Nothing is unstable?

Daniel Thomas Hayes

June 8, 2020

A note on the instability of nothing.

Asking about how the universe can be created from nothing [1] is a bit like asking how a stationary fluid can begin moving without any external force being applied. Let \(u = u(x, t) \), \(p(x, t) \), and \(f(x, t) \) be the fluid velocity, fluid pressure, and given external force, each defined for position \(x \) and time \(t \). The fluid is incompressible with viscosity \(\nu \geq 0 \). The Navier–Stokes equations are then given by

\[
\frac{\partial u}{\partial t} + (u \cdot \nabla)u = \nu \nabla^2 u - \nabla p + f, \tag{1}
\]

\[
\nabla \cdot u = 0. \tag{2}
\]

Let

\[
f = 0 \quad \text{and} \quad u|_{t=0} = 0. \tag{3}
\]

Then taking the divergence of (1) at \(t = 0 \) yields

\[
\nabla^2 p|_{t=0} = 0. \tag{4}
\]

If we do not specify any boundary conditions in particular, any solution of the Laplace equation is a valid solution for \(p|_{t=0} \). It then follows that it is possible for

\[
\frac{\partial u}{\partial t}|_{t=0} \neq 0 \tag{5}
\]

and therefore a stationary fluid can begin to move without any external forcing. It is postulated that any object has atoms that move, so zero velocity of an atom implies that it is a nonexisting atom. An analogous calculation may then prove that the universe can be created from nothing in that a state of nothing is unstable. We know that gravity is the attractive force between two masses. It has long been a question of why does gravity occur? I propose that it occurs as a consequence of the fact that the state of nothing is unstable.

Reference