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Abstract 

Using the diagram of space-time, which represents intersections of the spheres depicting the front of an 

electromagnetic wave in the resting and moving frames with a plane going through the centres of the spheres, and the 

assumption that a quantum (photon) of spherical electromagnetic wave maintains its entity during the propagation of 

the wave, it is derived a quantum equation of the Doppler effect: √1 − 𝛽2 𝜏2 − 2 cos 𝛾 𝜏0𝜏 + √1 − 𝛽2 𝜏0
2 = 0, where 

𝜏0 and 𝜏 are the periods of an electromagnetic wave in the frames of the source and the receiver, 𝛽 is the relative speed 

of the frames divided by the speed of light in free space, and 𝛾 is the angle of aberration (the difference of the angles 

of slope of a ray in the frames of the source and the receiver). It is maintained that despite the differences between the 

obtained equation and Einstein’s expression for the Doppler shift, the equation of time dilation doesn’t need any 

alteration. Inapplicability of some fundamental principles of the special relativity to finite distances as well as inherent 

uncertainties in the measurements of space and time intervals is discussed.   

 

1. Diagram of Space-time  

 

Einstein’s theory of special relativity (SR), the mathematics of which is based on the 

Lorenz transformation, has two major faults: it considers electromagnetic (EM) waves as plane 

waves (while they are in fact spherical) and it does not take into account the quantum nature of 

EM emission. This paper aims at making some corrections in consideration of those two factors. 

For that purpose, a space-time diagram is used. 

This diagram of space-time represents intersections of two spheres with a plane going 

through their centres (Fig. 1). The spheres depict the same front of a spherical EM wave in two 

frames, from which one is at rest and the other is moving at a constant speed. It is implied that the 

centres of the spheres coincide in point O and the clocks in both centres show zero time when the 

emission starts from one of them. The radii of the spheres are proportional to elapsed times in 

corresponding frames. Because of that, those spheres may also be considered as time spheres 

without connection to any kind of waves. The main feature of this simplest type of space-time 

diagram (the one without acceleration and gravity) is that the radii of the time spheres and the 

distance between their centres satisfy the Pythagorean theorem; i.e., their connection gives the 

equation of time dilation.  

The diagram may be considered as a kind of geometric substitute of the Lorentz 

transformation for EM waves. Here are some of its interesting features. 

The intersections of a line of arbitrary slope passing through the centre of the moving 

sphere (it is shown below that the angle of slope is the same in both frames, as opposed to SR) 

with the spheres give the same point of the front of an EM wave in those frames.  

In Fig. 1, the points 𝐴 and 𝐵 of the front of an EM wave in the resting frame are the same 

as the points 𝐴′ and 𝐵′ respectively in the moving frame. To show this, imagine that the line with 

an angle of slope 𝛼 in the figure is an imaginary tube, in which a ray (or a point of the wave front) 

of  an EM wave is traveling.  Since the speed of light is  independent of  the speed of  the emitter,  
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Fig. 2. Space-time diagram of several (three) wavelengths. 

ȁ𝑂′𝐴′ȁ : ȁ𝑂′𝐴ȁ = 𝜆0: 𝜆𝛼 

𝐴′ 

𝐴 

𝛼 
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𝐵′ 

𝑂′ 

𝜃 

Fig. 1. The simplest type of space-time diagram. 

ȁ𝑂′𝐴′ȁ = √1 − 𝛽2 ȁ𝑂𝐴ȁ ; 
ห𝐴′𝐵′ห

ȁ𝐴𝐵ȁ
= ට

1−𝛽2

1−𝛽2 sin2 𝛼
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ȁ𝑂𝐴ȁ = 𝑐𝑡 and ȁ𝑂′𝐴′ȁ = 𝑐𝑡′, where 𝑡 and 𝑡′  are the readings of the clocks in the resting 𝑂 and 

moving 𝑂′ points respectively, and 𝑐 is the speed of light in free space; i.e., those segments are 

equal to the distances covered by the same point of the wave front in respective frames. 

Fig. 2 shows several (in this case three) consecutive wave fronts with phase delays of 2𝜋 

in the frames of the resting receiver and the moving source. The segment ȁ𝑂′𝐴ȁ in the resting frame 

contains the same number of wave fronts (as well as the same points of the wave) as the segment 

ȁ𝑂′𝐴′ȁ in the moving frame. It means that those segments represent the same distance in the resting 

and moving frames and that the lengths measured from moving points undergo changes. In 

particular, the units for measuring distances from the moving point 𝑂′ to the wave front (“moving 

unites”) and the units for measuring the same distances from the stationary point 𝑂′ (“resting 

unites”) must have the ratios of ȁ𝑂′𝐴ȁ: ȁ𝑂′𝐴′ȁ and ȁ𝑂′𝐵ȁ: ȁ𝑂′𝐵′ȁ in opposite directions, so that the 

speed of light remains the same in both frames. As it turns out in the text later, if the moving point 

represents a source of spherical EM waves, then those ratios are equal to the ratios of the 

wavelengths in the resting and moving frames, 𝜆0 and 𝜆𝛼 respectively (in Fig. 2, ȁ𝑂′𝐴′ȁ = 3𝜆0 and 

ȁ𝑂′𝐴ȁ = 3𝜆𝛼). So, the wavelengths of EM waves may be considered as “natural units” for 

measuring distances. In natural units, the wave fronts of EM waves represent the same concentric 

spheres with the source as the centre in any inertial frame. The smaller sphere in Fig. 1 represents 

the wave front in the moving frame in resting units as well as the wave front in the resting frame 

in moving units. (When a resting observer measures distances from the moving point of reference 

𝑂′, that seems as if the observer is “teleported” into the moving frame. Because of this, the picture 

the observer gets should be the same as the one observed within the moving frame.)  

The segments ȁ𝐴𝐵ȁ and ȁ𝐴′𝐵′ȁ in Fig. 2 are the same segment measured in resting and 

moving unites respectively. This segment is equal to the distance covered by light along the tube 

from 𝑂′ to A (or B) and back, or from 𝑂′ to 𝐴′ (or 𝐵′) and back. The ratio: 
ห𝐴′𝐵′ห

ȁ𝐴𝐵ȁ
= ට

1−𝛽2

1−𝛽2 sin2 𝛼
 , 

where 𝛽 =
𝑣

𝑐
 and 𝑣 is the speed of the moving frame, represents the equation of Lorenz-Fitzgerald 

contraction [1]. 

 

When describing propagation of EM waves in different frames, especially that of the 

spherical ones or of those emitted from a point source, it is convenient to make use of the so-called 

directions (or angles) of reception and emission.  

The direction of reception is the direction of a ray (or a normal to the wave front) in the 

frame of the receiver. The observer has to direct a spyglass along that direction in order to see the 

point from which the emission has started. The direction of the same ray in the frame of the source 

is the direction of emission. Let’s call the angles those directions make with the line connecting 

the origins of the frames of the source and the receiver the angles of reception and emission 

accordingly. 

In Fig. 1, if the source is in the moving point 𝑂′ and the receiver in the resting point A, then 

the direction 𝑂𝐴⃗⃗⃗⃗  ⃗ is the direction of reception (with 𝜃 as the angle of reception), and the direction 

𝑂′𝐴⃗⃗⃗⃗⃗⃗  ⃗ is the direction of emission (with 𝛼 as the angle of emission), and vice versa if the source is 

in the resting point 𝑂 and the receiver in the moving point A.  
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The absolute value of the difference between the angles of emission and reception of a ray 

is sometimes called the angle of aberration. The use of this angle seems to be preferable in some 

cases.  

 

 

2. Doppler shift: the distance between the source 

and the receiver is equal to one wavelength 

  

In Fig. 3, a source of EM waves, 𝑆′, is moving to the right from point 𝑆 with velocity 𝑣 =

𝛽𝑐. At the moment when points 𝑆 and 𝑆′ coincide, the clocks in those points have the same readings 

𝑡0 = 𝑡0
′ = 0. Let 𝜏0 be the period of the EM wave in the frame of the source (which is equal to the 

period of internal oscillations of the source). Due to time dilation, in the observer’s frame the 

period of internal oscillations of the source is 𝜏0
′ =

𝜏0

√1−𝛽2
. The period of the wave in the frame of 

the receiver depends on the angle of propagation of a ray. 

Let’s consider the moment of time when the clock in point 𝑆 shows 𝑡 = 𝜏0
′ , and, 

accordingly, the clock in point 𝑆′ reads 𝑡′ = 𝜏0. The wave front has just arrived from point S at the 

resting receiver in point O. The next wave front with a phase delay of 2𝜋 starts emitting from point 

𝑆′, and will arrive at the receiver after the time interval 𝜏 =
ห𝑆′𝑂ห

𝑐
.  Thus, 𝜏 is equal of the wave 

period measured by the resting observer in point O.  

 Sometimes it is convenient to consider not the wave itself, but a sequence of short pulses 

emitted by the source with the same frequency. In Fig. 3, out of two consecutive pulses one is 

emitted from point 𝑆 and the other - from point 𝑆′. Both pulses are received by the receiver in 

point O. The period of time between the emission of those pulses in the frame of the source is 𝜏0, 

and the time period between the received pulses measured by the observer shall be 𝜏 =
ห𝑆′𝑂ห

𝑐
.  

In the figure, the angle 𝜃 is the angle of reception of the first pulse, ȁ𝑆𝑂ȁ = 𝑐𝜏0
′ , ȁ𝑆𝑆′ȁ =

𝛽𝑐𝜏0
′  , and ȁ𝑆′𝑂ȁ = 𝑐𝜏. It is important to note that the angle 𝛼 is not only the angle of slope of the 

moving tube in which the first pulse is traveling, but also that of the direction of the second pulse 

in the frame of the receiver. Thus, the angle 𝛼 is the angle of reception of the second pulse as well 

as the angle of emission of the first pulse measured from the frame of the receiver.  

  From  ∆(𝑆𝑂𝑆′) : 

 √1 − 𝛽2 𝜏2 + 2𝛽 cos𝛼 𝜏0𝜏 − √1 − 𝛽2 𝜏0
2 = 0 . (1) 

The solutions are: 

 
𝜏 = 𝜏o

(−𝛽 cos 𝛼 ± √1 − 𝛽2 sin2 𝛼)

√1 − 𝛽2
 ; (2) 

or for the first solution: 

 
𝜏 = 𝜏o

√1 − 2𝛽 cos 𝜃 + 𝛽2

√1 − 𝛽2
 . (3) 

 

Now let’s see how all this looks in the frame of the source.  
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Fig. 3. The distance between the source and the receiver is equal to  

one wavelength.  
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Fig. 3a. The distance between the source and the receiver  

   is equal to one wavelength: the final diagram  
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If in Fig. 3, the direction of time flow is reversed, the triangle stays the same, but the source 

and the receiver swap places: the source (in point O) is stationary now and the receiver (in point 

𝑆′) is moving in opposite direction; angle 𝛼 is the angle of emission of the first pulse, as well as 

the angle of reception of the second pulse measured from the frame of the source, and angle 𝜃 - 

the angle of emission of the second pulse. The period between the emitted pulses in the frame of 

the source is 𝜏 and the period between the received pulses measured by the observer is 𝜏0. Thus, 

the form of the equation is the same in the frame of the source, but 𝜏 and 𝜏0 swap places:  

 √1 − 𝛽2 𝜏0
2 + 2𝛽 cos 𝛼 𝜏𝜏0 − √1 − 𝛽2 𝜏2 = 0.  

To get the aforementioned case of direct flow of time in the frame of the source (where 𝜏0 

is the period in the frame of the source and 𝜏 - in the observer’s frame), in the last equation the 

sign before the cosine needs to be changed, or instead of 𝛼 it has to be used 𝛼1 = (𝜋 − 𝛼):  

 √1 − 𝛽2 𝜏2 − 2𝛽 cos𝛼1 𝜏0𝜏 − √1 − 𝛽2 𝜏0
2 = 0 . (4) 

This equation is obviously algebraically identical to equation (1), but it refers to 

∆(𝑆′𝑂′𝑂′′), where ȁ𝑆′𝑂′ȁ = 𝑐𝜏0 , ȁ𝑆′𝑂′′ȁ = 𝑐𝜏′ , ȁ𝑂′𝑂′′ȁ = 𝛽𝑐𝜏′, and 𝜏′ =
𝜏

√1−𝛽2
 .  Angle 𝛼1 is the 

angle of emission of the first pulse and the angle of reception of the second pulse from the point 

of view of the frame of the source, and 𝜃1 is the angle of emission of the second pulse.  

It is obvious that ∆(𝑆′𝑂′𝑂′′)~∆(𝑂1𝑆′𝑆). The angle 𝛼 in Fig. 3, as well as in Fig. 1, between 

the line representing a tube, and the line connecting the centres of the spheres as well as the angle 

between the pulses, 𝛾, is the same in both frames. The angle between the pulses, 𝛾 = ȁ𝛼 − 𝜃ȁ =

ȁ𝛼1 − 𝜃1ȁ is also the angles of aberration for both pulses. Using this angle, Eq. (1), or Eq. (4), takes 

the following form: 

 √𝟏 − 𝜷𝟐 𝝉𝟐 − 𝟐𝐜𝐨𝐬 𝜸 𝝉𝟎𝝉 + √𝟏 − 𝜷𝟐 𝝉𝟎
𝟐 = 𝟎 . (5) 

The solutions of this equation are:  

 
𝝉 = 𝝉𝐨

𝐜𝐨𝐬 𝜸 ∓ √𝜷𝟐 − 𝐬𝐢𝐧𝟐 𝜸

√𝟏 − 𝜷𝟐
 . (6) 

One solution is for the observer in point O, and the other - for the observer in point 𝑂1.  

The square root from the product of those solutions gives 𝜏0, and   

 1

𝜏
=

1

𝜏o

cos 𝛾 ± √𝛽2 − sin2 𝛾

√1 − 𝛽2
 .  

 Eq. (5) represents the answer of spherical EM waves to the principle of relativity.  

 It has to be noted that the form of equations (1) and (4) was predicted in [2] using an 

entirely different approach. 

A final version of the space-time diagram, when the distance between the source and the 

receiver is equal to one wavelength, is given in Fig. 3a: ȁ𝑆𝑂ȁ = 𝑐𝜏0
′  and ȁ𝑆′𝑂ȁ = 𝑐𝜏 are the ways 

from the source to the receiver made by two points of the wave front a period-of-the-wave apart 

in the observer’s frame, and ȁ𝑆′𝑂′ȁ = 𝑐𝜏0 and ȁ𝑆′𝑂′′ȁ = 𝑐𝜏′ are the ways of the same points in the 

frame of the source. 
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3. Time Dilation 

 

In the above discussion it was implied that Einstein’s equation of time dilation was 

absolutely correct. Let’s ascertain that in fact it does not require alteration. 

Consider two very short pulses emitted by a resting source from point 𝑆′ (Fig. 3). The 

receiver is moving with velocity 𝑣 = 𝛽𝑐. It receives the first pulse in point 𝑂′and the other – in 

point 𝑂′′. The time period between the pulses emitted is 𝜏0 in the frame of the source and 𝜏0
′  in the 

frame of the receiver; the time period between the received pulses measured by the observer is 𝜏, 

and the same interval of time measured in the frame of the source is 𝜏′. Let’s see whether or not 

the time periods designated by letters without primes and the ones by the same letters with primes 

(or the same time periods measured in resting and moving frames) have the same values.  

In Fig. 3, it is assumed that the second pulse is issued exactly at the moment when the first 

pulse arrives at the receiver. So: ȁ𝑆′𝑂′ȁ = 𝑐𝜏0 , ȁ𝑆′𝑂′′ȁ = 𝑐𝜏′, ȁ𝑂′𝑂′′ȁ = 𝛽𝑐𝜏′, and 𝛾 is the angle 

between the directions of the pulses. From ∆(𝑆′𝑂′𝑂′′) : 

 (1 − 𝛽2)𝜏′2 − 2𝜏0𝜏
′ cos 𝛾 + 𝜏0

2 = 0 . (7) 

In order to get the form of an appropriate equation in the frame of the receiver, let’s use 

the method of reversing the flow of time. In that case, all velocities reverse their directions and the 

source and the receiver swap places; i.e., the moving source emits the first pulse from point 𝑂′′ 

and the second one from 𝑂′. Those pulses are received by the receiver in point 𝑆′. Now: ȁ𝑂′′𝑆′ȁ =

𝑐𝜏0
′ , ȁ𝑂′′𝑂′ȁ = 𝛽𝑐𝜏0

′ , ȁ𝑂′𝑆′ȁ = 𝑐𝜏 , and 

  𝜏2 − 2𝜏0
′ 𝜏 cos 𝛾 + (1 − 𝛽2)𝜏0

′2 = 0 , (8) 

 In general, Eqs. (7) and (8) are different, which makes it possible to determine whether the 

source or the receiver is resting or moving. If there is no difference between the values with and 

without primes (which, for example, is almost the case if the pulses are of sound waves at low 

velocities of the source and the receiver) and Eq. (7) holds true, then the source is resting and the 

receiver is moving relative to the medium in which the pulses (or wave) propagate(s) with some 

constant velocity c, and if Eq. (8) holds - the opposite is true. When considering EM waves in free 

space, it is obvious that Eqs. (7) and (8) must have the same form. That happens when the values 

with and without primes have the following relations: 𝜏0
′ =

𝜏0

√1−𝛽2
  and 𝜏′ =

𝜏

√1−𝛽2
, which, in both 

cases, give Eq. (5). (It can be proved that for the events having physical sense, those relations are 

unique.)  

The symmetry of Eq. (5) in regard to 𝜏0 and 𝜏 implies that the angle 𝛾 between the 

directions of the first and second pulses cannot be different in the frames of the source and the 

receiver. So, Eq. (5) is identical in both frames. 

 Now, if between those two pulses some other pulses are also emitted by the source and 

received by the receiver, then the sum of the time intervals between the pulses emitted equals to 

ȁ𝑆′𝑂′ȁ/𝑐 and the sum of the time intervals between the pulses received equals to ȁ𝑆′𝑂′′ȁ/𝑐. Since 

those sums do not depend on the number and the regularity of the pulses, each particular time 

interval between the pulses must undergo the same effect of time dilation as their sums. Using the 

triangles constructed in the similar way as ∆(𝑆′𝑂′𝑂′′), it can be shown that the same is true for 

any other possible time intervals prior as well as after emittance of those two pulses.   

 It may be noted that the above reasoning about time dilation is not restricted to one-

dimensional cases and does not involve any spatial effects of relativity.  
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 Thus, there is no reason to doubt absolute correctness of Einstein’s equation for time 

dilation, which cannot be said about his equations for the Doppler shift and aberration.  

Finally, let’s mention that Eq. (5) includes all four major triangles in Fig. 3. 

  

 

 

4. The distance between the source and the receiver is greater than one wavelength: 

quantum equation of the Doppler shift 

 

 Until now the discussion didn’t contain anything that would contradict the current rules of 

the classical physics. The contradiction starts when the distance between the source and the 

receiver becomes greater than one wavelength. 

  According to Plank’s hypothesis, the emission of EM waves occurs in the form of quanta 

of discrete energies. According to Einstein’s hypothesis, the absorption of EM waves occurs in the 

form of photons of discrete energies. Logically, one can assume that during the propagation of EM 

waves, a quantum (photon) maintains its discrete nature, its entity. It means that if certain points 

of the wave are associated with some quantum (photon) in a given frame, this association shall be 

maintained in any other frame. To make a photon (quantum), two consecutive wave fronts with 

phase delay of 2𝜋 must arrive at the receiver. For instance, in Fig. 4, if points 𝑂1
′  and 𝑂2

′  are the 

initial and final points of a quantum in the frame of the source, then 𝑂1 and 𝑂2 shall be the initial 

and final points of the same quantum in the frame of the receiver. When a photon is absorbed by 

a receiver in any frame, then all of its points shall be absorbed independent of whether the receiver 

is resting or moving. The simplest classical model of a quantum is an entity of two very short 

pulses, the time interval between which is equal to the period of the wave. 

For instance, if in the frame of the source a resting receiver in point 𝑂1
′  absorbs the photon 

[𝑂1
′ , 𝑂2

′ ] with a period of 𝜏0, in the observer’s frame this absorption is taking place in the process 

of displacement of this receiver from point 𝑂1 to point 𝑂3. Thus, in the observer’s frame the photon 

becomes [𝑂3, 𝑂2], where ȁ𝑂3𝑂2ȁ =
ห𝑂1

′𝑂2
′ ห

√1−𝛽2
=

𝑐𝜏0

√1−𝛽2
. 

If in the frame of the source the absorption of a photon is taking place during the receiver’s 

displacement from point 𝑂1
′  to point 𝑂3

′ , then the absorbed photon in the frame of the source shall 

be [𝑂3
′  , 𝑂2

′ ], which in the observer’s frame corresponds to the photon [𝑂1, 𝑂2]. Obviously, 

ȁ𝑂1𝑂2ȁ = ȁ𝑂1
′𝑂2

′ ȁ
(−𝛽 cos𝛼+√1−𝛽2 sin2 𝛼)

√1−𝛽2
= ȁ𝑂3

′𝑂2
′ ȁ√1 − 𝛽2 = 𝑐𝜏. 

According to Huygens’ principle, each point of space in which the front of a wave arrives, 

becomes itself a source of a secondary spherical wave (so-called wavelet). In Fig. 4, points 𝑂1
′  and 

𝑂3
′  are the points of the consecutive wave fronts with a phase delay of 2𝜋 issued from the same 

point 𝑂2
′ . In the observer’s frame, this point has moved from 𝑂 to 𝑂2, and the points of the wave 

fronts with phase delay of 2𝜋 arrive at the receiver in point 𝑂1.  

From the classical point of view, points 𝑂1
′  and 𝑂3

′  belong to the wavelets issued from 

different points of space, because the points of each wave front arriving at the receiver have to be 

the closest ones to it (according to Fermat’s principle). That seems impossible from the quantum 

viewpoint: a quantum cannot be issued from different points of space, since it must remain a 

quantum even when flow of time is reversed. Thus, in an EM wave, all points associated with a 
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quantum (photon) must originate from a single point of space in the frame of the source and arrive 

at a single point of space in the frame of the receiver, with a phase difference of 2𝜋 between the 

first and the last points of the association. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 2, along the sloping line, i.e., in any direction from the source (point 𝑂′), the 

distances between consecutive wave fronts with phase delay of 2𝜋 are the same. In the classical 

physics, a resting receiver if located on this line at different distances from the source shall get 

different periods (or wavelengths). Namely, the period of the wave (and a photon) measured at 

different distances from the source varies from 𝜏𝛼 = 𝜏o

(−𝛽 cos𝛼+√1−𝛽2 sin2 𝛼)

√1−𝛽2
 (when the distance 

between the source and the receiver is at minimum, i.e. equals to one wavelength) to 𝜏𝛼 =

𝜏o
√1−𝛽2

1−𝛽 cos𝛼
 (when the distance between the source and the receiver is infinite). That seems to be 

in conflict with the conservation laws and/or the quantization principle as well as some 

fundamental principles of SR. 

 

 

 

 

 

 

 

𝑂1
′  𝑂3

′  

𝑂2
′  

𝛼 
𝜃 

𝑂1 

𝑂2 

𝑆1 𝑆2 

𝑂3 

𝑂 

Fig. 4. Space-time diagram: quantum mechanism.  

A quantum is the same at any distance from a uniformly moving source. 
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From the quantum viewpoint, the period (or wavelength) of an EM wave, and, 

correspondingly the energy and the momentum of the absorbed photon, for a given direction are 

the same at any distance between the source and the receiver, as it can be seen in Fig. 2. 

Thus, the equations which are obtained for a single (the first) wavelength of the EM wave 

remain the same for any number of wavelengths (for any distance between the source and the 

receiver), which is a logical consequence of Huygens’ and Plank’s hypotheses.  

Eq. (5), as well as Eq. (1), may be considered as a quantum equation of the Doppler shift, 

and Fig. 3a - as a space-time diagram of a quantum. 

 

As it can be seen in Fig. 1, the equation of aberration now is: 

 sin 𝛼 =
sin 𝜃

√1 − 2𝛽 cos 𝜃 + 𝛽2
 . (9) 

In contrast to Einstein’s equations for the Doppler shift and aberration for two inertial 

frames with relative velocity 𝛽, which may be written this way: 

 𝜏 = 𝜏0
1−𝛽 cos𝜃

√1−𝛽2
 ; 𝜏0 = 𝜏

1+𝛽 cos𝛼

√1−𝛽2
 ; cos 𝛼 =

cos𝜃−𝛽

1−𝛽 cos𝜃
 , (10) 

Eqs. (2), (3) and (9) are not symmetrical in regard to the angles of reception and emission. This 

asymmetry (different geometry) is not caused by the movement of the source or the receiver; it 

implies only that the frame of the source is unique and can be singled out among other inertial 

frames (in contrast to SR). In particular, among all inertial frames, the frame of the source is the 

only one with no Doppler shift.  

The symmetry of equations (10) indicates that there is no particular “frame of source” for 

the plane EM waves. Each one of the angles 𝜃 and 𝛼 may be chosen arbitrarily to be the angle of 

emission the other being the angle of reception and vice versa. Also, since 𝛽, and accordingly the 

speed of light, is the same in those equations, there is no need in introducing the aether as medium 

for propagation of EM waves in order to meet the principle of relativity of uniform motion. 

The trouble is that those equations are approximations at infinity of the classical equations 

(involving time dilation) that for finite distances are not symmetrical in regard to the angles of 

reception and emission, due to the fact that they contain the distance (or time necessary for light 

for covering this distance) between the source and receiver. If those classical equations were true, 

it would require of the EM waves to have a (frame of) source for emitting and a medium (the 

aether) for propagation, the necessity of both of which would disappear at infinity.  

Thus, for the distances between the source and the receiver up to infinite, some 

fundamental principles of SR are not generally applicable.  The necessity those distances to be 

infinite, was first noted by Einstein himself in his very first paper on SR [3]. Strangely, this most 

important fact has been universally ignored or underestimated since then.   

The truth seems to be in the fact that the use of the principles of the classical physics 

(including SR), without taking into account the quantum nature of EM waves, is unjustified and 

leads to incorrect results. There are two exemptions: i) the distance between the source and the 

receiver is equal to one wavelength, where the classical and quantum expressions for the Doppler 

shift are the same, and ii) the case is one-dimensional (the velocities of the source and the receiver 

are always directed along their connecting line), where the classical equation does not depend on 

distance and coincides exactly with Einstein’s equation, which, for its part, coincides with the 
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quantum equation. Those circumstances must be taken into account while using in practice as well 

as experimentally proving the principles of SR.   

It is interesting to consider the angles when the geometric factor of the Doppler shift 

disappears and only the relativistic one remains. By a simple logic, that must happen when two 

points belonging to two consecutive wave fronts with a 2𝜋-phase delay take the same time for 

traveling from the source to the receiver in a given frame. For the quantum equation, 𝜏 =

𝜏0√1 − 𝛽2 when cos 𝛼 =
𝛽

2
 , and 𝜏 =

𝜏0

√1−𝛽2
 when cos 𝜃 =

𝛽

2
 , and those relations do not depend 

on distance between the source and the receiver. By the rules of classical physics, the geometric 

factor shall disappear when cos 𝛼 =
𝛽𝜏0

2𝑡0
 and cos 𝜃 =

𝛽𝜏

2𝑡
  , where 𝑡0 and 𝑡 are the times of light’s 

travel from the source to the receiver, and 𝜏0  and 𝜏 the periods of the source’s internal oscillations 

in the source’s and the receiver’s frames respectively. Those relations too are valid for any 

distances between the source and the receiver. According to Einstein’s equations, which are 

approximations of the classical ones, the geometric factor disappears at the angles 𝛼 =
𝜋

2
 and 𝜃 =

𝜋

2
, and that, of course, would happen only at infinity.  

When 𝛼 =
𝜋

2
 (or cos 𝜃 = 𝛽), the quantum equation gives: 𝜏 = 𝜏0. This case is discussed in 

[4].  

 

Finally, let’s note that all above discussion concerns the distances from one wavelength of 

an EM wave up to infinity. What about the shorter distances?  

EM waves may be considered “natural tools” (in the absence of a ruler [2]) for measuring 

distances, with their wavelengths as the smallest units of measurement, since there is no “fraction 

of the quantum”. Using such a tool, speaking of the distances shorter than its wavelength would 

be mere speculation. Any measurement of distance implies some inherent inaccuracy, 

“uncertainty”, the size of which equals to the length of the EM wave used as a measuring tool. The 

same is true, of course, for the time period necessary for light for covering a distance in free space 

and the period of the wave as the unit of its measurement.  
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