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Abstract

The paper uses the structure and math of Prime Generators to show there are an infinity
of twin primes, proving the Twin Prime Conjecture, as well as establishing the infinity of other
k-tuples of primes.

1 Introduction
In number theory Polignac’s Conjecture (1849) [6] states there are infinitely many consecutive
primes (prime pairs) that differ by any even number n. The Twin Prime Conjecture derives
from it for prime pairs that differ by 2, the so called twin primes, e.g. (11, 13) and (101, 103).

K-tuples are groupings of primes adhering to specific patterns, usually designated as (k, d)
groupings, where k is the number of primes in the group and d the total spacing between its first
and last prime [4]. Thus, Polignac’s pairs are type (2, n), where n is any even number, and twin
primes are the specific named k-tuples of type (2, 2).

Various types of k-tuples form a constellation of groupings for k ≥ 2. Triplets are type (3, 6)
which have two forms, (0, 2, 6) and (0, 4, 6). The smallest occurrence for each form are (5, 7, 11)
and (7, 11, 13).

Some k-tuples have been given names. Three named (2, d) tuples are Twin Primes (2, 2), Cousin
Primes (2, 4), and Sexy Primes (2, 6). The paper shows there are many more Sexy Primes than
Twins or Cousins, though an infinity of each.

The nature of the proof presented herein takes a totally different approach than usually taken.
It is a straightforward proof by logic derived from the natural structure and properties of mathe-
matical expressions I’ve named Prime Generators (PG), which as their name implies, generate
all the primes. Each larger PG is more efficient by reducing the number space primes can possibly
exist within. They thus structurally squeeze the primes into a smaller set of integers that contain
fewer composites.

Each PG has a characteristicPrime Generator Sequence (PGS), a repeating pattern of gaps
between the residue elements of its PG. These gap patterns reveal, and adhere to, a deterministic
structured set of properties. I systematically use these properties to show that once a prime
gap of any even size comes into existence it will be repeated forever for all other PGS. This will
be used to establish the infinity of twin pairs, and other k-tuples. I provide data and graphs to
empirically show this.

At the time of writing, the largest known twin prime is 2996863034895 · 21290000 ± 1 [5] (2016),
which resides on restracks P5[29:31] and P7[29:31] for those PG. There are an infinity of larger
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twin primes, which will reside on some twin pair restracks for every PG. The same will be true for
other k-tuples.

I have previously used Prime Generators to construct, and implement in software, efficient and
very fast prime sieves, to find all the primes up to a finite N, or within a finite range, including
the fastest and most efficient prime sieve method to find twin primes. See [1], [2], [3]

2 Prime Generators
A prime generator Pn is composed of a modulusmodpn and a set of residues ri with residue count
rescntpn (determined by the Euler’s Totient Function, φ(n)= n

∏
(1−1/pi)) which have the form:

Pn = modpn · k + {ri} (1)

modpn = pn# =
∏

pi = 2 · 3 · 5 · ... · pn (2)

rescntpn = (pn − 1)# =
∏

(pi − 1) = (2− 1) · (3− 1) · (5− 1) · ... · (pn − 1) (3)

where pn is the last PG prime. A PG’s residues are the set of integers ri ε {1...modpn-1} coprime
(no common factors) to its modpn, i.e. their greatest common divisor is 1: gcd(ri, modpn) = 1.
They exist as modular complement pairs, such that modpn = ri + rj and therefore (ri +
rj) mod modpn ≡ 0. Thus, we only need to generate the residues ri < modpn/2, and the other
half are rj = modpn - ri.

For P5 then, modp5 = 2 · 3 · 5 = 30, with rescntp5 = (2 - 1) · (3 - 1) · (5 - 1) = 8. P5’s
8 residues are {1, 7, 11, 13, 17, 19, 23, 29}, which are used as {7, 11, 13, 17, 19, 23, 29, 31}, to
always have the first residue in its sequence be prime, with the last set to 1 ≡ (modpn + 1) mod
modpn. Thus we have:

P5 = 30 · k + {7, 11, 13, 17, 19, 23, 29, 31} (4)

We can now construct P5’s prime candidates (pc) table, here up to N = 541, the 100th
prime, where each k ≥ 0 index residue group (resgroup) contains pc values along each residue
track (restrack|rt).

Fig 1.
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A pc table of prime candidates can be created for every PG. All the primes > pn occur along
the residue restracks in a statistically uniform manner. The marked cells are prime multiples
(composites) of only the residue primes, which can be sieved out to reveal the primes within any
range. See [1], [2]. P5 is the largest Pn for which all its residues are prime. All larger will also have
residues consisting of multiples of its prime residues < modpn.

3 Prime Generator Sequences
Each prime generator has a characteristic Prime Generator Sequence (PGS). This is the se-
quence of the differences (gaps) between consecutive residues defined over the range r0 to r0 +
modpn where r0 is the first residue of Pn, and the next prime > pn.

Let’s construct the first prime generator P2, and its PGS.

For P2: modp2 = 2, with rescntp2 = (2 - 1) = 1, with residue {1}, but use its congruent value {3}.

Thus, P2 = 2 · k+3, produces the pc sequence: 3 5 7 9 11 13 15 17... ∞, i.e the odd numbers.
So for P2, its PGS is a single element of gap size (r0 - 1) = (3 - 1) = 2: PGS P2: [r0 = 3] 2 |

Now let’s construct P3: modp3 = 2 · 3 = 6; rescntp3 = (2 - 1) · (3 - 1) = 2, with residues {1, 5}.
P3, thus, has the functional form: P3 = 6·k + {5, 7}. Its pcs table is shown below up to k = 16.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rt0 5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101
rt1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Fig 2.

For P3, each resgroup (column) contains prime candidates forming a possible twin pair, extending
into infinity. Execpt for (3, 5), every twin prime can be written as 6n ± 1 for some n ≥ 1 values.

The last two residues for all prime generators > P2 are modpn ± 1, thus they have at least one
twin pair set of residues. For larger prime generators there are more twin pair residues, and
others. To illustrate this, we examine the PGS for increasing prime generators Pn.

For P3 we see its PGS contains the gaps 2 and 4, which occur one each, with the last (r0 - 1) = 4.

PGS P3: 5 7 11 13 17 19 23 25 29 31 35 . . . ∞
2 4 | 2 4 | 2 4 | 2 4 | 2 4 |

For P5 we see from Fig 1. its sequence of prime candidates, with its PGS spacing.

PGS P5: 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 . . . ∞
4 2 4 2 4 6 2 6 | 4 2 4 2 4 6 2 6 |

Again we see the gaps 2 and 4 occurring with the same (odd) frequency, with the last three gaps
now having the form (r0 - 1) 2 (r0 - 1), where r0 = 7 is the first residue for P5.

We are beginning to see some of the inherent properties of prime generators emerge. Each larger
Pn (P7, P11, P13, P17, etc) will conform to these properties, producing an increasing number of
gaps, with a defined number of specific gap sizes, distributed within the sequence in a structured
manner.
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4 Characterizing PGS
Each prime generator sequence is defined over the range r0 to r0 + modpn, therefore the number
of gaps equals the number of residues, and the sum of the gap sizes equals the modulus. Let ai be
the frequency coefficients for each gap of size 2i, i ≥ 1, thus:

rescntpn =
∑

ai (5)

modpn =
∑

gapi =
∑

ai · 2i (6)

Therefore for PGS P3: [r0 = 5] 2 4 | – modp3 = 6 = (1) · 2 + (1) · 4
and PGS P5: [r0 = 7] 4 2 4 2 4 6 2 6 | – modp5 = 30 = (3) · 2 + (3) · 4 + (2) · 6

For P7, modp7 = modp5 · 7 = 210, and rescntp7 = rescntp5 · (7 - 1) = 48, with the residues:

{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193,
197, 199, 209, 211}

PGS P7: [r0 = 11] 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2
4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 |

With: modp7 = 210 = (15) · 2 + (15) · 4 + (14) · 6 + (2) · 8 + (2) · 10

Again we see for P7, there are an equal odd number of occurrences for gaps 2 and 4. This is
observed to be true for every odd numbered prime generator, where coefficients a1 = a2 have form:

a1 = a2 = (pn − 2)# =
∏

(p2+i − 2) = (3− 2) · (5− 2) · (7− 2) · ... · (pn − 2) (7)

We also see the consistent pattern that the last gap term is (r0 - 1), and starting with P5, the
last three gaps have the pattern (r0 - 1) 2 (r0 - 1). This occurs because the last two residues are
always twin pairs of form modpn ± 1, and the second from last is the modular complement of
r0, i.e. (modpn - r0).

We now also notice that the number of unique gap sizes for each generator Pn are of order pn−1.
Through observation of increasing Pn this is seen as a consistent property (for nonzero coefficients).
Thus the PGS for P3 has two (2) gaps, for P5 three (3) gaps, for P7 five (5) gaps sizes, and so on.

5 PGS Symmetry and Distribution
Because the residues exist as modular complement pairs, they produce a mirror image gap
distribution around a midpoint pivot term. The PGS pattern up to the pivot will exist as its mirror
image after.

Starting with P5, we know the last 3 gaps for all Pn have the form (r0 - 1) 2 (r0 - 1), thus
their sum is 2r0, and the remaining odd number (rescntpn - 3) gaps must equal (modpn - 2r0).
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This requires for P5, the (8 - 3) = 5 gaps at the front of its PGS must sum to (30 - 2·7) = 16.
If all the gaps were 2 you would need 8, which is too many, if all were 4 you need just 4, which is
too few. So the structure adapts to generate the necessary combination of gap sizes to satisfy both
requirements.

In addition, these (rescntpn - 3) odd gaps exist with a symmetric mirror image distribution
around a mid pivot gap that is always of size 4.

To show this, excluding the last 3 term of PGS P5 we have the gap sequence: 4 2 4 2 4
Here the terms 4 2 are the mirror image of 2 4 and are symmetric around midterm 4.

For PGS P7 we get: 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4
2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2

and again see a similar mirror image symmetry of each half around the midterm 4.
For P7, in order for the (48 - 3) = 45 gaps in its PGS front to sum to (210 - 2·11) = 188 we see

new gaps of 8 are introduced (mirrored in both halves) close to the middle pivot point.
As the PG moduli increase, new larger gaps will emerge and be included toward the pivot

element. This amounts to pushing the preexisting gaps toward the front and back. This expansion
process ensures all preexisting residue gaps will eventually exist for the primes < r02 for some Pn.

The reason a1 = a2 are odd is because gap size 4 is the pivot term and a gap 2 is part of the
last three sequence terms. Every other gap term is part of each mirror image and occur in even
numbers. Thus as similar to the residues, we only need to (computationally) determine the first
(rescntpn - 4)/2 gap terms.

6 The Infinity of Primes
Starting with just the first two primes 2 and 3, we can show the infinite progression of primes.

Using the first two primes we create: P3 = 6·k + {5, 7}, k ≥ 0.

From Fig 2. the pc < r0
2 = 52 = 25 are prime, which are the primes {5, 7, 11, 13, 17, 19, 23}.

We now use the new found primes 5. . . 23 to construct P23, with modp23 = 223092870, whose
r0 = 29. All the residues between 29 and 292 = 841 will be primes. The primes counting function
π(x) tells us there are exactly 137 primes from 29...841, the last being 839. We can now repeat
this process as many times as we want to find new primes, into infinity .

Thus, any prime p can be treated as r0 of a Pn composed of all the primes < p. All the residues
of such Pn from p to p2 are new primes, and we can repeat this progression of primes process
forever, always sure we will generate new primes. Thus we’ve established this process will generate
all the primes, into infinity.

In fact, an estimate of the number of new primes generated in any range p to p2 will be of order:

πest(p, p
2) =

p2

log(p2)
− p

log(p)
=
p · (p− 2)

2 · log(p)
(8)

For p = 29, this produces an estimate of 116 primes from 29 to 841, compared to the actual of 137.
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7 Prime Generator Properties
Given what we’ve observed, and now know about prime generators and their sequences, we can
codify their inherent and immutable properties, and use them in a logically consistent manner to
empirically establish and project the nature, numbers, and distribution of all prime gap k-tuples.

Though simple mathematical expressions, prime generators reveal an astounding breadth of
knowledge about the nature of prime numbers, embedded in their inherent immutable properties.
When I refer to their properties as being ‘inherent’ these are natural aspects and characteristics of
their structure that are discernible primarily through visual observation. Once observed though, I
could then mathematically describe them, and formulate a consistent framework for application.

As an example, it is an inherent property of base ten numbers that the least significant digit
(lsd) of an even integer must (only) be the digits, 0, 2, 4, 6, 8, and conversely 1, 3, 5, 7, 9 for
odd. However when we change the base system, say to a binary (base two) system, even|odd has
a different expression, i.e. the least significant bit (lsb) of an even number is a ‘0’ and a ‘1’ for
odd. We performed no calculation to determine this, these are observable characteristics that are
inherently associated with the concepts of even and odd for each base system.

Using these inherent properties of even|odd for base ten numbers, we can apply them through
observation to ‘prime’ numbers. It is an inherent property of prime numbers that, other than for
the prime 2, all others are odd, which means their lsd aren’t 0, 2, 4, 6, or 8. So by mere observation
you know 341786 isn’t prime. You didn’t need to perform a calculation to confirm this, if you
understood this natural inherent property of prime numbers it’s observably obvious.

Also, other than for the prime 5, all other primes lsd can only be 1, 3, 7, or 9. This means at
minimum 60% of all integers (those with lsd of 0, 2, 4, 5, 6, and 8) can’t be primes. This is an
inherent property of numbers. If you know a little bit more number theory, you’d know that while
11 and 101 could be primes (they are) 111, 1011, and 1101 observably could not. Why? Because
for base ten numbers, if the sum of their digits is a mutiple of 3 then it’s divisible by 3, and thus
not prime.

Thus it is an inherent property of Twin Primes their lsd can only be {1, 3}, {7, 9}, or {9, 1} e.g.
for (11, 13), (17, 19), and (29, 31). It’s also inherent for all prime numbers > 2, the gaps between
them are even because each is odd. You don’t have to ‘prove’ this (though the proof is simple), it’s
an inherent property of their oddness.

Thus, when I refer to the inherent properties of prime generators, these are observable character-
istics and patterns that fall out naturally from their stucture which I have mathematically codified.
They are also immutable because they are the same for all generators constructed as shown, and
can’t change.

Probably the most amazing consequence of creating a modulus of the product of consecutive
primes is the unleashing of the otherwise hidden properties that can explain the fabric of prime
numbers. However to do this, you have to draw pictures, e.g. Fig 1. and generator sequences,
and produce enough examples to reveal their patterns. You cannot just think these properties
into existence, you have to observe them .

Now that I have described and given examples of prime generators and their sequences, I will
list their observable inherent properties, which I have codified into a mathematically consistent
framework for application.
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Major Properties of Prime Generators
• the modulus of every prime generator with last prime pn has primorial form: modpn = pn#

• the number of residues are even with form: rescntpn = (pn - 1)#

• the residues occur as modular complement pairs to its modulus: modpn = ri + rj

• the last two residues of a generator are constructed as: (modpn - 1) (modpn + 1)

• the residues include all the coprime primes up to modpn

• the first residue r0 is the next prime > pn

• the residues from r0 to r02 are primes

• each prime generator has a characteristic sequence of even sized residue gaps

• the last 3 sequence gaps have form: (r0 - 1) 2 (r0 - 1)

• the gaps are distributed in a symmetric mirror image around a pivot gap of size 4

• the residue gaps sum from r0 to r0 + modpn equals the modulus: modpn = Σai· 2i

• the coefficients ai are the frequency of each gap of size 2i

• the sum of the coefficients ai equal the number of residues: rescntpn = Σai

• coefficients a1 = a2 are odd and equal with form: a1 = a2 = (pn - 2)#

• the coefficients ai are even for i > 2

• the number of nonzero coefficients ai in the sequence for Pn is of order pn−1

These inherent and immutable properties form a bounded set of constraints which characterize the
formation and distribution of primes, and thus also the distribution of all their prime k-tuples.

These discrete mathematical properties and operations form a striking correlation to calculus,
where for distance x(t) its first derivative is velocity = dx(t)/dt and its second derivative is accel-
eration = dv(t)/dt. For prime generators, distance is the number span covered by modpn, and its
derivative are the number of residues|gaps. Taking the derivative of the number of gaps gives us
the actual gap size coefficients.

Calculus Prime Generators

x(t) = S v(t)/dt modpn = Σai·2i =
∏
pi

v(t) = S a(t)/dt rescntpn = Σai=
∏
(pi - 1)

a(t) = S A(t)/dt a1 = a2 =
∏
(pi - 2)

While calculus integration is analogous to discrete summation, it is not intuitive that discrete
summation correlates to primorial operators for prime generators. Or is it? Actually we see a
similar relationship with the Riemann Zeta series and its equivalent Euler primes product form.

∑ 1

ns
=
∏(

1− p−s
)−1

=

∏
ps∏

(ps − 1)
⇒ modps

rescntps
(9)
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8 The Infinity of Twin Primes and other k-tuples
The simplest way to establish the infinity of k-tuples is to merely show their progression within
the range r0 to r02 for increasing Pn. Since all these residues are primes their gaps constitute
k-tuples. As Pn increases, more gaps of coefficients ai will eventually come into the range for any
even gap size, which we can then directly examine and count.

We start by noting again, the residue gaps sum equals modpn for all Pn, and have the form:

modpn =
∑

ai · 2i = a1 · 2 + a2 · 4 + a3 · 6 + ...+ an · 2n (10)

Polignac’s conjecture is thus equivalent to stating: for all residue gap coefficients ai once they
come into existence (become > 0) for some Pn, they will remain > 0 (in fact increase) for all larger
Pn, and eventually appear and remain within the interval r0 to r02 (containing all primes) for all
larger Pn.

We’ve previously seen the PGS for P2 to P7, and here list their coefficients sum form, with P11.

modp2 = 2 = (1) · 2

modp3 = 6 = (1) · 2 + (1) · 4

modp5 = 30 = (3) · 2 + (3) · 4 + (2) · 6

modp7 = 210 = (15) · 2 + (15) · 4 + (14) · 6 + (2) · 8 + (2) · 10

modp11 = 2310 = (135) · 2 + (135) · 4 + (142) · 6 + (28) · 8 + (30) · 10 + (8) · 12 + (2) · 14

For P7 with r0 = 11, we see its prime residues from 11 to 121 are {11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113}, which show prime gaps of
2, 4, 6, and 8 in the range. Even though P7’s residues includes other primes, e.g. the cluster {191,
193, 197, 199}, they’re outside this range, but eventually will fall within r0 to r02 for a larger Pn
and be accounted for.

Continuing, P11 extends the range up to 169, finding new primes {127, 131, 137, 139, 149, 151,
157, 163, 167}, which also contain gaps 2, 4, 6, 8, with new gaps 14 (113, 127) and 10 (139, 149).
This process can be logically continued indefinitely , to always find new primes, and new
larger prime gaps.

Fig 3. shows the frequency coefficients ai for the first few PG. It shows once a gap coefficient
comes into existence for a Pn it increases in frequency for every larger Pn. (There are other
interesting properties shown too, though they’re not necessary to elucidate upon for the purposes
here.) We note every Pn preserves and increases the frequency of prior existing gaps, while creating
new larger gaps.

Fig 4. shows the declining percentage of residues in r0 to r02 as Pn become larger. This affects
the rate of gaps ai coming into range, but not their eventuality.

Fig 5. shows empirically how the gap sizes, and the max gap, grow over increasing ranges from
r0 to r02 for larger Pn. Here again, the key features shown are the steady increasing frequency of
every gap size once it comes into range for some Pn, and the increase in the max gap within each
range.

Thus while the process is not rapid, it is conceptually and logically unequivocal for establishing
the infinity of all possible k-tuples. (It’s computationally more efficient to use a fast prime sieve,
such as in [1], to actually identify|count twin pairs, et al.)

8



Because coefficients a1 = a2 have a clear deterministic expression for all Pn, we can formulate
a good estimate for prime gaps 2 and 4 (Twins|Cousins) for all Pn. We can simply say it’s the
percentage of their gaps to its residue count times the number of primes from r0 to r02, i.e. π(p, p2).
For computational simplicity we can use πest(p, p

2) = p · (p− 2)/2 · log(p), for a weaker estimate.

Twins|Cousins count ' (a1/rescntpn) · π(p, p2) (11)

If we substitute the expressions for a1, rescntpn, and πest(p, p
2) we get:

Twins|Cousins count '
∏
(pi − 2)∏
(pi − 1)

· p · (p− 2)

2 · log(p)
(12)

To verify it works, let’s first use the parameters for P7, with r0 = p = 11, rescntp7 = 48, and
a1= 15. The actual primes count π(11,121) = 26, thus: Twins|Cousins count ' (15·26)/48 = 8.15.
Using the weaker primes estimate of (11)(11 - 2) / 2·log(11), we get (15)(11)(9) / 96·log(11) = 6.45
Twins|Cousins primes. We see previously for P7 (and Fig 5.) the actual Twins|Cousins counts are
8|9 in the range 11 to 121, thus we get good (realistic) estimates from both calculations.

To test for a larger range, let’s use P97, whose r0 = p = 101.

rescntp97 =
∏
(pi−1) = (2−1)·(3−1)·(5−1)·...·(97−1)= 2773996900427737839953078806118400000

a1|2 =
∏
(p2+i−2) = (3−2) · (5−2) · (7−2) · ... · (97−2) = 44148215542940151628274967912609375

π(101, 1012) = 1227 πest(101, 101
2) = (101) · (99)/2 · log(101) = 1083.3

Stong estimate: Twins|Cousins ' (a1/rescntp97)·1227 = 195.3
Weaker estimate: Twins|Cousins ' (a1/rescntp97)·1083 = 172.4

From Fig 5. we see the computed Twins|Cousins counts are 220|197 in the range 101 to 1012.
Thus, any prime p can be considered r0 of a Pn whose range p to p2 will always contain

Twins|Cousins. Thus it’s empirically logical there must be an infinity of Twins|Cousins primes,
because within any finite range p to p2 we know we can empirically compute a good (minimum)
estimate of their numbers, for the infinity of primes p.

The properties of PGS also logically mandate the same outcome for every residue gap coefficient
ai as they too are the consequences of the structure of the residues count, their modular complement
pairing, and mirror image distribution within all PGS. Once an ai comes into existence it can not
then disappear (go to 0) because that would mean the residue structure of some PGS would have
to change (mutate). Thus, as there are an infinity of primes there are also an infinity of all even
gaps ai among them.

9 Proof By Contradiction
To say there are not an infinity of all k-tuples (i.e. there is a finite number) means empirically
for some ai it becomes, and remains, zero (0) for some Pn, and all larger. This empirically requires
some Pn residues structure to change, i.e. mutate. How can a PG structure possibly mutate?
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For residues gaps of 2 and 4, i.e. for gap coefficients a1 = a2, this is clearly a contradiction, as
they conform to a deterministic relationship solely based on the modulus primes, and clearly only
(must) increase for increasing Pn. Thus a1 = a2 can never go to zero (0), and thus there will always
be an increasing number of their residue gaps, which will always exist within the range r0 to r02
for every Pn.

To say the residue structure of a PG will (can) mutate requires either the number of residues no
longer are determined by the Euler totient function (which means there are either more, or fewer,
residues per modulus), and/or the residues no longer adhere to the modular complement property
(which means the residues gaps distribution symmetry has changed). Can this logically|theoretically
happen?

Until otherwise shown not to be true, let’s accept the Euler totient function works as formulated,
thus the number of residues can’t mutate. This leaves only the possibility that the residues stop
adhering to the modular complement property, and thus mutate the distribution symmetry of the
residue gaps.

However, we know the residues of every Pn consists of all the coprime primes up to modpn, and
any of their composite multiples < modpn necessary to sum to the Euler totient count. Thus, the
number and values of the residues are all (solely) determined by modpn, no matter how large.

This means clusters of consecutive prime residues outside the range r0 to r02 will always exist
within a residue set too (as Pn increases), and thus their ai k-tuples values must be nonzero. These
consecutive prime clusters can’t mutate their gap sizes, and will eventually be seen in a larger range
for some Pn.

Thus, the inherent properties of prime generators are, in fact, empirically immutable as pre-
sented. Consequently, their properties establish there logically must exist an infinity of gap sizes.

10 Predictive Results
Ultimately, any proof must be able to explain known empirical results, and predict future ones.
It’s shown we can compute a good minimum estimate for Twins|Cousins for any Pn. We can also
establish when any residue gap first appears in some Pn, and then determine when it migrates into
the r0 to r02 range primes for some larger Pn.

For example, a50, which denotes residues gaps of 100, can first occur for P59 (because its PGS
has on order 53 coefficients). From Fig 5. a max gap size of 100 occurs for 503 < p < 1009. The
exact value is p = 631, i.e. between 631 and 6312 the first prime pair of gap size 100 occurs among
the 33,599 primes within this range. Thus, while a50 can possibly come into existence for P59 it
takes until P619 to show up in its range, a span of 98 consecutive prime generators. While the
process is not rapid, it is certain.

The following list are the first prime pairs with the first multiple of 100 gaps sizes shown.

• first instance of prime gap of 100 is (396,733; 396,833)

• first instance of prime gap of 200 is (378,043,979; 378,044,179)

• first instance of prime gap of 300 is (4,758,958,741; 4,758,959,041)

• first instance of prime gap of 400 is (47,203,303,159; 47,203,303,559)

• first instance of prime gap of 500 is (303,371,455,241; 303,371,455,741)
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(It should be noted, the gaps don’t necessarily occur in linear order, as the first prime gap for 210,
for the pair (20,831,323; 20,831,533), occurs well before the first prime pair gap 200.)

Again, we see it takes time for larger and larger gap sizes to migrate to the range r0 to r02
of larger Pn, but that’s ok. My intent is not to find the actual values of the prime pairs, but to
establish with certainty with this simple process that they exist, and there are an infinity of them
of any even size.

11 Conclusion
The properties of Prime Generators allow for direct examination of the structure of the gaps between
the primes. They empirically show prime numbers, and their gaps, conform to a deterministic
structure that determines their nature, numbers, and distribution. We see that once any residue
gap size comes into existence for some Pn it exists in larger numbers for all larger ones. By showing
that every residue gap eventually will exist for some Pn within its residues range r0 to r02, which
are all primes, I establish every residue gap will eventually become a prime gap, which will increase
in numbers for all larger Pn. Thus through this simple process, it has been established since all
residue gaps only increase, and they eventually with certainty become prime gaps, and as there are
an infinity of primes, by the logical extension of this process into infinity, we know there are an
infinity of prime gaps of any even size.

References
[1] The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiya (SoZ),

Applications to Number Theory, and Implications to the Riemann Hypothesis; Jabari Za-
kiya, 2018/19 - https://www.academia.edu/37952623The_Use_of_Prime_Generators_to_
Implement_Fast_Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_
and_Implications_for_the_Riemann_Hypotheses

[2] The Segmented Sieve of Zakiya (SSoZ); Jabari Zakiya, 2014 - https://www.academia.edu/
7583194/The_Segmented_Sieve_of_Zakiya_SSoZ

[3] Ultimate Prime Sieve – Sieve of Zakiya; Jabari Zakiya, 2008 - http://www.scribd.com/doc/
73384039/Ultimate-Prime-Sieve-Sieve-Of-Zakiya

[4] k-tuples page - https://en.wikipedia.org/wiki/Prime_k-tuple

[5] Twin Prime - https://en.wikipedia.org/wiki/Twin_prime

[6] Polignac’s Conjecture - https://en.wikipedia.org/wiki/Polignac%27s_conjecture

[7] PRIMES-UTILS HANDBOOK; Jabari Zakiya, January 2016 - https://www.scrid.com/
document/266461408/Primes-Utils-Handbook

11



Data
The following data was derived using Ruby|Crystal scripts to generate and count the prime gaps.

Listed here are all the residue gap coefficients ai for the first few prime generators. We observe:
the sum of the columns for each Pn equals its residues count; the sum of the products of each ai
by its gap size 2i equals modpn; and for each Pn there are on order pn−1 unique coefficients. Also
for the Pn shown, the first instance for aprime (a3, a5, a7, etc) equal 2.

We also see that the gaps oscillate up and down in their frequency as they linearly increase, and
through the expansion process, the smaller gaps are numerically dominant in their frequency, and
larger gaps initially occur with relatively much much lower frequency.

Residue gap coefficients ai for all gaps 2i for given Pn
pn 3 5 7 11 13 17 19 23 29 31
a1 · 2 1 3 15 135 1,485 22,275 378,675 7,952,175 214,708,725 6,226,553,025
a2 · 4 1 3 15 135 1,485 22,275 378,675 7,952,175 214,708,725 6,226,553,025
a3 · 6 2 14 142 1,690 26,630 470,630 10,169,950 280,232,050 8,278,462,850
a4 · 8 2 28 394 6,812 128,810 2,918,020 83,120,450 2,524,575,200
a5 · 10 2 30 438 7,734 148,530 3,401,790 97,648,950 2,985,436,650
a6 · 12 8 188 4,096 90,124 2,255,792 68,713,708 2,206,209,208
a7 · 14 2 58 1,406 33,206 871,318 27,403,082 903,350,042
a8 · 16 12 432 12,372 362,376 12,199,404 423,955,224
a9 · 18 8 376 12,424 396,872 14,123,368 512,670,088
a10 · 20 0 24 1,440 61,560 2,594,160 106,604,280
a11 · 22 2 78 2,622 88,614 3,324,402 126,682,650
a12 · 24 20 1,136 48,868 2,100,872 88,337,252
a13 · 26 2 142 7,682 386,554 18,298,102
a14 · 28 72 5,664 324,792 16,461,600
a15 · 30 20 2,164 154,220 9,169,532
a16 · 32 0 72 10,128 833,688
a17 · 34 2 198 15,942 1,075,458
a18 · 36 56 7,228 620,632
a19 · 38 2 570 77,042
a20 · 40 12 1,464 128,988
a21 · 42 272 40,636
a22 · 44 12 3,516
a23 · 46 2 1,795
a24 · 48 1,296
a25 · 50 504
a26 · 52 20
a27 · 54 84
a28 · 56 12
a29 · 58 2

Fig 3.
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As new larger gaps appear within a PGS, it takes some time for them to migrate within the
range from p to p2 of larger Pn. The number of these residues constitute a dwindling percentage
of the residue count for larger Pn, as shown below. This affects the rate they will become (with
absolute certainty though) primes gaps.

Pn 7 11 13 17 19 23 29
residues count 48 480 5,760 92,160 1,658,880 36,495,360 1,021,870,080
r0 to r02 count 26 34 55 65 91 137 152

% of total residues 54.2 7.08 0.955 0.071 0.055 0.000375 0.0000149

Fig 4.

Below shows the progression of gaps frequency within p to p2 for gap sizes shown, and the max gap.

Frequency of prime gaps (not complete) between p and p2

p 11 53 101 503 1,009 5,003 10,007 50,021 100,003
max gap 8 34 36 86 114 210 220 320 354
gaps of 2 8 74 202 2,585 8,278 130,543 440,666 7,816,170 27,412,929
gaps of 4 9 78 197 2,575 8,239 130,201 440,606 7,816,884 27,410,258
gaps of 6 7 99 296 4,165 13,715 224,001 769,338 13,979,458 49,393,480
gaps of 8 1 37 103 1,692 5,643 96,432 334,491 6,221,667 22,161,302
gaps of 10 39 121 2,120 7,169 123,641 430,458 8,059,613 28,765,142
gaps of 12 27 107 2,267 8,134 151,420 530,008 10,420,167 37,589,303
gaps of 14 15 54 1,199 4,302 81,767 293,529 5,774,452 20,944,700
gaps of 16 6 33 795 2,929 59,224 216,032 4,347,314 15,888,865
gaps of 18 8 40 1,283 4,995 104,769 385,207 7,933,971 29,190,859
gaps of 20 2 15 601 2,433 53,704 203,194 4,366,505 16,296,757
gaps of 22 4 18 555 2,211 46,822 176,170 3,748,342 13,954,841
gaps of 24 2 15 604 2,278 66,815 257,882 5,701,980 21,488,356
gaps of 26 1 3 274 1,195 30,588 119,624 2,720,294 10,348,264
gaps of 28 0 6 271 1,261 32,971 129,739 2,963,462 11,288,578
gaps of 30 0 11 414 1,959 55,436 223,137 5,345,019 20,707,409
gaps of 32 0 1 97 558 16,563 68,384 1,695,929 6,641,679
gaps of 34 1 3 113 563 17,262 71,351 1,785,000 6,997,115
gaps of 36 1 149 779 27,127 114,180 2,927,973 11,593,976
gaps of 38 75 337 12,068 51,843 1,38,1811 5,518,125
gaps of 40 90 436 14,320 60,853 1,640,477 6,576,788
gaps of 42 83 486 19,568 86,754 2,438,771 9,920,126
gaps of 44 23 205 7,745 34,939 1,001,765 4,107,209
gaps of 46 24 158 6,514 29,372 866,337 3,580,246
gaps of 48 29 203 10,790 49,904 1,501,630 6,251,179
gaps of 50 16 110 5,803 27,544 857,165 3,607,941

Fig 5.
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Here I use the data for p = 101 to graphically show the polynomial distributive nature of the
gap sizes. We see from the curve, local maxima are (close to) multiples of gap size 6, while local
minima are (close to) multiples of 4. We see from the data in Fig 5. this characteristic becomes
more pronounced for larger p gap ranges. Larger ranges will have more local maxima/minima as
they will generate more larger gaps. Each generator, thus, will have its own signature curve.

Prime gaps from p to p2 for p = 101
gaps 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
freq 202 197 296 103 121 107 54 33 40 15 18 15 3 6 11 1 3 1

Fig 6.

We also clearly see the affect of the expansion property. All the preexisting gaps are pushed
toward the front for the first half mirrored gaps (as new ones are included toward the middle) and
they will appear first, and in greater frequency than larger gaps, for each larger generator.

The data also clearly shows there will always be more gaps of 6 than 2 and 4 (Twins|Cousins), or
any other individual k-tuple. According to [4] gaps of 6 are called Sexy primes, which includes any
gap of 6 between non-consecutive primes, e.g. (5, 11) and (7, 13). For the purpose of nomenclature
then, I’ll define Super (or Strictly) Sexy Primes as consecutive primes with gaps of 6, e.g. (23, 29)
and (53, 59), which I think look better anyway. (Sex is so complicated.)
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Here I show in more detail the slow growth rate of max gap sizes for increasing ranges p to p2.

Max prime gap sizes from p to p2

p 11 19 31 59 101 179 317 563 1,009 1,783 3,163 5,623
log10(p) 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75
max gap 8 14 20 34 36 72 72 86 114 148 154 210

p 10007 17783 31627 56237 100003 177823 316233 526337 1000003
log10(p) 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
max gap 220 248 282 320 354 456 464 486 540

Fig 7.

This graph quantifies the slow expansion. As p increases orders of magnitude its PGS max gap
grows much slower. For p of order 103 the max gap reaches 102, but only increases to 5 · 102 for p
of order 106.

We can similarly create growth curves for all the other gap sizes to visually see their growth
rate.

The data shows the distribution of primes is not random, but in fact is deterministic, and
conform to the described properties manifested within the structure of prime generators. The
primes exist in clusters. Prime gaps with (relatively) small gaps will cluster, then larger jump
occurs, then other clusters, etc.

It, again, should be noted, though while this graph is technically accurate, it doesn’t tell the
whole story, as the gaps don’t neccessarily occur in linear order. For example, the first occurrences
of prime gaps 210, 220, 248, etc, occur for prime values much smaller than for the first prime pair
with gap 200.

15



Appendix
Infinite Progression of Primes

From the Prime Number Theorem (PNT) (https://en.wikipedia.org/wiki/Prime_number_theorem)
it has been proved the number of primes up to any value x is on order x/log(x), or better Li(x)
(log integral x). Equation 8 (for computational simplicity) uses x/log(x) to estimate the number
of primes between any random prime p (or really any value x ) and p2, per the PNT.

The Pn residues are the integers pn < ri < modpn coprime to modpn. The Euler Totient
Funcition (ETF) tells us their exact number. Thus it’s clear, the {ri} must include all the coprime
primes (and any of their prime multiples) < modpn, necessary to satisfy the ETF residues count.

Each Pn eliminates all its modulus primes multiples from consideration. Since the first residue
r0 of every Pn is the next prime > pn, its first multiple in its residue set (pc table) is the multiple
with itself, i.e. r02. Therefore, the residues between r0 to r02 can only be the coprime primes in
that interval, as they are not multiples (the only non-multiples) of the modulus primes < r02. And
the PNT tells us their numbers are of order p

2

/log(p
2

) - p/log(p), or better Li(p
2

) - Li(p).
However, for each specific generator Pn we can compute easier a simpler estimate. We know the

number of modulus primes for any Pn, I’ll note as π(modpn). Thus the primes < r0
2, for r0 = p

are: p
2

/log(p
2

) - π(modpn). For the previous example for P23, with r0 = 29, a simpler calculation
is then: (841)/log(841) - 9 = 115.87 (116), the same as before. In fact, we can just use p

2

/log(p
2

),
here 841/log(841) = 124.88 (125), as π(modpn) is relatively so much smaller as p2 becomes larger.

Thus, since we know each generator Pn always generates the consecutive primes r0 to r02, we
can use these primes to construct a larger Pn, and keep bootstrapping this process as many times
as we want to generate as many of the consecutive primes we want, and thus can also then observe,
record, and count, the exact gap structure of all the primes we generate, into infinity.

Modular Complement Property

Using clock math , we see residues exist as modular complement pairs, and prime generator
sequences have mirror image symmetry , as a direct property of their modular forms.

Any even n can be the modulus for a cyclic integer generator (I use only moduli of form
pn#) we can visualize as a clock of n hours. A 12 hour analogue clock has a modulus of 12 with
residues 1 – 12, placed equidistance around the clock. It’s easy to see, if we draw horizontal lines
between residues (hours), left-to-right, their sums equals 12 (the top|bottom residues are really
(0:12) and (6:6)), and also see this if we fold the clock on its vertical axis.

When we form the prime generator P12, for mod12 we only use the residues coprime to 12, i.e.
{1, 5, 7, 11}, where (1, 11) and (5, 7) are modular complement pairs. Eliminating the non-coprime
residues shows the P12 generator, with its 4 residues, with its mirror image gap distribution. Any
even n > 2 will have a modular form with these modular complement properties, for every Pn.
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