables r1, φ and only 1 equation. We need to derive
laws regarding φ evolution from 3D observations.

However if we can alter a term of the perturbation
function in Eqn(80) to,

∆av =
GMsm

2γ3x

(r1

x

)2
[

1

2
− 3

2
Cos2(φ)

]
Then we get close to the observed apsidal precession rate
without altering the calculated nodal precession rate.

VII. MOON ORBIT PERTURBED BY OBLATE EARTH

A. J2 Perturbed Orbit

The effect due to oblateness(which is the supposed rea-
son for Nodal precession of near Earth satellites) of the
Earth is not as easily integrable as the ideal perturbation
terms 1

2
B

mr2Cos2(φ) and 1
2

C
mr2 in Eqn(66). The oblate-

ness geopotential factor is represented by J2
GMR2

r3 (1 −
3
2Cos

2(φ)) where J2 = 1.082 ∗ 10−3. (Frick and Garber,
1962)
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We can modify Eqn(55) to include the J2 perturbation,

E=
1

2
m

(
dr

dt

)2

+
1

2

A2

mr2Cos2(φ)
+

1

2
mr2

(
dφ

dt

)2

+
GMm

R
− GMm

r
+ J2

GMmR2

r3

(
1− 3

2
Cos2(φ)

)
(104)

In Eqn(104) we can not make a similar assumption as in
Eqn(68) because it gives contradictory results.

Eqn(104) in vector form of kinetic energy,

E =
1

2
m

(
d~r

dt
•d~r
dt

)
+
GMm

R
− GMm

r

+J2
GMmR2

r3

(
1− 3

2
Cos2(φ)

)

dE

dt
= m

d2~r

dt2
•d~r
dt

+
GMm

r2
r̂•d~r
dt

−3J2
GMmR2

r4
Cos(φ)(Cos(θ)̂i+ Sin(θ)ĵ)•d~r

dt

−3J2
GMmR2

r4

(
1− 5

2
Cos2(φ)

)
r̂•d~r
dt

(105)

(Cos(θ)̂i+ Sin(θ)ĵ)•d~rdt = dr
dtCos(φ)− rSin(φ)dφdt

~F =−GMm

r2
r̂ + 3J2

GMmR2

r4

(
1− 5

2
Cos2(φ)

)
r̂

+3J2
GMmR2

r4
Cos(φ)(Cos(θ)̂i+ Sin(θ)ĵ) (106)

When E is conserved, Eqns(105, 106) imply

dE

dt
=

[
m
d2~r

dt2
− ~F

]
•d~r
dt

= 0

If md2~r
dt2 − ~F = 0 then we get the scalar equation,

d2r

dt2
− r

(
dφ

dt

)2

+
GM

r2
=

rCos2(φ)

(
dθ

dt

)2

+
3J2GMR2

r4

[
1− 3

2
Cos2(φ)

]
(107)

Let us compare the 2 equations Eqn(104)(Energy) and
Eqn(107)(Newton) in the 2 limits when r = r0(circular
orbit) and φ = 0(XY-plane orbit).

(i), φ = 0 From Eqn(104) we get,

E =
1

2
m

(
dr

dt

)2

+
1

2

A2

mr2
+
GMm

R

−GMm

r
− 1

2
J2
GMmR2

r3
(108)

From Eqn(107) we get,

d2r

dt2
+
GM

r2
=

A2

m2r3
− 3

2

J2GMR2

r4
(109)

Like in the case of restricted Sun-Earth-Moon 3-body
system, we get the same equation from both Method A,
Eqn(107) and Method B, Eqn(104) when φ = 0 in case
of J2 perturbed apsidal precession.

Calculating Apsidal Precession Expand 1
2J2

GMmR2

r3 in

Eqn(108) in the limit r = r0 +h, h << r0, to get 1
r2 term

like in the ideal perturbation term,

1

2
J2
GMmR2

r3
≈ 1

2
J2

GMmR2

r2(r0 + h)

≈ 1

2
J2
GMmR2

r2r0

(
1− h

r0
+
h2

r2
0

)
≈ 1

2
J2
GMmR2

r2r0

(
1− r − r0

r0
+

(r − r0)2

r2
0

)
≈ 1

2
J2
GMmR2

r2r0

(
3− 3r

r0
+
r2

r2
0

)

1

2
J2
GMmR2

r3
≈

3

2
J2
GMmR2

r2r0
− 3

2
J2
GMmR2

rr2
0

+
1

2
J2
GMmR2

r3
0

(110)

Thus, the 1
2
A2

mr2 term in Eqn(108) is affected by

− 3
2J2

GMmR2

r2r0
term in Eqn(110),

1

2

A2

mr2
− 3

2
J2
GMmR2

r2r0
=

1

2

A2

mr2

[
1− 3J2

GMm2R2

r0A2

]
Noting A2 ≈ GMm2r0 we get,

1

2

A2

mr2
− 3

2
J2
GMmR2

r2r0
≈ 1

2

A2

mr2

[
1− 3J2

R2

r2
0

]
(111)

The factor 1 − 3J2
R2

r20
appearing with 1

2
A2

mr2 term in

Eqn(111) deterimines the apsidal precession rate as we
get a solution of the form,

r ≈ r0

1 + εCos
(
θ
√

1− 3J2
R2

r20

) (112)

Assuming R = 6.378*106 m and r0 = (0.75+6.378)*106

m. i.e. an orbit at ≈ 750 km altitude. we get,

r ≈ r0

1 + εCos(0.9987 ∗ θ)

In each cycle the phase difference is 2π ∗ (1−0.9987) =
2π ∗ 0.0013

Period of 1 cycle = T =
√

4π2r30
Gm2

No. of cycles in 24 hours = C = 86400
T

Total Phase Difference in 24 hours = 2π ∗ 0.0013 ∗ C =
6.75 Deg/Day. Observed is about 13.5 Deg/Day.
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Both Method A and B predict only half the observed
apsidal precession rate. Similar to the case of Sun-Earth-
Moon apsidal precession noted after Eqn(99).

(ii), r = r0 From Eqn(104) we get,

E =
1

2

A2

mr2
0Cos

2(φ)
+

1

2
mr2

0

(
dφ

dt

)2

+
GMm

R

−GMm

r0
+ J2

GMmR2

r3
0

(
1− 3

2
Cos2(φ)

)
(113)

E ≈ GMm
R − GMm

2r0

r0

(
dφ

dt

)2

=
GM

r2
0

− A2

m2r3
0Cos

2(φ)

−2J2GMR2

r4
0

(
1− 3

2
Cos2(φ)

)
(114)

From Eqn(107) we get,

r0

(
dφ

dt

)2

=
GM

r2
0

− A2

m2r3
0Cos

2(φ)

−3J2GMR2

r4
0

(
1− 3

2
Cos2(φ)

)
(115)

We get different equations from Method A, Eqn(115)
and Method B, Eqn(114) when φ 6= 0 in case of J2 per-
turbed orbits. Because in Method A the perturbation

term is, − 3J2GMR2

r40

(
1− 3

2Cos
2(φ)

)
whereas in Method

B the perturbation term is, − 2J2GMR2

r40

(
1− 3

2Cos
2(φ)

)
,

lowered by a factor of 1.5. But Method B, Eqn(114) pre-
dicts the correct nodal precession rate while Newton’s
method underestimates the period of precession.

Calculating Nodal Precession Using φ ≈ 0 we can de-

rive 1− 3
2Cos

2(φ) ≈ 3
2Cos2(φ) − 2

The term 1
2

A2

mr20Cos
2(φ)

in Eqn(113) gets modulated by

the term J2
GMmR2

r30

(
3

2Cos2(φ) − 2
)

lets consider only the

terms with 1
Cos2(φ) factor

1

2

A2

mr2
0Cos

2(φ)
+ J2

GMmR2

r3
0

3

2Cos2(φ)

=
1

2

A2

mr2
0Cos

2(φ)

[
1 + 3J2

GMm2R2

r0A2

]
=

1

2

A2

mr2
0Cos

2(φ)

[
1 + 3J2

R2

r2
0

]
(116)

Eqn(116) has nodal precession solution given by,

φ ≈ φmaxSin

(
θ

√
1 + 3J2

R2

r2
0

)
, φmax ≈ 0 (117)

Total Phase Difference in 24 hours = 2π∗0.0013∗C = 6.75
Deg/Day. This is the correct rate of nodal precession.

Eqn(116) based on Energy method predicts the correct
nodal precession rate, whereas Newton’s method gives,

φ ≈ φmaxSin

(
θ

√
1 +

9

2
J2
R2

r2
0

)
, φmax ≈ 0 (118)

Total Phase Difference in 24 hours = 2π ∗ 0.0013 ∗ C =
10.13 Deg/Day. The correct rate is 6.75 Deg/Day.

However if we alter a term from the J2 perturbation
function in Eqn(104),

J2
GMmR2

r2

(
1− 3

2
Cos2(φ)

)
→

→ J2
GMmR2

r2

(
1

2
− 3

2
Cos2(φ)

)
Then we get the desired apsidal precession rate without
any change to the calculated nodal precession rate in the
Energy method. However the nodal prcession rate from
Newton’s method would still be wrong.

Thus, not only Newton’s method of framing equations

in terms of d2~r
dt2 is wrong(in general) even the idea of In-

ertia is problematic.
Definition of Inertia Let us look at the original experi-
ment conducted by Galileo. He was rolling balls down
an inclined plane and he noticed that if he connected
another inclined plane rising up in height as the first in-
clined plane touches ground, the ball will rise up the new
inclined plane. It will rise up to as much height as it orig-
inally had when it was rolled down the first plane. He
called this height conserving property as Intertia (Good-
stein, 1985). Today we know that it is the energy conser-
vation that causes the ball to rise up the second inclined
plane. So we should replace the term Inertia by its equiv-
alent term Energy.

VIII. CONCLUSION

In the Kepler-1-Body approximation if E is the total
energy and ~F is the Newtonian Gravitational Force on
mass m then, E = 1

2m
(
d~r
dt •

d~r
dt

)
− GMm

r and ~F = −GMm
r3 ~r

therefore dE
dt =

[
md2~r
dt2 − ~F

]
•d~rdt . Thus, Newton’s Force

equation md2~r
dt2 − ~F = 0 is only a subset of all possible

solutions of dE
dt = 0. In certain cases like the inclined

plane and brachistochrone problems near Earth surface

we find that md2~r
dt2 − ~F 6= 0 but md2~r

dt2 − ~F ⊥ d~r
dt . Because

we have to make free body diagrams and determine the
force components based on the particular problem setup,

we have to appropriately modify Newton’s law as, md2~r
dt2

= some undermined component of ~F or −GMm
r3 ~r.

In 1-body approximation problems in 2D, it is hard to
miss the relationship between spatial derivatives of En-

ergy and Force components. That is if E = 1
2m
(
dr
dt

)2
+

1
2
A2

mr2 −
GMm
r then dE

dr = md2r
dt2 −

A2

mr3 + GMm
r2 = 0. Thus
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radial acceleration = d2r
dt2 = A2

mr3 −
GMm
r2 . We could get

swayed by this property and extend it to all other prob-
lem configurations. It is usually assumed that if net en-

ergy (E) is conserved then md2~r
dt2 = −∇P . But it is true

only in some special cases, in general md2~r
dt2 = Some com-

ponent of −∇P . This is a relationship which can not be
generalised to multi-body systems. Above all just defin-
ing the gradients of net Energy of an object(or the whole
system) and defining the gradients of individual particle
kinetic energies is a dubious operation. Best is to not
perform them.

The correct relationship between Force and Energy (if
needed for any calculation) is arrived at by extending

equation of the type dE
dt =

[
md2~r
dt2 − ~F

]
•d~rdt , through time

derivative of Energy not its gradients.
In the Kepler-N-Body (N > 2) problem if ~Fi is the sum

of all the Newtonian gravitational force balance terms on
mass mi then ~Fi = −

∑j=N
j=1,j 6=i

Gmimj
|~ri−~rj |3 (~ri − ~rj). If E is

the net Energy of the N-body system then,
dE
dt =

∑i=N
i=1

[
mi

d2~ri
dt2 − ~Fi

]
•d~ridt . Even when dE

dt = 0 it is

not necessary that mi
d2~ri
dt2 − ~Fi = 0 ∀ i. For example in

the case of Lagrange type periodic orbits solution of the
3-body problem we see that Newtons method does not
cover the entire solution(incomplete) space.

1-body approximation is an extreme case of general
2-body systems. In 2-body systems in 2D if the net
Energy of the system and individual Angular Momenta
are conserved and if the Energy equation can be written
down entirely in terms of one variable then both New-
ton’s Method and Energy method give the same equa-
tions. Because both the time derivative of Energy and
its gradients give same force equations.

In case of both Lunar orbit and orbits of artificial
satellites around Earth we get the same Apsidal preces-
sion rates from both Newton’s method(Method A) and
Energy method(Method B) and both methods under-
estimate the rate of apsidal precession by half. However,
we get different results for Nodal precession rates from
Newton’s method and Energy method. Energy method
gives results closely corresponding to the observed nodal
precession. In case of Lunar nodal precession Newton’s
method gets the nodal precession rate correct but in the
wrong direction and in case of near Earth satellite Nodal

precession, Newton’s method gets the direction of pre-
cession right but the rate of precession has a large(33%)
error.

Thus we ought to accept that the form of the grav-
itational potential energy term is more universal than
the form of Newton’s Law of Gravity yet those energy
terms may not still explain the observed precession rates.
Hence we need to replace Newton’s Laws of Motion by
an Energy conservation principle. And we need to find
more observational laws governing the 3D and N-body
trajectories to properly frame and solve the equations of
motion.
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