1 Article

2 A Predictable Pattern of Shortcuts in Evolution

3 Nicholas Hoggard ¹

- 4 ¹ No affiliation; nick.hoggard+evolution@gmail.com
- 5 Received: date; Accepted: date; Published: date

6 Abstract: The concept of cosmic evolution expands the concept of evolution of humans from purely 7 biological evolution to include the evolution of stars and planet Earth and complex prebiotic 8 molecules, and also the cultural evolution, or technological development, of humans to the present 9 day. The pattern of period-doubling systems, where intervals between successive bifurcations 10 shortens by a factor equal to 4.66920... (the Feigenbaum Constant δ) appears to match known 11 events in evolution that coincide in time with new methods of passing on information. These 12 advances seem to coincide with innovatory shortcuts, speeding up evolution. This paper presents a 13 speculative conjecture of a new law or principle of evolution, unifying the stages of the 14 development of intelligent life.

Keywords: evolution; cosmic evolution; self-organising systems; complexity; period-doubling
 systems; Feigenbaum Constant

17

18 **1. Introduction**

The concept of cosmic evolution expands the concept of evolution of humans from purely biological evolution to include the evolution of stars and planet Earth and complex prebiotic molecules, and also cultural evolution, or technological development, of humans to the present day [1]. Astrophysicist E.J. Chaisson points out similarities between all stages of cosmic evolution, being all examples of self-organising systems of increasing complexity driven by flows of energy, and suggests that there may be a unifying law or principle that can explain all three. This paper proposes such a universal law.

26 **2. Information Transfer**

According to the concept of Cosmic Evolution, there are three kinds of evolution: physical,biological, and cultural.

- Physical evolution started at the beginning of the universe and involved the creation of basic particles, then stars, then elements which spontaneously joined together in ever more complex molecular structures. Eventually some of these molecules became self-replicating and later became incorporated into the first self-replicating cells [3] [4].
- Biological evolution is based on cells which contain information in the form of DNA which
 is used to make the proteins that cell needs. There is also a mechanism for making copies of the
 DNA. The cells multiply by growing larger and dividing into two cells, and the DNA is passed
 on to both cells. Cells evolve when the DNA mutates, changing the traits (physical form and
 behaviour) of the cell.
- 38 3. Cultural evolution is what we have today, where instead of passing on information via DNA, 39 we pass it on to each other and to future generations by spoken or written word. This can 40 include useful information about what behaviour to adopt to prosper in the world, in the same 41 way that DNA contains useful information about how create an organism with the combination 42 of traits (physical form and behaviour) to survive and prosper. The advantage of cultural 43 evolution is that we don't have to wait to evolve biologically, which is much slower. 44 Knowledge is the DNA of our society.

77

88

So we have 3 forms of evolution, and, at least in the last two - biological and cultural evolution –
the passing on of information is essential.

48 2.1. DNA enabling Self-Replicating Cells

If we look at the first living cells, we have noted that there is information transfer in the form of DNA (or something similar). But there is another, more important innovation in living cells, namely the cell's ability to self-replicate. Soon after the first cell evolved and divided into two, both of these cells could also grow and divide and very soon there could have been millions of identical cells. With many copies of a cell, evolution could proceed in parallel, with many cells mutating in different ways at the same time. In this way, cell division acted as a kind of shortcut in evolution.

But the self-replicating cells needed DNA. DNA worked as a blueprint for the cell, containing instructions on how the cell can grow by manufacturing things needed by the cell, and also how the cell can divide into two cells which are both identical to the original cell. Each cell has many copies of the DNA, so that when the cell divides, both resulting cells contain the DNA. (This is a sharing of DNA rather than a transfer, but it is equivalent to DNA transfer if we arbitrarily designate one of the cells as the original cell and the other cell as the new cell.)

61 The main point here is that as each new cell is created, it needs a copy of the DNA instructions 62 in order to function. In other words the information transfer innovation *enables* the shortcut 63 innovation.

64 1) **Evolutionary shortcut:** Self-Replication.

65 2) New way to transfer information to enable the shortcut: DNA.

66 (One could argue that the passing on of DNA is part of the process of self-replication and not a
67 separate innovation. The counter-argument would be that perhaps it does not matter whether there
68 are two separate innovations or whether they are two aspects of the same innovation, as long as both
69 aspects are present.)

70 2.2. Sexual Reproduction enabling Trait Accumulation

For the next 3 billion years, cells evolved. But they still self-replicated and passed on DNA to new cells in the same way. The sexual reproduction was invented. This turned out to be a new shortcut in evolution.

With self-replication, cells could evolve, but it took a long time. Suppose a cell acquires a mutation that gives the cell a useful trait, that we can call trait "A"). It passes on this mutation to its offspring when it self-replicates.

Suppose now that another cell acquires a different mutation giving it useful trait "B".

Now what are the chances of a cell getting both of these useful traits, "A" and "B"? The answer is, very low. Because there is no way for the trait "A" mutation to transfer to a cell that has the trait "B" mutation, or vice versa. So cells with trait "A" will need to wait for trait "B" to arise by mutation, which can take a very long time.

This is where sex comes in. Sexual reproduction is way of collecting good mutations into a single cell. Two parent cells (for example, one parent with trait "A" and one parent with trait "B") come together and each produce a *gamete* cell (for example, an egg or a sperm). The gametes from each parent cell fuse to produce an offspring cell (for example, a fertilised egg) which has some DNA from both parents. All things being equal, the chances of the offspring having both "A" and "B" mutations is one in four.

99% of all species today reproduce sexually, so it is clearly advantageous [5].

As with the first living cells, this change also involves a *new* way of passing on information. The information transfer innovation with sex is that a cell does not pass on all of its DNA but instead contributes only half a set of DNA to the gamete, so that when two gametes fuse to a single offspring cell, it will have a full set of DNA.

- 93 Again we have a *new* way of passing on information enabling an evolutionary shortcut:
- 94 1) **Evolutionary shortcut:** Trait Accumulation.

95 2) **New way to transfer information to enable the shortcut:** Sexual Reproduction.

96 (As in the case of life, the two innovations are two aspects of one process: in this case, taking97 some DNA from each parent.)

98 2.2.1 Multicellularity

99 It is relevant here to mention that sexual reproduction probably gave rise to complex 100 multicellularity, i.e. collections of differentiated cells, or, in other words, plants and animals.

Simple multicellularity (collections of identical cells) existed before sexual reproduction, but there are theoretical arguments that complex multicellularity is unviable without sex. If this the case, then sexual reproduction may well have enabled complex multicellularity and complex multicellularity would have appeared at the same time as sexual reproduction. Evidence of this can be found in red algae in 1.2 billion year old rocks [6]. If this is the case, then the advent of sexual reproduction and complex multicellularity could be seen as different aspects of the same event.

107 2.3. Animal Teaching enables Advanced Learned Behaviour

108 Cultural evolution actually gives back before language and before humans. First there was the 109 phenomenon of *social learning* whereby young animals learn from their elders. Social learning is very 110 widespread, as most species interact with their young at the beginning of their lives [7] and it covers 111 a whole spectrum of behaviours. For example, the fact new-born rats respond positively to foods 112 that the mother ate during pregnancy is counted as social learning [8]. There is even evidence of 113 learning behaviour in prokaryote cells [9]. So social learning may be an inherent feature of animal or 114 even cellular life that evolved as animals or cells evolved, learning about other members of their own 115 species at the same time as learning about everything else in their environment. In that case, the 116 beginning of learning may count as part of the same event as the first life, or sexual reproduction.

But something that may have arisen as a separate innovation event is Animal Teaching. Teaching is any deliberate behaviour or change in behaviour in order to pass on information, such as performing a task more slowly in order to demonstrate it to another. For example, meerkats teach their young how eat scorpions by giving them dead or disabled scorpions [10]. The young meerkats learn by imitation or emulation, and the knowledge gets passed on, again shortcutting the biological genetic route for the passing on of knowledge. So Animal Teaching would seem to count as a new way of passing on information.

But if animal teaching is passing on information, what information is being passed on? There may be some behaviours which are very useful, but are not passed in by social learning alone because opportunities for observation are rare, or because learning the behaviour is difficult or dangerous. Such a case may be the meerkats' handling of scorpions. If the meerkats did not actively teach the behaviour, the behaviour may not get passed on. This is an evolutionary shortcut, because new useful behaviours can be passed on directly through teaching instead of through DNA mutation, which takes a very long time.

131 So we have:

132 1) **Evolutionary shortcut:** Advanced learned behaviour.

133 2) New way to transfer information to enable the shortcut: Animal Teaching

134 2.4. Writing enables the Recording of Information

We know very little about the evolution of spoken language, but we do know a lot about written language. Much information is today passed on by the written word. The first writing was called Cuneiform and it was developed as a means to record trade, debt, and tax information [11]. It also enabled social elites to preserve their religious knowledge, literature, and medical texts. This is another evolutionary shortcut. Without the aid of writing, humans would have had to evolve extraordinary memory abilities which, even if possible, would take a very long time.

- 141 The two events we see here are:
- 142 1) **Evolutionary shortcut:** Recording of Knowledge.

143 2) **New way to transfer information to enable the shortcut**: Writing.

144 2.7. Movable Type Printing enables Democratisation of Knowledge (1039-1048 CE)

145 Another important event in the transfer of information that happened since writing was 146 invented was the invention of the printing machine. To be more precise, the invention of movable 147 type printing in 1039-1048 CE [12]. Movable type printing had small printing blocks for each 148 character which could be assembled together in a frame and used to print text onto paper. The 149 moveable type made the process of composing a page of text very quick compared with the previous 150 technique of carving wood blocks for printing. Movable type printing was invented in China and 151 later spread to Europe. (The 400-year delay before it spread to Europe could be thought to have 152 slowed European development. However, the Eurocentric view of scientific development has been 153 challenged by historian Joseph Needham and it appears that China was ahead of Europe 154 scientifically until the 13th and 14th centuries, at which point Europe began to catch up and take the 155 lead [13]. When movable type printing arrived in Europe, it was an instant success and may have 156 made up for lost time by incorporating new technological developments that had taken place in the 157 meantime.)

If evolution is about passing on information, the printing machine was the machine to do it.
Before printing, books were copied by hand, which made them very expensive and mainly owned
by wealthy establishments such as religious authorities.

Printing democratised knowledge, putting into the hands of many more people. Science and mathematics, which were revolutionized by the invention of writing, were again boosted by the ability of printing to spread accurately-replicated knowledge, without the errors often caused by hand-copying. The changes in society amounted to another evolutionary shortcut.

- 165 The two events we see here are:
- 166 1) **Evolutionary shortcut:** Democratisation of Knowledge
- 167 2) **New way to transfer information to enable the shortcut**: Movable Type Printing Machine
- 168 2.6. The Internet enables Instant Global Knowledge Access (1967 CE)

169 If we were to look for other, more recent examples of ways of transferring information, the 170 Internet comes to mind. The Internet is a store of information as well as a communication channel. It 171 allows us to find information far more quickly than before, and also to find other people whom we 172 might be interested in exchanging information with and instantly communicate with them in a 173 variety of different ways.

- 174 The two events we see here are:
- 175 1) **Evolutionary shortcut:** Instant Global Knowledge Access.
- 176 2) **New way to transfer information to enable the shortcut**: The Internet.
- 177 In this case, Instant Global Knowledge Access is the application, whereas the Internet and its178 associated technologies are the technology used to implement it.
- 179 2.9. Summary of Innovations in information transfer
- 180 The list of information transfer innovations we have identified so far (plus the beginning of the
- 181 universe) is shown in table 1.
- 182

Information Transfer Innovations	Years before 2000
i) Beginning of the universe	13.820 - 13.778 billion years [14]
ii) Inheriting DNA via cell replication	4.28 - 3.77 billion years [15]
iii) Recombining DNA via sexual reproduction	1.2 - 1.0 billion years [16] [6]
iv) Animal Teaching	unknown
v) Cultural transfer through speech	unknown
vi) Cultural transfer through writing	5,400-4,600 years (3400-2600 BCE) [17]
vii) Cultural transfer through printing	961-952years (1039-1048 CE) [12]
viii) Cultural transfer through Internet	33 years (1967 CE) [18]

185 **Table 1.** Events and dates

186 We don't know the dates of the events that don't leave any fossil or archaeological record, at 187 least not directly: namely Animal Teaching, and the development of spoken language. Neither do 188 we know if we have identified all information transfer innovations.

189 **3.** Innovations in information transfer

190 If, as E.J. Chaisson suggests, there is to be found a law or principle to unify the different types of 191 evolution, perhaps we should try to look for a pattern. What sort of pattern would we want? 192 Looking at the list, it is apparent that the interval between the events gets shorter and shorter. For 193 instance, taking the last two intervals in our list (the interval between *vi* and *vii*, and the interval 194 between *vii* and *viii*), the interval decreases by a factor of between 3.9 and 4.8 depending on which 195 dates are used within the range of error.

196 E.J. Chaisson mentions bifurcations, which brings to mind the pattern of bifurcations in 197 period-doubling systems, which also get shorter and shorter. The remarkable thing about 198 period-doubling systems is that the interval between bifurcations decreases by a factor that always 199 converges to the same number. This number is called the Feigenbaum Constant δ and is equal to 200 4.66920..., which lies within the range we see for the decrease factor for the last two intervals in our 201 list, 3.9 to 4.8.

The period-doubling phenomenon is found in all kinds of scenarios, such as the growing of citrus fruit, the firing of neuron networks, and in abnormal cardiac rhythms. But can the evolution of life be such a period-doubling system? Biological systems do exhibit period-doubling bifurcations (PDB) in various circumstances, and bifurcations are associated with a sudden increase in complexity manifested in the appearance of new structures. There is a possibility that these new structures correspond to artefacts arising from new modes of transfer of information.

What happens if we try to match our information transfer dates to the Feigenbaum ratio 4.66920?

210 3.2. Calculation of predicted dates

The predicted age of each event is calculated from the two most accurately known dates, namely the last two events: the first prototype of the network technology used in the Internet in 1967; and the printing machine in 1039-1048 CE. Both dates - 1039 and 1045 - give effectively the same results, but 1048 is used here because it gives a slightly better fit to other known dates in evolution.

Theoretical Age of event n,
$$A_n = A_{n+1} + 4.66920 \times (A_{n+1} - A_{n+2})$$
 (2)

216 Starting values:

217 • Age of the Computer Network in 2000, $A_{12} = 2000 - 1967 = 33$ years

218 • Age of the Printing Machine in 2000, $A_{11} = 2000 - 1048 = 952$ years

Figure 1. Events with known dates superimposed on a grid (the green lines) representing the Feigenbaum ratio 4.66920. The graph uses a logarithmic scale so that constantly decreasing intervals of the Feigenbaum ratio are all stretched to the same length. The number of years is relative to the bifurcation accumulation point, which for this series is the year 2217. The red marks are error bars showing the uncertainty in known dates.

228 3.2. The pattern fits?

234

236

238

Figure 1 shows a pattern that results from fitting those events from our list that have known dates to the pattern of the Feigenbaum ratio. The diagram uses an expanding logarithmic scale so that constantly decreasing intervals of the Feigenbaum ratio are all expanded to the same length. The distance between the green horizontal lines represents the Feigenbaum Constant 4.66920. We can note the following points:

- 235
 The last three events fit conform to the Feigenbaum ratio.
- 237
 Event 2 (Information transfer via sexual reproduction) is very close to the pattern.
- Events 0 and 1 (beginning of the universe, and self-replicating cells) don't match the grid (the green Feigenbaum lines). This is actually standard behaviour for period-doubling bifurcations.
 In most period-doubling systems the ratio starts off with a different value, but rapidly converges to the Feigenbaum Constant. That is exactly what we see happening here. By event 2 we are close to the grid and will stay close to the grid if it is a normal case.
- We have seven empty positions in the middle. But we can try and fit other events to the dates
 given by the Feigenbaum ratio.
- 247 3.3. Predicted Events

The Feigenbaum ratio suggests that there are seven significant dates. These are shown in table 2
together with significant evolutionary events close to the predicted dates.

	Date	Closest events to predicted age and their possible	Difference
	predicted by	significance	between
	PDB pattern	(years before 2000)	known and
	(years before		predicted
	2000)		age
3	264 million	260 million years.	+1.5%
	years	Cynodonts (mammal precursors) [19].	
		Animal Teaching?	
	E((million	60 million users	0
4	Job IIIIIIOII	Forligst Monkows [20]	0
	years	Tool uso?	
		1001 use:	
5	12.1 million	11.9 million years.	0
	years	Earliest Great Apes [21].	
		Tool-making?	
6	2.60 million	2.60 - 2.55 million years.	0
	years	Freehand technique for using	
		a tool to make another tool [22]	
7	556 000 years	500 000 years	+11 1%
,	eee,eee yeare	Composite tools [23]	
8	119,000 years	135,000 - 100,000 years.	0
		First new invention: bead jewellery [24].	
9	25,300 years	32,000 - 18,000 years.	0
		First domestication (the dog) [25].	

251**Table 2.** Additional events which correspond to the dates suggested by the PDB pattern. The initial252deviation from the Feigenbaum constant for the first few events is normal for bifurcations in253period-doubling systems. The percentage differences between ages of predicted and actual dates are254measured from the Accumulation Point, estimated to be in 2217.

255 4.1. Event dated 264 million years ago. Animal Teaching?

This was about the time when Cynodonts emerged, which were descendants of pelycosaurs ("mammal-like reptiles"), had mammal-like skulls and were ancestors of modern mammals. Some cynodonts are thought to have engaged in parental care [26]. Some cynodonts were mammals, and modern mammals have been observed teaching their young [10]. Parental care is thought to date back even further to 520 million years ago [27], but that is not the same as parental teaching. This date of the first animal teaching is not known but that it should have happened 264 million years ago with the cynodonts or their immediate ancestors is not implausible.

263 4.2. Event dated 57 million years ago. Teaching of Tool Use?

The use of tools is undoubtedly important in evolution. A tool is, in effect, an addition to the body. It instantly extends the body without having to wait for biological evolution [28]. The tools in

- question would basically be sticks and stones that happen to be lying around on the ground andused without modification for a useful purpose.
- 268 57 million years ago is the time of the first higher primates or monkeys. Monkeys use tools
 269 today [29], and it is not implausible to suggest that they were the first to use tools 57 million years
 270 ago. For it to be a valid event for our purposes, it needs to be a new way of teaching.
- Chimpanzees have been observed teaching their offspring how to place nuts on a so-called anvil stone and crack them open using a stone of suitable size and weight [30]. While they are learning, young chimpanzees are allowed to use their mother's tools. This is called "tool transfer"
- and on its own it fulfils all the criteria to qualify as teaching [31]. This clearly a new form of teaching,
 because tools did not previously exist.
- 276 The two events we see here are:
- 277 1) **Evolutionary shortcut:** Tool Use.
- 278 2) New way to transfer information to enable the shortcut: Tool Transfer.
- In this case, the two events are related but clearly separate, as Tool Use does not involve ToolTransfer once it is learned.
- 281

282 4.3. Event dated 12.1 million years ago. Teaching Tool-making?

This is the time of the first great apes or hominids. Great apes have been observed making tools [32]. If teaching tool use is a significant new way to pass on information, then perhaps teaching toolmaking is too. Teaching the making of tools is a three-part process, usually in the following sequence: 1) Demonstration of how to use the tool; 2) Repeated tool transfer until the tool use is mastered; 3) Demonstration of how to make the tool [33]. Whether this qualifies as a new way to transfer information has not been established.

- 289 The two events we see here are:
- 290 1) **Evolutionary shortcut:** Making Tools

291 2) New way to transfer information to enable the shortcut: Teaching Tool-Making

- 292
- 293 4.4. Possible new levels of language?

We believe that language developed at some time during the period when the next 4 events occurred. We know that language developed after the making of tools, because the animals that make tools today do not have any significant form of language. We know that language had already developed the time Writing was invented. But we know very little about the development of language, as no trace was left apart from the end result.

299 It seems unlikely that spoken language developed fully in one step, and it is often proposed that 300 it developed in two steps, for example a primitive language and then a more sophisticated language 301 for the Upper Palaeolithic Revolution [35]. The PDB pattern suggests that that there are four 302 important events during this period, and it is not impossible that there were up to four levels of 303 language that evolve step-wise. Each new level of language would ideally represent a new level of 304 information than can be transferred to other individuals, and thus qualify as a new means of 305 transferring information. We are talking about the development of spoken language, but it is 306 possible that the earlier forms of language could be gestural, or a mixture of spoken and gestural 307 language. We can call these languages Language I, II, III, and IV, where Language I may be entirely 308 or partly gestural, and the rest spoken.

- At this stage in evolution, language development co-evolved with both tool use and brain size[36].
- 311 4.5. Event dated 2.6 million years ago. Language I in Teaching enables Freehand Tool Technique?

This is not the first time that stone tools were made. Stone tools made with the "bipolar" technique using with an anvil stone have been dated to 700,000 years earlier [37]. But the Freehand Knapping technique marks a significant advance.

A tool is an extension to the body. When a tool is held in the hand, it has to be incorporated into mind's "body schema" so that the working tip of the tool can be moved as if it were a part of the body [28]. (We modern humans are used to doing this, but to a hominin that has not done it before, it may be a bit like learning to cut your hair in the mirror.)

With the Freehand Knapping technique, a stone is held in each hand, without the support of an anvil stone, and one stone is hit with the other to break off flakes. In this situation, both stones are effectively being used as tools. The working tip of the one stone (the "hammerstone") is used to hit a specific place (effectively the working tip) of the other stone (the "core"). Without external support, the movement of each hand has to be coordinated with the other hand.

- 324 This is the first time that coordinated use of two tools together is used, and although it required 325 greater dexterity, early humans obviously found that it gave better results, because they used it from 326 then onwards. The freehand technique gives greater control over the resulting flakes, although the 327 bipolar anvil technique continued to be used for certain types of stone and smaller stones that were 328 difficult to work with the freehand technique [38].) Freehand required improved perceptual abilities, 329 learning capacities and bimanual dexterity compared with the bipolar technique [39]. The improved 330 control given by the freehand technique eventually led to very finely made stone tools, and was a 331 large contribution to the dexterity we have today as a species.
- 332 Experiments have shown that teaching modern humans the freehand flaking technique is more 333 effective if gestures (which are a form of language) or spoken language are used during teaching 334 [40]. So it may be that some form of language had evolved which enabled hominins to teach this 335 technique to others. Modern humans, with more advanced innate tool abilities, can learn the 336 freehand knapping technique without language, but this may not have been the case for early 337 hominins. It has been suggested that hominins at this time engaged in social foraging which 338 demanded increased co-operation and communication, and that they may have developed gesture 339 as a means of communication [41].
- 340 The two events we see here are:
- 341 1) **Evolutionary shortcut:** Freehand Technique for Maximum Dexterity.
- 342 2) New way to transfer information to enable the shortcut: Language I (perhaps Gesture) used in
 343 Teaching.
- 244 46 5
- 344 4.6. Event dated 556,000 years ago. Language II in Teaching enables the Making of Composite Tools?

The prime candidate for this event is the earliest known stone-tipped spear from 500,000 years ago [23]. This is slightly less old than predicted by the Feigenbaum Constant, but it is possible that spears existed earlier and have not yet been found. The significance of this spear is that it is the first known example of a composite tool. It had a wooden shaft and a sharpened stone tip attached to the shaft by a method known as hafting. From this point onwards, early humans had the ability to conceive of a human-made object made of more than one component and were able to construct one. This is a significant skill as most things made by humans today are composite objects.

- Just as with the Freehand Tool Technique, it may have been that a new language innovation was required to teach the making of composite tools.
- 354 The two events we see here are:
- 355 1) **Evolutionary shortcut:** Composite tools
- **356** 2) **New way to transfer information to enable the shortcut**: Language II used in Teaching.
- 4.7. Event dated 119,000 years ago. Language III in Teaching enables the spread of new inventions?

Boats, clothes, beads, harpoons, sewing needles, mortars and pestles, cloth, flutes, rope, pottery.
These are just some of the things that humans started making 119,000 years ago. And that was just
the beginning. It seems as though humans were suddenly hit with an ability to invent new things. It

361 is significant that everything that humans had made until this point were copies of the first tools

used, which were basically twigs and sharp sticks that were originally found lying around. The
 pinnacle of human technology - the stone-tipped spear - was a just superior version of a sharp stick
 they had been using for probably tens of millions of years.

New inventions are considered to be associated with the Upper Palaeolithic Revolution [42], but the first inventions came earlier and the archaeological record (the objects above) agrees with the pattern-predicted date of 119,000 years ago.

This new ability for invention did not seem to require much advance in manual techniques so much as a new creativity, perhaps the result of crossing a new cognitive threshold. These new inventions would also possibly require new cognitive abilities to use and to explain to others, and would also be likely to be associated with new language abilities. A significant change in language associated with the Upper Palaeolithic Revolution has been proposed [35].

- Of the earliest inventions here I will use the date of the first bead necklace (135,000-100,000
 years [24]) for this event, because the evidence for the other earliest inventions boats and clothes is
 circumstantial and without actual artefacts.
- 376 The two events we see here are:
- 377 1) **Evolutionary shortcut:** Era of New Inventions

378 2) New way to transfer information to enable the shortcut: Language III used in Teaching.

379 4.8. Event dated 24,900 years ago. Language IV in Teaching enables New Lifestyles?

380 The Neolithic Revolution supposedly began 12,000 years ago with the domestication of sheep 381 and various plants and led to the first agricultural civilisations. But the date predicted by the PDB 382 pattern is 24,900 years ago. Indeed, the first animal to be domesticated was the dog (32,000 - 18,000 383 years [25]) and dogs appear to have been an integral part of the Neolithic revolution [43]. It is 384 believed that humans and dogs worked in a mutually beneficial partnership, initially in hunting 385 [44], but later with herding. This partnership may have been important in the move away from 386 hunting, scavenging and gathering, to organising new lifestyles leading to agriculture and 387 civilisation.

388 This event also seems to have come from crossing a cognitive threshold that may have been 389 associated with an advance in language. It seems to have enabled a capacity for inventing new 390 lifestyles. Communication must have been important to make these new lifestyles work. At some 391 point language seems have given humans to the capacity for logical reasoning and problem-solving. 392 We know from experiments that some kinds of problems can only be solved with the aid of language 393 [45]. Certainly, some kind of logical reasoning and problem-solving ability must have been 394 necessary for humans to abandon hunting and gathering, which for tens of millions of years was the 395 only thing they knew how to do, and invent new ways of living, ending up with civilisation and the 396 division of labour. 397 The two events we see here are:

- 397 The two events we see here are:
- 398 1) **Evolutionary shortcut:** Era of New Lifestyles
- **399** 2) **New way to transfer information to enable the shortcut**: Language IV used in Teaching.
- 400 4.9. List of shortcuts
- 401 Table 3 shows the shortcuts.
- 402

Information	The shortcut enabled	What does this shortcut	End result (just before
transfer	transfer by the info transfer replace?		the next information
innovation			transfer innovation)
Beginning of universe	(nothing)	(nothing)	Complex molecules
DNA	Self-Replication	Waiting for every living cell to evolve separately	Complex self-replicating cells
Sexual Reproduction	Trait Accumulation	Waiting for a beneficial mutation.	Multicellular life (animals & plants)
Animal Teaching	Advanced learned behaviour	Waiting to acquire successful behaviour via DNA.	Good teaching & learning ability
Teaching & tool transfer.	Find an object and use it as a tool (extension of the body)	Waiting to acquire useful physical trait via DNA	Good tool-use ability
New form of teaching?	Making tools	Waiting to find a useful tool.	Good tool-making ability
Freehand	Hold tool and object	Waiting for good results	Freehand tool-on-tool
tool-on-tool technique	freely in each hand for maximum control	from poorly-controlled anvil-based technique	technique for maximum dexterity.
Composite tools	Combine materials	Waiting to find ideal raw material	Concept of parts and assembly.
Era of inventions	Invent new tools	Waiting to find new kinds of tools	Inventions.
Lifestyle changes	Invent and organise new lifestyles.	Waiting for better times	Lifestyle change leading to agricultural civilisation.
Writing	Accurate recording of information.	Waiting to teach important information to others	Record of important information.
Printing	Democratisation of knowledge	Waiting to hand-copy important documents	Books. Widespread education.
Internet	Instant Global Knowledge Access	Waiting to find relevant information	(not yet known)

404 **Table 3.** Evolutionary shortcuts

405 *4.10. Co-evolution*

During this period of language development, we suspect that there is co-evolution of language, tool skills, and biological evolution of the body, and in particular the size of the brain. But the emergence of Australopithecus garhi, Homo heidelbergensis and Homo sapiens occurs not at the events described, but in between the events. It seems that what may have happened is that the bifurcations cause an innovation which then creates an evolutionary pressure that favours the development of certain features, primarily larger brain size, in order to fully take advantage of the innovation. The change is consolidated, setting the stage for the next innovation.

413

416

414 5. What do these results tell us?

- 415 From the above, we can possibly draw the following conclusions:
- 417

 Evolution is punctuated by Evolutionary Shortcut events, which occur simultaneously with and
 418 are enabled by Information Transfer Innovations.

431

- 419
 420 The importance of information transfer is that if an innovation evolves within a living individual, but the information needed to reproduce it cannot be passed on to other individuals, then the innovation will die with the originator.
 423
- We can identify which evolutionary events are shortcut events because they coincide with a new form of information transfer. If an event does not coincide with a new form of information transfer, then it is not a shortcut event.
- These events (all new forms of information transfer, and their associated shortcut events) all
 seem to occur at predetermined times that are consistent with the PDB (Period Doubling
 Bifurcation) pattern and the Feigenbaum Constant 4.6692.
- Sometimes the shortcut and the information transfer seem to be different aspects of the same change, sometimes they appear to be separate. (This may be a question of how we perceive them. There may be an underlying order that we do not see.)
- 435 5.1. Other innovations in transferring information

As well as the events we have considered, a number of other new means of communication
have arisen in evolution too. These should be evaluated to verify that they are *not* new ways to pass
on information. These are discussed in Appendix A.

439 5.2. *Have we missed any other events?*

There are other events which are not included in the pattern, and this exclusion must of course
be justified. If there is a single event that does not match the pattern, then the pattern is not valid. A
number of possible events are discussed in Appendix B.

Figure 2. The bifurcation diagram for evolution on a linear time scale, with the beginning of the universe on the left. After "Using tools" the bifurcations become too small to see on this diagram. After the bifurcations is the Accumulation Point and the beginning of the chaotic stage. The blue area is the chaotic stage.

449 5.3. The bifurcation diagram

450 Figure 2 shows the bifurcation diagram for evolution on a linear scale. The system starts to vary 451 periodically at the point where life appears in the form of self-replication cells. The period doubles as 452 the periodic variable bifurcates into 2 values, then 4, 8, 16, and so on. The interval between 453 bifurcations gets rapidly smaller according to the Feigenbaum ratio 4.66920... and the interval 454 becomes zero at the Accumulation Point. The data points to an Accumulation Point around the year 455 2217. At that point the system enters the chaotic stage (coloured blue). It is chaotic in the 456 mathematical sense, meaning that very small disturbances can grow to be very large, and are 457 difficult to predict.

FOR PEER REVIEW

- 458 4.7. Fitting the curve
- To get the correct date for the start of life, the bifurcation parameter was calculated using the following equation:

$$b = t^{-0.575}$$
, (1)

Where t is time and b is the bifurcation parameter. This is in no way intended to be a definitive solution, merely a proof of concept that an equation can be found to fit the data.

However, this equation does not fit the date for the beginning of the universe to the data. It proved
to be non-trivial to find a suitable equation to fit the curve to factual dates of both the beginning of
the universe and the beginning of life. To solve this, the time between the beginning of the universe
and the first appearance of life on Earth was simply stretched by a factor of approximately 5.8.

467 The lack of a simple equation to fit the first two data points suggests one of more of the 468 following:

469	Ø	that evolution proceeds at a different speed in space and on Earth,
470		or
471	ø	that evolution halts at a certain stage until it finds a planet where life can begin,
472		or
1-0		

473 that life was actually created in space before the Earth became a suitable habitat.
474

475 The diagram in figure 3 was generated using the standard logistic mapping:

$$x_{n+1} = bx_n(1-x_n),$$
 (2)

476 where x is the evolutionary fitness and is between 0 and 1.

FOR PEER REVIEW

479 Figure 3. This bifurcation diagram uses the same equation as figure 3, but with a logarithmic scale to
480 show the bifurcations in detail, measured from just after the accumulation point, which is why we
481 can see some of the chaotic zone at the bottom. The error bars on the red markers show the
482 uncertainty in the known dates.

483 4.8. Bifurcations on a logarithmic scale

Figure 4 shows the bifurcation diagram for the same system as figure 3 on a logarithmic scale for most of the diagram to show the bifurcations in detail and a linear scale at the bottom to show the bifurcations converging to the accumulation point and the chaotic zone.

487 *4.9. Future events*

The pattern of information transfer thresholds stretches not only into the past, but also into the future. If the pattern continues, the intervals will shrink to zero at the accumulation point in the year 2217. To give an idea of the time intervals involved, the next dozen or so events are shown in table 4.

491

Event number	Year of Event	Interval until Next Event
12 (The Internet)	1967	197 years
13	2164	42.2 years
14	2206	9.03 years
15	2215	1.93 years
16	2217	0.41 years
17	2217	32 days
18	2217	6.9 days
19	2217	1.47 days
20	2217	7.56 hours
21	2217	1.61 hours
22	2217	20.8 mins
23	2217	4.45 mins
24	2217	57.2 secs
25	2217	12.2 secs
26	2217	2.62 secs
27	2217	0.56 secs
(Infinite number of events here)	2217	(Intervals tend to 0)
∞	2217	Accumulation Point
(Post-bifurcation stage)	2217	Chaotic zone

492**Table 4.** Predicted future events, with intervals and dates. The intervals are easy calculated by493dividing the previous interval by the Feigenbaum Constant 4.6692. The years stated may not be exact

494 - they are based on the date of the invention of the computer network.

495 5. Discussion

496 5.1. Is it credible to find evolutionary events obeying a strict timetable?

497 Following a timetable is not the usual narrative of evolution, which commonly stresses the trial 498 and error aspect. But Chaos Theory is fundamentally about finding order in chaos, and perhaps the 499 most well-known example of this is the discovery of the Feigenbaum Constants themselves. It is 500 perhaps odd to think of something consciously invented, like the printing machine, as being of the 501 same importance as the first self-replicating cells. And yet consciousness itself has evolved and is 502 clearly directing evolutionary development now. We are conscious of the fact that we are evolving, 503 and we can imagine things (for example, artificial intelligence equal to human intelligence) that may 504 be invented in the future - indeed we have to imagine them before we can invent them. But we are

- also aware that these things must wait until we have reached a certain level of development, that we cannot move faster than we are doing now.
- 507 Evolution increases complexity, and complexity increases the production of entropy. According 508 to the Maximum Entropy Production Principle, systems naturally strive to increase the production 500 of antropy which means that analytic and complexity driver to develop at the meaning possible
- 509 of entropy, which means that evolution is constantly driven to develop at the maximum possible 510 rate [46].
- 511 5.2. One evolution process

512 These results support the idea that cosmic evolution is not three separate processes, but one 513 single process with, so far, a dozen different stages.

5.3. Each event builds on the previous event, and is a prerequisite for the next event

515 This is clear from looking at the events in table 3. The only occasion it is not clear is the 516 transition from sexual reproduction to animal teaching. However, if sexual reproduction enables 517 multicellularity, as some researchers claim, then the causal connection from sexual reproduction to 518 sentient animals also becomes natural.

- 519 5.4. Unanswered questions
- 520 There are some unanswered questions, namely:
- 521 ◎ What period is being doubled?
- 522 What are the future events?

523 6. Summary

- 524 This paper presents a speculative hypothesis:
- 525

 That evolution has seen a number of occasions where new methods of transferring information
 526 to the next generation have evolved;
- 527 That each such new method is closely associated with and coincides in time with a "shortcut"
 528 innovation which speeds up the process of evolution;
- 529

 That these events arise at predetermined intervals which get progressively shorter by the factor
 530 4.66920 (the Feigenbaum constant δ), which is a well-known and very common characteristic
 531 pattern of Period-Doubling Bifurcations (PDB), often found in complex systems.
- 532

533 I begin by identifying such 6 events in evolution with known dates: the beginning of the 534 universe (included as a reference point); Life itself; Sexual Reproduction; Writing; Movable Type 535 Printing; and the Internet.

Noting that the ratio of intervals between the last 3 events agree with the Feigenbaum constant,
I projected the intervals back in time, which generated 10 dates, including a fit for sexual
reproduction, and approximate fits for Life and the Beginning of the Universe.

539

541

543

544

545

546

547

548

550

551

540 The remaining 7 dates include:

- ◎ 3 dates that may coincide with the following events whose actual date is unknown:
 - Animal Teaching, near the appearance of now-extinct precursors of mammals,
 - Tool Use, near the appearance of monkeys,
 - Tool-making, near the appearance of the Great Apes. It is not clear how the teaching of tool-making involves a new way of passing on information.
- 549 4 dates that agree with the actual dates of the following events:
 - The "tool-on-tool" stone-working technique,
 - Composite Tools,

FOR PEER REVIEW

19 of 26

552	• The first new inventions,	
553	 The first domestication (the dog). 	
554		
555 556	I suggest that these last 4 events may be associated with language developments, in order satisfy the condition that each event corresponds to a new way of passing on information.	to
557	······································	
558	The PDB pattern also predicts future evolutionary shortcuts, culminating around the year 22	17,
559	when the pattern of evolution is to enter a new phase.	,
560	1 1	
561	Author Contributions: NH wrote the paper.	
562	Funding: This research received no external funding.	
563	Acknowledgments:	
564	Conflicte of Internet The author declares as conflict of internet	
304	Conflicts of Interest: The author declares no conflict of interest.	
565	Appendix A – Other new means of communication	
566	As well as the events we have considered, a number of other new means of communicati	on
567	have arisen too. We should evaluate each of them to see whether or not they qualify as critical ne	W
568	ways to pass on information, and whether we need to refine our criterion.	
569	First, it is useful to consider how knowledge is used.	
570	The first stage is biological, where the knowledge encoded in DNA is expressed to produce	e a
571	juvenile. If it is a social animal, it may be looked after while young and may learn some things	by
572	imitation. It may be taught to use tools. If they are human, they will be taught a spoken languag	ze.
573	Later they will go to school and learn to read and write, and then learn various subjects which a	ire
574	taught from books and perhaps other media. They may later go to university. The Internet is	; a
575	source of information during and after education. The generation of new knowledge by academics	is
576	speeded up by the Internet, but follows the same rules as before regarding references to previo	us
577	research.	
578	The production of new knowledge is generally handled by universities, where academics	do
579	research and produce research articles, scholarly books, new coursebooks, and popular books as o	ur
580	knowledge advances. The advance of knowledge generally proceeds through peer-reviewed artic	les
581	in academic journals. Also non-peer-reviewed books may gain legitimacy as important works.	
582	Table 5 shows all major innovations in transferring information.	

Innovation	Can handle sufficient amounts of information	Generally available for input and output	Successful commun-ication innovation on its own	Must be new
1. Life	Yes	Yes	Yes	Yes
2. Sexual Reproduction	Yes	Yes	Yes	Yes
3. Animal teaching	Yes	Yes	Yes	Yes
4. Using found tools	Yes	Yes	Yes	Yes
5. Making tools	Yes	Yes	Yes	Yes
6. Freehand tool-ton-tool technique	Yes	Yes	Yes	Yes
7. Making composite tools	Yes	Yes	Yes	Yes
8. Age of invention	Yes	Yes	Yes	Yes
9. Age of new lifestyles	Yes	Yes	Yes	Yes
10. Writing.	Yes	Yes	Yes	Yes
11. Printing.	Yes	Yes	Yes	Yes
12. Internet.	Yes	Yes	Yes	Yes
Telephone, Simple mobile phone.	No	Yes	Yes	Yes
Cave paintings, art, illustration, diagrams, photography.	No	Yes	Yes	Yes
Music.	No	Yes	Yes	Yes
Postal Service.	Yes	Yes	No	Yes
Newspapers.	Yes	Yes	No	No
Telegraphy.	No	No	Yes	Yes
Fax machine.	Yes	No	Yes	Yes
Email.	Yes	Yes	No	Yes
Smartphone.	Yes	Yes	No	No
Teletext.	No	No	No	No
Radio, TV, cinema.	No	Yes	Yes	Yes
Video, Audio.	Yes	Yes	No	Yes
World Wide Web.	Yes	Yes	No	Yes

Table 5. Inventions for passing on information.

587 Table 5 is discussed in the following sections.

588 A.1. Criteria

- Can handle sufficient amounts of information. For passing on tool use, imitation is enough.
 But many of these means of communication were invented after the invention of writing, which
 means that a considerable amount of human knowledge would have already been accumulated
 and put into writing. For any of the inventions to be significant, it must be able to easily handle
 large amounts of information to easily accommodate the amount of information so far amassed.
- Generally available for input and output. It also should be an innovation which is in general
 use. For example, mass media such as cinema, radio and television are generally consumed but
 are not available for most people to transmit what they want.
- Successful communication innovation on its own. It should be a new innovation that was successful in its own right. For example, recorded videos have become a popular way of spreading information on the Internet, but were not commonly used for spreading information before the Internet.
- 601 Must be new. Must be a new innovation, not a slightly different version of a previous invention.

603 A.2. Important innovations

- 604 Ò Cave paintings, Art, Illustration, Diagrams, Photography. Art started with the first cave 605 paintings. But pictures alone are very limited in the kinds of knowledge they convey. Out of art 606 grew writing – a system of symbols representing spoken language and mutually understood. 607 But art and illustration always remained as a complement to written words in order to better 608 illustrate knowledge (for instance, in geometry), just as specific extensions to writing exist such 609 as mathematical formulae, chemistry symbols, electronic diagrams, etc. But the first cave 610 paintings, although a significant and essential step, did not in themselves represent a 611 generalized new way of passing on information, due to the limitation in the kind of knowledge 612 pictures can convey on their own.
- 613

 Newspapers. The newspaper cannot be considered a significant innovation in itself, because it is essentially a book, albeit with fresh information of the moment.
- 615 Internet and World Wide Web. Given today's dominance of the World Wide Web on the Ò 616 Internet, it is easy to conclude that the Web is more important than the Internet. It is generally 617 perceived that it was the World Wide Web that made the Internet popular. And yet the Internet 618 was already growing exponentially before the Web, and the percentage rate of growth did not 619 increase when the Web was introduced [47][48]. The argument that the Web was necessary to 620 make computer networks simple enough for home users to use ignores the fact that online 621 network services already had millions of home users before the Web [49]. The World Wide Web 622 is an implementation of hypertext, which was first implemented in 1968 [50].
- 623

 Email. Email systems were common in the early 1960s, but did not become really successful until a single global network arrived in the form of the Internet.
- 625 **Music.** Has never been a significant way to pass on information.
- 626 Postal Service. Courier services must have been around since the first civilisations and before
 627 writing, and were not initially used to transfer information.
- 628 Telegraphy. Mostly only used for time-sensitive information by banks, news agencies and
 629 military.
- 630 **• Fax machine.** Not in general use.
- Radio, TV, Cinema. These mass media are strictly limited, mainly because they are controlled
 by relatively few corporations who decide the content and are not generally available to most
 people for passing on information.
- 634 Teletext. Teletext came after the Internet, so is not a new idea, and it is controlled by
 broadcasters.
- 636 Video, Audio. These were not popular as a means of spreading information until the Internet.
- 637 **Smartphone.** The smartphone is a combination of a phone and a computer, both of which pre-date the Internet.
- 639 Appendix B Other possible events
- 640 There are other events which are not included in the pattern, and this exclusion must of course 641 be justified. If there is a single event that does not match the pattern, then the pattern is not valid. A 642 number of possible events are discussed below.
- 643 Events should fit the criteria:
- 644

 A new way to pass on information, capable of transferring sufficiently large amounts of information for
 645 the stage of evolution, or arising at the same time as such an event.
- 646
 and A true innovation
- 647
 [●] Available for general use 648
- 649 These are events to be examined:
- 650
- 651 Complex Multicellular life (differentiated cells)
- This apparently appeared at the same time as, and was enabled by, sexual reproduction, and socan be considered to be part of that event and is not a different event at a different time.

C 7 A		
654	Ø	Eukaryotes,
655		Pluricellular life (conglomerations of identical cells),
656		Photosynthesis,
657		The eye,
658		Hearing,
659		Smell, Taste, Touch, Motion.
660		None of these are new ways to pass on knowledge to others.
661	Ø	Horizontal Gene Transfer.
662		Transferring genetic information via HGT may have been common in prokaryote cells from the
663		beginning. If it was not it would be a new kind of evolution and would break the PDB nattern
664	~	Nemere enstern Brein
004	0	Nervous system, brain
605		Is not a new way to pass on knowledge.
666		Animals developed nervous systems as part of their bodies, which then became centralized to a
667		brain. The brain started off small and primitive and grew gradually in size. There was not any
668		sudden creation of the brain as an evolutionary event. But the brain is very much a part of many
669		of the evolutionary events described.
670	0	Proto-tools
671		Are not new ways to pass on knowledge.
672		Proto-tools are not tools that are manipulated, but stationary objects, such as a large rock used
673		as an anvil, or a bird's nest. They are not considered to be real tools because they are not picked
674		up and used as an extension of the body to remotely manipulate the environment
675	୭	Civilisation
676	e	Is not a new way to ness on knowledge and did not occur at the same time as a new way to ness
677		is not a new way to pass on knowledge and did not occur at the same time as a new way to pass
679		
0/8		Civilisation was a new phenomenon, but is should be seen as a manifestation of the capability
6/9		create civilisation through the capability to create new lifestyles, rather than as an evolutionary
680		event in itself. It is one of the fruits of evolution, not a mechanism of evolution.
681	Ø	The wheel
682		Is not a new way to pass on knowledge.
683	0	Medieval technology
684		This refers to simple machines (such as the lever, the screw, and the pulley) combined to form
685		more complicated tools, such as the wheelbarrow, windmills and clocks. They are not new
686		ways to pass on knowledge.
687		They should be seen fruits of evolution, not a mechanism of evolution.
688		They are not a new ability to handle tools, because they use existing abilities.
689	Ø	The Industrial Revolution
690	0	This affected agriculture manufacturing mining metallurgy and transport driven by the
601		discovery of steam power. The industrial revolution was very significant and had a huge
602		discovery of steam power. The industrial revolution was very significant and had a huge
692		economic and social impact. It could match the tool criterion, but it does not represent a new
093		ability to pass on information, because existing abilities are used.
694	Ø	Second industrial revolution
695		Harnessing of electricity to create electric motor, light bulb, etc.
696		Not new way to pass on information.
697	Ø	Science
698		Science is, in a sense, what organisms been doing since they were single cells - trying to work
699		out, by trial and error, what practical knowledge works to survive and thrive, which has led to
700		more explicitly stated theories about the universe as our cognitive abilities have increased. No
701		point in time can be identified where science became a "new way to pass on knowledge". But
702		science was revolutionised by the invention of writing and of printing.
703	0	Mathematics

704Studies of animal cognition have shown that simple mathematical concepts, such as numbers,705are not unique to humans. Humans practiced astronomy before writing. Like science,

- mathematics is not a "new way to pass on knowledge", because it is passed on via existing
 methods of speech and writing, although it was revolutionised by the invention of writing and
 of printing.
- 709
 Scientific Method
- Scientific method is the application of rigorous procedures to advance knowledge, but not initself a way to pass on knowledge.

712 \odot The Computer.

- 713 Why is an important invention like the computer is not a critical evolutionary event? Certainly 714 it is important, but on its own it does not pass on information and so is simply not a part of this
- 714 it is importa715 conjecture.
- 716

717 References

- 1. Chaisson, E.J. Complexity: An Energetics Agenda. Complexity 2004.
- 719 2. Chaisson, E.J. Energy rate density as a complexity metric and evolutionary driver.
- 720 *Complexity* **2011**, *16*, 27–40, doi:10.1002/cplx.20323.
- 721 3. Lee, D.H.; Granja, J.R.; Martinez, J.A.; Severin, K.; Ghadiri, M.R. A self-replicating
- 722 peptide. *Nature* **1996**, *382*, 525–528, doi:10.1038/382525a0.
- 4. Higgs, P.G. Chemical Evolution and the Evolutionary Definition of Life. J. Mol. Evol.
- 724 **2017**, *84*, 225–235, doi:10.1007/s00239-017-9799-3.
- 5. Bürger, R. Evolution of Genetic Variability and the Advantage of Sex and
- Recombination in Changing Environments. *Genetics* **1999**, *153*, 1055.
- 6. Butterfield, N. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of
- sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes.
- 729 Paleobiology 263 **2000**, 26, 386-404.
- 730 7. Galef, B.G.; Laland, K.N. Social Learning in Animals: Empirical Studies and
- 731 Theoretical Models. *BioScience* **2005**, *55*, 489,
- 732 doi:10.1641/0006-3568(2005)055[0489:SLIAES]2.0.CO;2.
- 8. Hepper, P. Adaptive fetal learning prenatal exposure to garlic affects postnatal
- 734 preferences. *Anim. Behav.* **1988**, *36*, 935–936.
- 735 9. Lyon, P. The cognitive cell: bacterial behavior reconsidered. *Front. Microbiol.* 2015, 6,
- 736 doi:10.3389/fmicb.2015.00264.
- 10. Thornton, A. Teaching in Wild Meerkats. *Science* **2006**, *313*, 227–229,
- 738 doi:10.1126/science.1128727.
- 11. Valentine, P.M. A Social History of Books and Libraries from Cuneiform to Bytes;
- 12. Needham, J.; Ronan, C.A. The shorter science and civilisation in China: an abridgement
- of Joseph Needham's original text. 4: The main sections of volume IV, part 2 of the major
- 742 series; Cambridge Univ. Press: Cambridge, 1994; ISBN 978-0-521-32995-8.
- 13. Davies, M. OBITUARY: Joseph Needham. The Independent 1995.
- 14. Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.;
- 745 Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018
- results. VI. Cosmological parameters. ArXiv180706209 Astro-Ph 2019.
- 15. Dodd, M.S.; Papineau, D.; Grenne, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O'Neil, J.;
- 748 Little, C.T.S. Evidence for early life in Earth's oldest hydrothermal vent precipitates. *Nature*
- 749 **2017**, *543*, 60–64, doi:10.1038/nature21377.

- 16. Kolosov, P.N. Sexual Reproduction One Billion Years Ago. Nat. Resour. 2013, 04, 383-
- 751 386, doi:10.4236/nr.2013.45047.
- 17. Mattessich, R. The oldest writings, and inventory tags of Egypt. *Account. Hist. J.* 2002,
 29, 195–208.
- 18. Stiel, B.; Victor, D.; Nelson, R. *Technological Innovation and Economic Performance*;
- 755 Princeton University Press, 2002;756 19. Cynodont (accessed on May 14, 2020).
- 757 20. Primates. *Encycl. Br.*
- 758 21. Choi, C. Earliest Great Ape Had Posture Like Humans, Fossils Suggest (accessed on
 759 May 12, 2020).
- 22. Semaw, S.; Rogers, M.J.; Quade, J.; Renne, P.R.; Butler, R.F.; Dominguez-Rodrigo, M.;
- 761 Stout, D.; Hart, W.S.; Pickering, T.; Simpson, S.W. 2.6-Million-year-old stone tools and
- associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J. Hum. Evol. 2003, 45,
- 763 169–177, doi:10.1016/S0047-2484(03)00093-9.
- 23. Wilkins, J.; Schoville, B.J.; Brown, K.S.; Chazan, M. Evidence for Early Hafted Hunting
- 765 Technology. *Science* **2012**, *338*, 942–946, doi:10.1126/science.1227608.
- 766 24. Vanhaereny, M. Middle Paleolithic Shell Beads in Israel and Algeria. *Science* **2006**, *312*,
- 767 1785–1788, doi:10.1126/science.1128139.
- 768 25. Thalmann, O.; Shapiro, B.; Cui, P.; Schuenemann, V.J.; Sawyer, S.K.; Greenfield, D.L.;
- 769 Germonpre, M.B.; Sablin, M.V.; Lopez-Giraldez, F.; Domingo-Roura, X.; et al. Complete
- 770 Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs.
- 771 Science **2013**, *342*, 871–874, doi:10.1126/science.1243650.
- 26. Jasinoski, S.C.; Abdala, F. Aggregations and parental care in the Early Triassic basal
- cynodonts Galesaurus planiceps and Thrinaxodon liorhinus. PeerJ 2017, 5, e2875,
- 774 doi:10.7717/peerj.2875.
- 775 27. Fox-Skelly, J. Fossil shows a parent caring for its young 520 million years ago. *New Sci.*776 2018.
- 28. Maravita, A.; Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 2004, 8, 79–86,
- 778 doi:10.1016/j.tics.2003.12.008.
- 29. Mannu, M.; Ottoni, E.B. The enhanced tool-kit of two groups of wild bearded capuchin
- 780 monkeys in the Caatinga: tool making, associative use, and secondary tools. Am. J. Primatol.
- 781 **2009**, *71*, 242–251, doi:10.1002/ajp.20642.
- 782 30. Estienne, V.; Cohen, H.; Wittig, R.M.; Boesch, C. Maternal influence on the
- development of nut-cracking skills in the chimpanzees of the Taï forest, Côte d'Ivoire (Pan
- 784 troglodytes verus). Am. J. Primatol. 2019, 81, doi:10.1002/ajp.23022.
- 785 31. Musgrave, S.; Morgan, D.; Lonsdorf, E.; Mundry, R.; Sanz, C. Tool transfers are a form
- 786 of teaching among chimpanzees. *Sci. Rep.* **2016**, *6*, 34783, doi:10.1038/srep34783.
- 787 32. Boesch, C.; Boesch, H. Tool Use and Tool Making in Wild Chimpanzees. Folia
- 788 Primatol. (Basel) **1990**, 54, 86–99, doi:10.1159/000156428.
- 33. Musgrave, S.; Lonsdorf, E.; Morgan, D.; Prestipino, M.; Bernstein-Kurtycz, L.; Mundry,
- R.; Sanz, C. Teaching varies with task complexity in wild chimpanzees. Proc. Natl. Acad.
- 791 Sci. 2020, 117, 969–976, doi:10.1073/pnas.1907476116.
- 792 34. Wild chimpanzee mothers teach young to use tools, video study confirms Available

- 793 online:
- 794 https://source.wustl.edu/2016/10/wild-chimpanzee-mothers-teach-young-use-tools-video-st
- udy-confirms/ (accessed on Apr 18, 2020).
- 796 35. Vyshedskiy, A. Language evolution to revolution: the leap from rich-vocabulary
- non-recursive communication system to recursive language 70,000 years ago was associated
- with acquisition of a novel component of imagination, called Prefrontal Synthesis, enabled
- by a mutation that slowed down the prefrontal cortex maturation simultaneously in two or
- 800 more children the Romulus and Remus hypothesis. *Res. Ideas Outcomes* **2019**, *5*, e38546,
- 801 doi:10.3897/rio.5.e38546.
- 802 36. Ko, K.H. Origins of human intelligence: The chain of tool-making and brain evolution.
 803 *Anthropol. Noteb.* 2016, 22, 5–22.
- 804 37. Harmand, S.; Lewis, J.E.; Feibel, C.S.; Lepre, C.J.; Prat, S.; Lenoble, A.; Boës, X.;
- 805 Quinn, R.L.; Brenet, M.; Arroyo, A.; et al. 3.3-million-year-old stone tools from Lomekwi 3,
- 806 West Turkana, Kenya. *Nature* **2015**, *521*, 310–315, doi:10.1038/nature14464.
- 807 38. Knight, J.M. Technological Analysis of the Anvil (Bipolar) Technique.; University of
- 808 New England, Armidale, New England, 1988.
- 809 39. Gallotti, R. Before the Acheulean in East Africa: An Overview of the Oldawan Lithic
- 810 Assemblages. In *The Emergence of the Acheulean in East Africa and Beyond*; Springer,
- 811 2018.
- 40. Morgan, T.J.H.; Uomini, N.T.; Rendell, L.E.; Chouinard-Thuly, L.; Street, S.E.; Lewis,
- 813 H.M.; Cross, C.P.; Evans, C.; Kearney, R.; de la Torre, I.; et al. Experimental evidence for
- the co-evolution of hominin tool-making teaching and language. *Nat. Commun.* **2015**, *6*,
- 815 6029, doi:10.1038/ncomms7029.
- 816 41. Sterelny, K. Language, gesture, skill: the co-evolutionary foundations of language.
- 817 Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2141–2151, doi:10.1098/rstb.2012.0116.
- 818 42. Johnston, W.A.; Strayer, D.L. A Dynamic, Evolutionary Perspective on Attention
- 819 Capture11We are grateful to Chip Folk and Brad Gibson for encouraging us to submit this
- 820 rather radical perspective on attention capture and to Elizabeth Cashdan and Jim Dannemiller
- 821 for providing comments on an earlier version of this chapter. In Advances in Psychology;
- 822 Elsevier, 2001; Vol. 133, pp. 375–397 ISBN 978-0-444-50676-4.
- 43. Ollivier, M.; Tresset, A.; Frantz, L.A.F.; Bréhard, S.; Bălăşescu, A.; Mashkour, M.;
- 824 Boroneanț, A.; Pionnier-Capitan, M.; Lebrasseur, O.; Arbogast, R.-M.; et al. Dogs
- accompanied humans during the Neolithic expansion into Europe. *Biol. Lett.* 2018, 14,
- 826 20180286, doi:10.1098/rsbl.2018.0286.
- 44. Perri, A.R. Hunting dogs as environmental adaptations in Jomon Japan. Antiquity 2016,
- 828 90, 1166–1180, doi:10.15184/aqy.2016.115.
- 45. Baldo, J.; Dronkers, N.; Wilkins, D.; Ludy, C.; Raskin, P.; Kim, J. Is problem solving
- 830 dependent on language? *Brain Lang.* **2005**, *92*, 240–250, doi:10.1016/j.bandl.2004.06.103.
- 831 46. Skene, K. Life's a Gas: A Thermodynamic Theory of Biological Evolution. *Entropy*
- 832 **2015**, *17*, 5522–5548, doi:10.3390/e17085522.
- 833 47. INTERNET HISTORY 1962 TO 1992 Available online:
- 834 https://www.computerhistory.org/internethistory/ (accessed on Mar 25, 2020).
- 835 48. INTERNET GROWTH STATISTICS Available online:

- 836 https://www.internetworldstats.com/emarketing.htm (accessed on Mar 25, 2020).
- 49. Vaughan-Nichols, S.J. Before the Internet: The golden age of online services Availableonline:
- 839 https://www.itworld.com/article/2827191/before-the-internet--the-golden-age-of-online-ser
- 840 vices.html (accessed on Mar 25, 2020).
- 841 50. Hoffmann, J. A Brief History of Hypertext Available online:
- 842 https://thehistoryoftheweb.com/brief-history-hypertext/ (accessed on Mar 25, 2020).
- 843 51. Darwin, C. The Origin of Species by Means of Natural Selection, or the Preservation of
- 844 *Favoured Races in the Struggle for Life (6th ed.).*; John Murray, 1872;
- 52. Crozier, G.K.D. Reconsidering Cultural Selection Theory. Br. J. Philos. Sci. 2008, 59,
- 846 455–479, doi:10.1093/bjps/axn018.