
A straightforward and Lagrangien proof of the mass as the internal energy of a system  

Özgür Berké (ozgur.berke@live.fr) 

I propose a Lagrangian proof of Einstein's well-known law that the mass system is its internal energy.  
The interest of this proof is to show how appears the distinction between internal degrees of 
freedom and the center of mass in the Lagrangian formalism.  
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1. The Einstein law 
1.1. The law 

According the expression of the law of physics via the principle of least action [Landau-Lifchitz] and 
the relativistic invariance: the mass 𝑚  of a material point “a” is simply the multiplicative coefficient 
appearing in the Lagrangien of this material point, interacting or not with an external field.  

𝑆[𝒓𝒂(𝑡)] = − 𝑚 . 𝑐. 𝑑𝑠
,

,

+ ⋯ = −
𝑚 . 𝑐

𝛾(𝒗𝒂)
𝑑𝑡 + ⋯ 

In 1905, Einstein tells us that whatever the system: a set of material points (dynamically 

characterised with a Lagrangien 𝐿 {𝒓𝒂},
𝒓𝒂 ) or a field (dynamically characterised with the 

Lagrangien 𝛬 𝜑,
𝒓

, ) we should have: 

𝑆[𝑹𝒄(𝑡), … ] = −
𝐸∗

𝛾(𝑽𝒄)
𝑑𝑡 + ⋯ 

o With 𝐸∗ = ∑
𝒓𝒂

∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  for a material point; 

o Or  𝐸∗ ≡ ∭
∗

∗ ∗

∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ for a scalar field (for example). 

Where the quantities with a star * are relative to the reference frame associated to the mass center 
K*. So 𝐸∗ is the internal energy. 

Thus, every system has a centre of mass which has a Lagrangian, analogous to a material point with a 

mass 𝑀 =
∗

²
. This is the famous law of Einstein. 

1.2. The current proof 

This law is well established since its first publication in 1905 and was re-demonstrated more clearly 
after by other (Einstein himself, Von Laue ...). The simpler way (that the author know and read in 
[Landau Lifchitz]), is to demonstrate that the momentum is a 4 vector. 

Indeed, tanks to the stress energy tensor 𝑇  of the system, we can always associate to it a 4-vector  

 𝑃 (𝐾∗) ≡ ∫ ∭ 𝑇 𝑑𝑆
,

 ,  where we choose the hyper-surface of integration as the 

hyperplane of the reference frame K* (𝑡∗ = 𝑐𝑡𝑒). 

In any frame ([Janssen & Mecklenburg]), 𝑃 (𝐾∗)  can be written equivalently 

  𝑃 (𝐾∗) = ∫ ∭ 𝑇 𝛿 𝑛 𝑥 𝜂 (𝐾∗) . 𝜂 (𝐾∗) 𝑑 𝑥   

 where 𝜂 (𝐾∗) is an orthogonal vector of the hyperplane 𝑡∗ = 𝑐𝑡𝑒 of K* such that 
𝜂∗ (𝐾∗) = (1,0,0,0) in 𝐾∗. 

Thus, the Lorentz transformations tell us: 



𝑃 (𝐾∗) =
1

𝑐
𝐿 𝐿 𝑇∗ 𝛿(𝑡∗). 𝐿 . 𝜂∗ (𝐾∗) 𝑑 𝑥∗  = 𝐿 

1

𝑐
𝑇∗ (0, 𝑥∗ )𝑑𝑉∗

∗ ∗
 

So 𝑃 (𝐾∗) = 𝐿 𝑃∗ (𝐾∗) where 𝑃∗ (𝐾∗) = ∭ 𝑇∗ (0, 𝑥∗ )𝑑𝑉∗ 

But 𝐸∗ ≡ ∭ 𝑇∗ (0, 𝑥∗ )𝑑𝑉∗ and 𝑃∗ (𝐾∗) ≡ 0 by definition of K* 

So we have 𝑃 (𝐾∗) = 𝛾
∗

, 𝛾
∗

𝑽𝐊∗/𝐊 , hence 𝑷 =  𝛾
∗

𝑽𝐊∗/𝐊 => 𝑀 =
∗

²
  

That is to say, the 3-momentum of any system is the same as a material point: 

o with a mass 𝑀 =
∗

²
; 

o and a speed 𝒗 = 𝑽𝐊∗/𝐊. 

2 remarks: 
o 𝑃 (𝐾∗) is here relative to the particular time 𝑡∗ = 0 and is not a priori constant; 
o 𝑃 (𝐾∗) is not the only one 4-momentum since we can define a different one for each frame of 

reference, 𝑃 (𝐾), 𝑃 (𝐾′), 𝑃 (𝐾∗)  ..., all are associated to different hyperplane of simultaneity 
linked to each possible (an infinity) frame of reference K,K’,K*...(see [Janssen & Mecklenburg]). 
 

It exists a particular case where there is only one 4-momentum 𝑃 : 𝑃 (𝐾) = 𝑃 (𝐾′) = 𝑃 (𝐾∗)...In 
[Landau Lifchitz] we know that (in a general field theory): 

o if the system is locally conserved : the stress-energy tensor has a null divergence 
 𝜕 𝑇 = 0;  

o and if there is “nothing (other than gravitation field)” in infinite (in the sense of 
convergence to infinity). 

 𝑃 (𝐾) ≡ ∫ ∭ 𝑇 𝑑𝑆
,

  is conserved and doesn’t depend on the hyperplane 

of integration (thanks to the conservation law). 

----------------------- 
In a less general theorem (but more old) from Von Laue (cf. [Wang]) we can also say that if 𝜕 𝑇 = 0  
(and nothing to infiny): 

𝑃 = ∭ 𝑇 𝑑𝑉 is a 4-momentum  ∭ 𝑇 𝑑𝑉=0 
-------------- 

1.3. Why (I am) searching another proof ? 
The proof above does not use the Lagrangian directly but indirectly via the stress energy tensor. 
However, the base of all dynamics in physics laws is (until now) always to start from the Lagrangien 
of a system with the appropriate variables (including degrees of freedom). We should be able to 
select the center of mass and the complementary degrees of freedom (which we called logically the 
internal degrees of freedom since they are seen in the “hidden” K*).  Unfortunately (for myself at 
least...), I never found any proof using this point of view. With the current approach (even if it is 
sufficient for physics) it is not clear, for me, how the centre of mass appears in the Lagrangian, in 
parallel with the internal degrees of freedom. Indeed the Lagrangien is reconstructed only a 

posterior, after to demonstrate that 𝑷𝒄 = 𝛾
∗

²
𝑽𝐂 (using the stress-energy tensor) (see [Janssen & 

Mecklenburg]). So we don’t clearly see the passage: 



 From an initial Lagrangien 𝑆[{𝒓𝒂(𝑡)}] = ∫ 𝐿 {𝒓𝒂},
𝒓𝒂 𝑑𝑡 or  𝑆[{𝜑(𝑥, 𝑡)}] = ∫ ∭ 𝛬 𝜑,

𝒓
, 𝑑Ω 

 To a Lagrangien of an apparent material point 𝑆[𝑹𝒄(𝑡), … ] = − ∫
∗

(𝑽𝒄)
𝑑𝑡 + ⋯ 

In this article, I propose, using directly the Lagrangien formalism, to give the proof, for a material 
system (to present the method), for a field (scalar in order to simplified) and finally a system where 
the two interact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Material system free 
2.1. The proof  

We begin with the action principle for a set of particles: 

𝑆[{𝒓𝒂(𝑡)}] = 𝐿 {𝒓𝒂},
𝑑𝒓𝒂

𝑑𝑡
𝑑𝑡 

In this expression, we are using coordinates in a Galilean reference frame K. 
The degrees of freedom are the vectors {𝒓𝒂}, and we integrate the expression between the plan H1 
(𝑡 = 𝑐𝑡𝑒), and H2 ( 𝑡 = 𝑐𝑡𝑒′) in this frame. 
We want now separate: 
 the internal degree of freedom {𝒓𝒂

∗ } ,  defined in the  frame K*of the center of mass ; 
 from the external degree of freedom 𝑹𝒄 defined in the Galilean frame K. 
So the degrees of freedom {𝒓𝒂}, are equivalent to the degree o freedom {𝒓𝒂

∗ , 𝑹𝒄 }. 
---------------------- 

Note 1: a plane t=cte is seen differently for different internal particle in the frame of the center of mass K* 

Thanks to the relativist invariance we know that each terms of the action associated to a particle is invariant (𝐿. 𝑑𝑡 =

∑ −𝑚 . 𝑐𝑑𝑠 ). However in the frame K*, the border plan H1  and H2  are associated to different time for each particle (in 
Einstein relativity the simultaneity is relative to a frame). 

More explicitly, the Lorentz transformation said that a coordinate 𝑡′  seen in the frame K is expressed like 

𝑡′ − 𝑡 = 𝛾(𝑡) 𝑡′∗ − 𝑡 ( )
∗ +

𝜷(𝑡)

𝑐
𝒓∗  

With: 

 𝛾(𝑡) = 𝛾 𝑽𝐂(𝑡)  , 
 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊(𝑡), 

 and 𝑡∗, the time measured by a clock ion C: 𝑡 ( )
∗ = ∫

𝑑𝑡′
𝛾 𝑡′

𝑡
0  

, in the frame K*(𝑡) at the instant t (t’≠t, a priori, since t’ is a generic coordinate of K but t defines the time of K for which 
the center of mass has the speed 𝑽𝐂(𝑡) ). 

So a plane 𝑡′ = 𝑐𝑡𝑒 in K is seen like a plane  𝛾(𝑡) 𝑡′∗ − 𝑡 ( )
∗ +

𝜷
𝒓∗ + 𝑡 = 𝑐𝑡𝑒 in the frame K*(𝑡) around t. 

Thus a particle at the position 𝒓𝒂
∗ , see the plane 𝑡′ = 𝑐𝑡𝑒 at the instant  𝑡′∗ =

( )
−

𝑽𝐂

²
𝒓𝒂

∗ + 𝑡 ( )
∗  

This is the proof of the assertion in the title. 

Note 2: measurement of a clock fixed on K*(𝑡)   

Around t (t given and constant), a clock in  𝒓∗  of K*(𝑡), and always in 𝒓∗ , measures the duration time 

 𝑡′∗ − 𝑡 ( )
∗ =

( )
−

𝑽𝐂( )

²
𝒓∗ between the event 𝑐𝑡 ( )

∗ , 0∗

∗( )
associated to C in K*(𝑡) and a certain event (𝑐𝑡′∗, 𝒓∗) ∗( ) 

localised, by definition, in a different position than C: that is to say 𝒓∗. 

If we demand to this clock to measures now the duration between 2 events localised in its own position, the duration is 

now  ∆ 𝑡′∗ − 𝑡 ( )
∗ = ∆

( )
−

𝑽𝐂( )

²
𝒓∗ <=> (∆𝑡′∗ − 0) =

∆

( )
− 0  since 𝛾(𝑡), 𝑽𝐂(𝑡), t are constant since we work 

always in the same reference frame K*(𝑡). More over 𝒓∗ = 𝒄𝒕𝒆 by definition of the 2 events considered. 



So we have ∆𝑡′∗ =
∆

( )
 and 𝑑𝑡′∗ =

𝒅

( )
 for 2 infinitesimal events. 

When we observe 2 events associated to a particle, we study the duration time between 2 hyperplanes  𝑡′∗ = 𝑐𝑡 of K*(𝑡) 
where the 2 successive positions of the particle occurred. The duration is always measured by a clock fix in K*(𝑡). So we 
can apply the relation above for the duration time associated to a particle:  

∀ particle  𝑎:  𝑑𝑡∗ = 𝑑𝑡∗ =
( )

 

Note 3 : On the Lorentz transformation 

A more general Lorentz transformation is: 

𝑡 − 𝑡

𝒓𝒂(𝑡 ) − 𝑹𝒄(𝑡) = 𝐿(𝑡).
𝑡∗ − 𝑡∗

𝒓𝒂
∗  <=> 

𝑡 − 𝑡 = 𝛾(𝑡) (𝑡∗ − 𝑡∗) +
𝜷

𝒓𝒂
∗

𝒓𝒂(𝑡 ) − 𝑹𝒄(𝑡) = 𝑐(𝑡∗ − 𝑡∗)𝛾(𝑡)𝜷 + 𝒓𝒂
∗ + (𝛾 − 1)

𝜷
. (𝜷𝒓𝒂

∗ )

  

For a movement of K* along x, we have the special Lorentz transformation principally used in this article:  

𝑡 − 𝑡 = 𝛾(𝑡) 𝑡∗ − 𝑡 ( )
∗ +

𝛽(𝑡)

𝑐
. 𝑥∗

𝑥 − 𝑋 = 𝛾(𝑡) 𝑐 𝑡∗ − 𝑡 ( )
∗ 𝛽(𝑡) + 𝑥∗

  

---------------- 

Now we express the action in the local frames K*(t): 

𝑆[{𝒓𝒂
∗ (𝑡∗), 𝑹𝒄(𝑡)}] = 𝐿∗ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡∗
, 𝑹𝐂, 𝑽𝐂

𝒕𝒂,𝟐
∗

𝒕𝒂,𝟏
∗

𝑑𝑡∗ 

Taking account 𝑑𝑡∗ =
( )

 and returnig to the Galilean frame K we have: 

𝑆 = 𝐿∗ {𝒓𝒂
∗ },

𝑑𝑡

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂

𝒕𝒂,𝟐
∗

𝒕𝒂,𝟏
∗

𝑑𝑡∗

𝑑𝑡
𝑑𝑡 =

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂

𝛾(𝑽𝐂)
𝑑𝑡 

So far, nothing new. 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝒓𝒂
∗  :  

 relative to the internal time 𝑡∗of K*: 𝒓𝒂
∗

∗  ; 

 but instead relative to time t of K: 𝒓𝒂
∗

. 

That is to say, the Lagrangien considered is 𝐿′ {𝒓𝒂
∗ },

𝒓𝒂
∗

, 𝑹𝐂, 𝑽𝐂 ≡
∗ {𝒓𝒂

∗ }, (𝑽𝐂)
𝒓𝒂

∗

(𝑽𝐂)
, instead of 

using the most « natural » 𝐿 {𝒓𝒂
∗ },

𝒓𝒂
∗

∗ , 𝑹𝐂, 𝑽𝐂 ≡
∗ {𝒓𝒂

∗ },
𝒓𝒂

∗

∗

(𝑽𝐂)
 

 

So, we can now calculate the momentum of the center of mass, with 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊: 



𝑷𝒄 ≡
𝜕𝐿

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝛾(𝑽𝐂)
 

= 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕

𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
+

1

𝛾(𝑽𝐂)

𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
 

 
𝑽𝐂 (𝑽𝐂)

=
𝑽𝐂

1 −
𝑽𝐂

𝟐

𝒄²
=

𝑽𝐂

𝒄²

𝑽𝐂
𝟐

𝒄²

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
 

 
𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝒓𝒂
∗

= ∑
(𝑽𝐂)

𝒓𝒂
∗

𝑽𝐂

∗

(𝑽𝐂)
𝒓𝒂

∗ = ∑
𝒓𝒂

∗
𝑽𝐂

𝟐

𝒄²

/

𝑽𝐂

∗

𝒓𝒂
∗

∗

 

=
𝑑𝒓𝒂

∗

𝑑𝑡

⎝

⎛

1
2

2
𝑽𝐂

𝒄²

1 −
𝑽𝐂

𝟐

𝒄²

/

⎠

⎞
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

=
𝑑𝒓𝒂

∗

𝑑𝑡
𝛾 (𝑽𝐂)

𝑽𝐂

𝒄²

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

𝑷𝒄 = 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
+

1

𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
𝛾 (𝑽𝐂)

𝑽𝐂

𝒄²

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
−𝐿∗ {𝒓𝒂

∗ }, 𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²

⎝

⎛ 𝛾
𝑑𝒓𝒂

∗

𝑑𝑡

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

⎠

⎞ 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²
∑

𝒓𝒂
∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  since 𝒓𝒂
∗

∗ = 𝛾(𝑽𝐂)
𝒓𝒂

∗

 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∑
𝒓𝒂

∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  is the internal energy. 

So we have our relation. 

𝐸∗ is relative to the hyperplane 𝑡∗=cte, the mass 𝑀 =
∗

²
 is dealing with events ( the spatio-

temporal positions of the particles) simultaneous in the frame K* and not in the frame K. This 

is well defined since 𝑡∗ = ∫
( )

 .  

𝑀 = 𝑀(𝑡∗) = 𝑀
𝑑𝑡′

𝛾(𝑡′)
 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector momentum 
to demonstrate it (we don’t even use the expression 𝐿. 𝑑𝑡 = ∑ −𝑚 . 𝑐𝑑𝑠 ).  



We have to note, in the proof, the importance to freeze the right variable 𝒓𝒂
∗

 (and not 𝒓𝒂
∗

∗  ) in 

order to have the good expression. 

 
2.2. Momentum and energy 

2.2.1. Momentum 

We can also notice that 𝑷𝒂 ≡
𝒓𝒂

∗ = 𝛾∗𝑚 .
𝒓𝒂

∗

∗  , so 𝑷𝒂 =
∗

𝒓𝒂
∗

∗

which is surprising but reassuring for 

the intelligibility of this quantity: this is the same as the one we would have in the frame of the 
centre of mass K*. 

More over the total momentum 𝑷𝒕𝒐𝒕𝒂𝒍 associated to the Lagrangien  𝐿′ {𝒓𝒂
∗ },

𝒓𝒂
∗

, 𝑹𝐂, 𝑽𝐂  is 

 𝑷𝒕𝒐𝒕𝒂𝒍 = ∑
𝒓𝒂

∗ +
𝑽𝐂

= ∑ 𝑷𝒂 + 𝑷𝒄 = 𝑷𝒄 since by definition of K*: ∑ 𝑷𝒂 ≡ 0. This is interesting 

since despite considering the internal variables on the same level as the mass center, we obtain as it 
should the total momentum is the one associated to the mass center. 

-------------------- 

Proof: 

Indeed 𝐿. 𝑑𝑡 = − ∑ 𝑚 . 𝑐𝑑𝑠  => 𝐿 = − ∑ 𝑚 . 𝑐 = − ∑ 𝑚 . 𝑐
∗

∗

= − ∑ 𝑚 . 𝑐² ∗  

But 
. ∗ = 1 −

𝒓𝒂
∗

∗

𝟐

𝒄²
= −

𝒓𝒂
∗

∗

𝟐

𝒄²
= −

𝒓𝒂
∗ 𝟐

𝒄²
 since 𝒓𝒂

∗

∗
= 𝛾(𝑽𝐂)

𝒓𝒂
∗

 

Moreover  𝒓𝒂
∗

. ∗ = 𝒓𝒂
∗ −

𝒓𝒂
∗ 𝟐

𝒄²
= −

𝟐
𝒓𝒂

∗

𝒄²

𝟏

𝒓𝒂
∗ 𝟐

𝒄²

= −
𝒓𝒂

∗

𝒄²
𝛾. 𝛾∗ 

So 𝑷𝒂 = − 𝒓𝒂
∗ ∑ 𝑚 . 𝑐² ∗ = 𝑚 . 𝑐²

𝒓𝒂
∗

𝒄²
𝛾. 𝛾∗ = 𝑚 .

𝒓𝒂
∗

∗
𝛾∗ 

------------- 

2.2.2. Energy 

By definition the energy is: 𝐸 ≡ ∑
𝒓𝒂

∗
𝒓𝒂

∗

+
𝑽𝐂

𝑽𝒄 − 𝐿  

We can re-express it as: 

𝐸 = ∑ 𝑷𝒂
𝒓𝒂

∗

+ 𝑷𝒄𝑽𝒄 −
∗

 since 𝐿 =
∗

  

= ∑
∗

𝒓𝒂
∗

∗

𝒓𝒂
∗

+ 𝛾
∗

. 𝑽𝒄 𝑽𝒄 −
∗

 since 𝑷𝒂 ≡
𝒓𝒂

∗ =
∗

𝒓𝒂
∗

∗

  



=
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐿∗

𝛾
+ 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐 

=
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝛾𝑑𝑡∗
−

𝐿∗

𝛾
+ 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐 =
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗
− 𝐿

1

𝛾
+ 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐 

=
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐 =
𝐸∗

𝛾
+ 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐 =
𝐸∗ + 𝛾

𝐸∗

𝑐
. 𝑽𝒄

𝟐

𝛾
= 𝐸∗

1 + 𝛾 . 𝛽

𝛾
= 𝐸∗

1 +
𝛽

1 − 𝛽

𝛾
 

= 𝐸∗

1 − 𝛽 + 𝛽
1 − 𝛽

𝛾
= 𝐸∗

1
1 − 𝛽

𝛾
= 𝐸∗

𝛾

𝛾
= 𝛾𝐸∗ 

So we have, as it should: 
 

𝐸 = 𝛾𝐸∗  
 
We can also conventionally note: 𝐸 = 𝐸∗ + (𝛾 − 1)𝐸∗ where we observe, for a closed system 
(E=cte), an exchange of Energy between the internal energy 𝐸∗ and the kinetic energy (𝛾 − 1)𝐸∗, 
the one depending of the center of mass. 
 

2.3. The Euler-Lagrange equation for the internal particles and the mass center 

The Euler-Lagrange equations are : 

𝑑

𝑑𝑡

𝜕

𝜕𝑽𝐂
𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 =

𝜕

𝜕𝑹𝐂

𝐿′ {𝒓𝒂
∗ },

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂  

 ∀𝑎  
𝑑

𝑑𝑡

𝜕

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝐿′ {𝒓𝒂
∗ },

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 =

𝜕

𝜕𝒓𝒂
∗ 𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 =

𝜕

𝜕𝒓𝒂
∗

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝛾(𝑽𝐂)

=
1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ {𝒓𝒂

∗ }, 𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
 

Taking account the momentum expression above we have therefore: 

𝑑

𝑑𝑡
𝛾

𝐸∗

𝑐²
𝑽𝐂 =

𝜕

𝜕𝑹𝐂

𝐿′ {𝒓𝒂
∗ },

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂  

 ∀𝑎  
𝑑

𝑑𝑡
𝛾∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗
=

1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ {𝒓𝒂

∗ }, 𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
 

As 𝑑𝑡∗ =
(𝑽𝐂)

 , the second equation can be re-write: 

𝑑

𝑑𝑡∗
𝛾∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗
=

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡∗
 



It is remarkable that we obtain the same equation that we should obtain for the dynamic in a K* 
frame. However, we should notice that, since the center of mass can a priori accelerate, this is not 
the equation for a material point in a truly Galilean frame. Indeed, 𝑑𝑡∗ is not constant as it is equal to  

𝑑𝑡∗ =
(𝑽𝐂)

 where dt is the true constant differential element. 𝑽𝐂 varies, so 𝑑𝑡∗ has to vary also. 

This situation is totaly analog as the one encounter in Newtonian mechanic with Frenet-Serret frame. 
Indeed, the Frenet-Serret are not a frame of reference but only axis where we project the vectors of 
a particle (speed, acceleration). We do not derive the speed relative to this frame. The local Galilean 
frame used in this article is the relativistic analog of the Frenet-Serret frame. We use it to project the 
dynamical element of the material system (or field) but we do not derive these dynamical elements 
relative to this frame. This is why the inertial forces don’t appear in the internal dynamic. 

 
2.4. The material system seen as a material point: the reduced action 

We can write: 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝑷𝒄. 𝑽𝒄 − 𝐸 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾

𝐸∗

𝑐²
𝑽𝐂 . 𝑽𝒄 − 𝛾𝐸∗ 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾𝐸∗(𝛽 − 1) 𝑑𝑡 = 𝑷𝒂.

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡 

So  

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝑷𝒂.

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡  

If we ignore the final position of the internal degree of freedom, we have like a “spatial 
Maupertuis principle” (instead of a temporal used in [Landau Lifchitz]): 

𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

We can see that if all the internal momentum are constant, it exists a reduced action principle: 

𝑆 [𝑹𝒄(𝑡)] = −
𝐸∗

𝛾
𝑑𝑡 



We can surely generalize it for closed systems with internal separable variables where we’ve chosen 
well the variables with constant momentum. In this case, we see that for “stationary” system, in this 
restrict sense, the center of mass dynamic is the same as a material point. 

Note: my idea to consider the quantity 𝒓𝒂
∗

 comes initially from the willingness to make appear the 

Lagrangien of the apparent material point with this reduced action (in the same manner we make 

appear the virtual work theorem: 𝛿 ∫ [∑ 𝑷𝒂. 𝑑𝒓 − 𝐻[𝑷𝒂, 𝒓𝒂]𝑑𝑡] + (∑ 𝑷𝒂. 𝛿𝒓𝒂) = 0 and 

𝑷𝒂 = 𝒄𝒕𝒆=>  𝛿 ∫ 𝐻𝑷𝒂 𝒄𝒕𝒆,({𝒓𝒂}) 𝑑𝑡 = 0 ), cf .[Landau Lifchitz]). 

------------------- 

Proof: 

Indeed (do the same that [Landau lifchitz] but for space and not for time)): 

𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 𝑑 [𝑷𝒂. 𝒓𝒂
∗ ] + 𝛿 −

𝐸∗

𝛾
𝑑𝑡 + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 𝑷𝒂. 𝒓𝒂
∗ + 𝛿 −

𝐸∗

𝛾
𝑑𝑡 + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 −
𝐸∗

𝛾
𝑑𝑡 = 0 

------------------- 

2.5. The material system seen as a material point: the internal dynamic is known  
As already written: 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡 = 𝛾∗𝑚 .

𝑑𝒓𝒂
∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡 

We decide to say that we know the internal dynamic of the system.  

That is to say we know the maps: 

 {𝒓𝒂
∗ (𝑡∗)} 

 𝒓𝒂
∗

∗
(𝑡∗)  

So, it results that the mass center is in the field (in the [Landau Lifchitz] terms) of the internal 

degree of freedom{𝒓𝒂
∗ }. We can inject this information {𝒓𝒂

∗ (𝑡∗)}, 𝒓𝒂
∗

∗
(𝑡∗)  in the Action : 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 



= 𝛾∗𝑚 .
𝑑𝒓𝒂

∗

𝑑𝑡∗
𝑑𝒓𝒂

∗ −
𝐸∗(𝑡∗)

𝛾
𝑑𝑡  

= 𝛾∗𝑚 .
𝑑𝒓𝒂

∗

𝑑𝑡∗
𝑑𝒓𝒂

∗
𝒕𝒂,𝒇

∗

𝒕𝒂,𝒊
∗

+ −
𝐸∗(𝑡∗)

𝛾
𝑑𝑡 

= 𝑑𝑓{𝑡∗}
𝒕𝒂,𝒇

∗

𝒕𝒂,𝒊
∗

+ −
𝐸∗(𝑡∗)

𝛾
𝑑𝑡 

The least action principle can therefore be express with the following action: 

𝑆 [𝑹𝒄(𝑡), 𝑡] = 𝐿 (𝑡, 𝑹𝐂, 𝑽𝐂)𝑑𝑡 = −
𝐸∗(𝑡∗)

𝛾(𝑽𝐂)
𝑑𝑡 

With 𝑡∗ = 𝑡∗(𝑡) = ∫
( )

 

It is important to not that we a priori don’t know the expression of 𝑡∗ although we know the internal 
dynamic express relative to it. Indeed, knowing 𝑡∗ required to know the map 𝑽𝐂(𝑡)  (part of the 

solution we are looking for) since  𝑡∗ = ∫
( )

,which is absurd. Another proof:  knowing 𝑡∗, implies 

the undesirable consequence that  
∗ ∗( )

𝑑𝑡 = 𝐸∗ 𝑡∗(𝑡) 𝑑𝑡∗(𝑡) = 𝑑𝑓 𝑡∗(𝑡) = 𝑑𝑔(𝑡). . This would 

suppress (according to the least action principle) the only one term of the action that we want to 
maintain in order to find the trajectory. We see therefore that the center of mass is again in the field 
of a variable : his own proper time 𝑡∗, as for a material point. 

It seems difficult to find any relevant way in order to take account the constraint 𝑡∗ = ∫
( )

 in the 

Lagrangien. 

Despite this problem, we can make a stronger supposition that we know, in addition to the internal 
dynamic, the behaviour of the energy relative  to t (and not): 𝐸∗ 𝑡∗(𝑡)  noted abusively  𝐸∗(𝑡). 

Indeed even if we don’t know 𝑡∗(𝑡) we can pretend to know 𝐸∗(𝑡). More precisely 

 𝐸∗ 𝑡∗(𝑡) = (𝐸∗𝜊 𝑡∗)(𝑡). Knowing the map (𝐸∗𝜊 𝑡∗) is not sufficient to know the map 𝑡∗ since the 
inverse map 𝐸∗  could eventually not exist. 

Knowing  𝐸∗ 𝑡∗(𝑡)  and inject it in the Lagrangien, is equivalent to say that the center of mass is now 
in the field of the energy.   

This situation is automatically realized in the classical case where we put 𝑡∗ ≈ 𝑡 in the Energy. However, we do not make the same 

approximation for 𝑑𝑡∗, indeed we put 𝑑𝑡∗ ≈ 𝑑𝑡 1 −
²

. Otherwise, all the information would be lost:  

we do 
∗ ∗( )

𝑑𝑡 ≈ 𝐸∗(𝑡)𝑑𝑡 1 −
²

 but not 
∗ ∗( )

𝑑𝑡 ≈ 𝐸∗(𝑡)𝑑𝑡 

 

 

 



2.6. A strong link between the Einstein law and the dilatation of time 

𝑷𝒄 ≡
𝜕𝐿

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝛾(𝑽𝐂)
 

= 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕

𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
+

1

𝛾(𝑽𝐂)

𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
 

Since in special relativity, the space is isotropic (≡the laws of a material system in a homogeneous & 
isotropic gravitational field are isotropic) 𝛾(𝑽𝐂) depends only on the norm of 𝑽𝐂 or equivalently on 
𝑽𝐂

𝟐. 

 
𝑉C,x (𝑽𝐂)

= −
(𝑽𝐂)

(𝑽𝐂)

𝑉C,x

= −
(𝑽𝐂)

(𝑽𝐂
𝟐)

𝑉C,x

= −
(𝑽𝐂)

𝑽𝐂
𝟐

𝑉C,x

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

= −
(𝑽𝐂)

2𝑉C,x

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

 

 
𝑉C,x

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝒓𝒂
∗

= ∑
(𝑽𝐂)

𝒓𝒂
∗

𝑉C,x

∗

(𝑽𝐂)
𝒓𝒂

∗ = ∑
𝒓𝒂

∗ (𝑽𝐂)

𝑉C,x

∗

𝒓𝒂
∗

∗

=

∑
𝒓𝒂

∗

2𝑉C,x

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

∗

𝒓𝒂
∗

∗

= ∑
𝒓𝒂

∗

2𝑉C,x

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

∗

𝒓𝒂
∗

∗

 

𝑃 , =
𝜕𝐿

𝜕𝑉C,x

= 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
−

1

𝛾(𝑽𝐂)
2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

+
1

𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

1

𝛾(𝑽𝐂)
𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

1

𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡∗

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
 

= 2𝑉C,x

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

𝐸∗

𝛾(𝑽𝐂)
= 𝑉C,x

2𝑐

𝛾(𝑽𝐂)

𝜕𝛾(𝑽𝐂
𝟐)

𝜕𝑽𝐂
𝟐

𝐸∗

𝑐
 

Starting from 𝑷𝒄 ≡
{𝒓𝒂

∗ },
𝒓𝒂

∗
,𝑹𝐂,𝑽𝐂

𝑽𝐂

 , the fact that the space is isotropic in special relativity 

and without express explicitly 𝛾(𝑽𝐂),  we have: 

𝑷𝒄 = 𝑽𝐂. 𝛾 (𝑽𝐂
𝟐)

𝐸∗

𝑐
 

With 𝛾 (𝑽𝐂) ≡
(𝑽𝐂

𝟐)

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

 

And of course 𝛾(𝑽𝐂
𝟐) ≡ ∗ is dilatation of time 



This is the expression of the 3-momentum of a material system without knowing explicitly the 
relation between the dilatation of time and the speed of the mass center 𝑽𝐂. 

Now using this general result, we want to know if the Einstein law is sufficient to obtain the right 
expression of the dilatation of time 𝛾 relative to 𝑽𝐂, that is to say the expression 𝛾(𝑽𝐂

𝟐) 

We start from 
∗

= 𝑀. This expression means that the form of the impulsion of a system, with 

internal energy 𝐸∗,  is the same of a material point of mass M verifying 
∗

= 𝑀. 

 But for a material point we have 𝑷𝒄 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)𝑀, so the Einstein law implies 

∗

= 𝑀 => 𝛾 (𝑽𝐂
𝟐) =  𝛾(𝑽𝐂) 

𝛾(𝑽𝐂) =
(𝑽𝐂

𝟐)

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

 => =
(𝑽𝐂

𝟐)

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

=>  
(𝑽𝐂

𝟐)

(𝑽𝐂
𝟐)

=
𝑽𝐂

𝟐

 => − 𝑑[𝛾(𝑽𝐂
𝟐) ] =

𝑽𝐂
𝟐

  

=> − 𝑑[𝛾(𝑽𝐂
𝟐) ] =

𝑽𝐂
𝟐

 => − [𝛾(𝑽′𝐂
𝟐) ]𝑽𝐂

𝟐

=
[𝑽′𝐂

𝟐]
𝟎

𝑽𝐂
𝟐

 => −[𝛾(𝑽𝐂
𝟐) − 𝛾(0) ] =

𝑽𝐂
𝟐

 

=> 𝛾(0) −
𝑽𝐂

𝟐

𝑐
= 𝛾(𝑽𝐂

𝟐) => 𝛾(𝑽𝐂
𝟐) =

1

𝛾(0) −
𝑽𝐂

𝟐

𝑐

 

But 𝛾 (𝟎) =  𝛾(𝟎)=1 => 1 =
(𝟎)

(𝑽𝐂
𝟐)

𝑽𝐂
𝟐

𝑽𝐂
𝟐

=
(𝟎)

−
𝟏

(0)
𝑽𝐂

𝟐 /

𝑽𝐂
𝟐=0

=

(𝟎)

𝟏

( (0) ) / =
(𝟎)

𝟏
𝛾(0) = 𝛾(0) 

So 
∗

= 𝑀 with 𝑷𝒄 = 𝑽𝐂. 𝛾(𝑽𝐂
𝟐)𝑀 => 𝛾(𝑽𝐂

𝟐) =
𝑽𝐂

𝟐
 

We have the final result: 

Starting from 𝑷𝒄 ≡
{𝒓𝒂

∗ },
𝒓𝒂

∗
,𝑹𝐂,𝑽𝐂

𝑽𝐂

 , the fact that the space is isotropic in special relativity 

and without express explicitly 𝛾(𝑽𝐂),  we have the equivalence: 

𝐸∗ = 𝑀𝑐 <=>  𝛾(𝑽𝐂
𝟐) =

1

1 −
𝑽𝐂

𝟐

𝑐

 

With the definition  

𝐸∗

𝑐
= 𝑀 ≡ 

≡ the form of the 𝐢𝐦𝐩𝐮𝐥𝐬𝐢𝐨𝐧 of a system, with internal energy 𝐸∗,

is the same of a material point of mass M verifying 
∗

= 𝑀.  



Hence the Einstein law is not only a necessary condition of special relativity (via kinematic and least 
action principle), but also a sufficient condition for the dilatation factor expression 𝛾(𝑽𝐂

𝟐). 
In this sense, this theorem shows that the dilatation of time and the Einstein law are strongly related. 
So any proof of the dilatation of time, is a proof of the Einstein Law and inversely. 

This can also be illustrated by showing that any empirical deviation of the Einstein law ∆≡
∗

− 𝑀 is 

linked to a deviation of the Special Relativity relation 
𝑽𝐂

𝟐
= 1 −

𝑽𝐂
𝟐

𝟐 . 

∆≡
𝐸∗

𝑐
− 𝑀 =

𝛾(𝑽𝐂
𝟐)

𝛾 (𝑽𝐂
𝟐)

𝑀 − 𝑀 = 𝑀
𝛾(𝑽𝐂

𝟐)

𝛾 (𝑽𝐂
𝟐)

− 1 = 𝑀
𝛾(𝑽𝐂

𝟐)

2𝑐
𝛾(𝑽𝐂

𝟐)
𝑑𝛾(𝑽𝐂

𝟐)
𝑑𝑽𝐂

𝟐

− 1  

= 𝑀
𝛾(𝑽𝐂

𝟐)

2𝑐
𝑑𝛾(𝑽𝐂

𝟐)
𝑑𝑽𝐂

𝟐

− 1 = 𝑀
1

2𝑐
−2

𝑑[𝛾(𝑽𝐂
𝟐) ]

𝑑𝑽𝐂
𝟐

− 1 = 𝑀 1 −
1

𝑐
𝑑[𝛾(𝑽𝐂

𝟐) ]
𝑑𝑽𝐂

𝟐

 

So we have 

∆≡
∗

− 𝑀 = 𝑀 1 −
(𝑽𝐂

𝟐)

𝑽𝐂
𝟐

 or 𝑐
(𝑽𝐂

𝟐)

𝑽𝐂
𝟐

= ∆ = ∆ ≈ 1 +
∆  

If we measures 
(𝑽𝐂

𝟐)
 in function of 𝑽𝐂

𝟐, we can obtain an empiric law like 

 
(𝑽𝐂

𝟐)
= ∑ (𝑎 + 𝜀 ). ‖𝑽𝐂‖𝟐𝒏 with 𝑎 = (1, −1,0,0,0, … ) 

<=>
(𝑽𝐂

𝟐)
= (1 + 𝜀 ) + (−1 + 𝜀 ). 𝑽𝐂

𝟐 + ∑ 𝜀 . ‖𝑽𝐂‖𝟐𝒏 

=>
𝑑[𝛾(𝑽𝐂

𝟐) ]

𝑑𝑽𝐂
𝟐

= 𝜀 − 1 + 2 𝜀 . ‖𝑽𝐂‖𝟐𝒏−𝟏 

Then we  have the following relation between the empiric deviation of the 2 law: 

𝑐 𝜀 − 1 + 2 𝜀 . ‖𝑽𝐂‖𝟐𝒏−𝟏 = 1 +
∆

𝑀
 

 

 

 

 

 

 

 



Any deviation of the Einstein law is linked to a deviation of the expression of the dilatation of time :     

𝑐 𝜀 − 1 + 2 𝜀 . ‖𝑽𝐂‖𝟐𝒏−𝟏 ≈ 1 +
∆

𝑀
 

with 

 ∆≡
∗

− 𝑀 

 
(𝑽𝐂

𝟐)
= (1 + 𝜀 ) + (−1 + 𝜀 ). 𝑽𝐂

𝟐 + ∑ 𝜀 . ‖𝑽𝐂‖𝟐𝒏 

This is another way to express the link between the 2 laws. 

2.7. Questions about the meaning of events and physical quantities used in the proof 
2.7.1. The meaning of a speed    

There is a priori a problem with the speed 𝒓𝒂
∗

 since it combines 2 quantities that each relies to 2 
different references frames: K* for 𝑑𝒓𝒂

∗  and K for 𝑑𝑡. It may be thought to be ill-defined, which would 
break the demonstration.  

In many textbook like in [Yvan Simon] we can “traditionally” write 𝒓𝒂
∗

=
𝒓𝒂

∗

∗

∗

 , and according to the 

Lorentz Transformation 
∗

=
∗ ∗

=   with 𝑑𝑡 ≡ 𝛾. 𝑑𝑡∗ and 𝑑𝑡 ≡ 𝛾 𝑑𝑥∗ . 

𝑑𝒓𝒂
∗

𝑑𝑡
=

𝑑𝒓𝒂
∗

𝑑𝑡 + 𝑑𝑡
=

𝑑𝒓𝒂
∗

𝛾 𝑑𝑡∗ +
𝛽
𝑐

𝑑𝑥∗
 

However we don’t use this textbook (or traditional) formula above in this article but another 
instead (consequently 𝑑𝒓𝒂

∗  has also another meaning): 
𝑑𝒓𝒂

∗

𝑑𝑡
=

𝑑𝒓𝒂
∗

𝑑𝑡
=

𝑑𝒓𝒂
∗

𝛾𝑑𝑡∗
 

 So what the 2 expressions really mean, why are we using the second whereas the first ? and is there 
any sense to use the second ? The latter question is important since my proof is totally based on it. 
 

a. In the first expression 𝒓𝒂
∗

=
𝒓𝒂

∗

∗ ∗
 , we are actually using the Lorentz transformation about 

the 2 same two events seen in 2 different Galilean Frames K and K*: 
 𝑎 = 𝑐𝑡 ∗ , 𝒓𝒂, ∗ 𝑡 ∗

∗
 = 𝑐𝑡 , 𝒓𝒂(𝑡 )  

 𝑎 = 𝑐 𝑡 ∗ + 𝑑𝑡 ∗ , 𝒓𝒂, ∗ 𝑡 ∗ + 𝑑𝑡 ∗
∗

= 𝑐 𝑡 + (𝑡 − 𝑡 ) , 𝒓𝒂(𝑡 ) + 𝑑𝒓𝒂(𝑡 )   

Indeed, at the time t1 of K we associate to the center of mass C, at the position 𝑥 (𝑡 ) . Any  
coordinate 𝑐𝑡 ∗ , 𝑥 ∗

∗  of the local (current Galiean ) reference frame K* is related to that of K 

(𝑐𝑡, 𝑥)  with the Lorentz transformation: 

⎩
⎪
⎨

⎪
⎧𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . 𝑐 𝑡 ∗ −

𝑑𝑡

𝛾
+ 𝛽 . 𝑥 ∗ − 𝑥 , ∗

𝑥 − 𝑥 (𝑡 ) = 𝛾 . 𝑥 ∗ − 𝑥 , ∗ + 𝛽 . 𝑡 ∗ −
𝑑𝑡

𝛾

  

<=> 
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . 𝑐 𝑡 ∗ − 𝑡 ( )

∗ + 𝛽 . 𝑥 ∗

𝑥 − 𝑥 (𝑡 ) = 𝛾 . 𝑥 ∗ + 𝛽 . 𝑡 ∗ − 𝑡 ( )
∗

  

 



 𝑡 ( )
∗ ≡ ∫   the time seen from the clock in C ; 

 𝑥 , ∗ ≡ 0 by deciding that C is the spatial origin of the current K*. 

 𝛾 , 𝑡 ( )
∗ , 𝛽  are constants associated to the Lorentz transformation at the time t1. 

So we simply apply this transformation for the 2 events: 
 On one hand:  

d(𝑐. 𝑡 − 𝑐. 𝑡 ) ≡ (𝑐. 𝑡 − 𝑐. 𝑡 ) − (𝑐. 𝑡 − 𝑐. 𝑡 ) = (𝑐. 𝑡) − 𝑐. 𝑡 − (𝑐. 𝑡) + 𝑐. 𝑡 = 𝑐. 𝑑𝑡 
 On the other hand: (𝑐. 𝑡 − 𝑐. 𝑡 ) − (𝑐. 𝑡 − 𝑐. 𝑡 ) = 

= 𝛾 . 𝑐 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥 ∗ − 𝛾 . 𝑐 𝑡 ∗ − 𝑡 ( )

∗ + 𝛽 . 𝑥 ∗  

= 𝛾 𝑐 𝑡
,

∗ − 𝑡
,

∗ + 𝛽 . 𝑥
,

∗ − 𝑥
,

∗  since 𝛾 , 𝑡∗  & 𝛽  are constant 

= 𝛾 𝑐𝑑𝑡 ∗ + 𝛽 . 𝑑𝑥 ∗  

So we got what we expected  𝑐. 𝑑𝑡 = 𝛾 𝑐. 𝑑𝑡 ∗ + 𝛽 . 𝑑𝑥 ∗  

b. Now what is the meaning of the second expression 𝒓𝒂
∗

=
𝒓𝒂

∗

=
𝒓𝒂

∗

∗  ? 

The answer of the question need to clarify what we are actually doing in the reasoning of this article. 
First, we start to suppose the knowledge of the movement of the center of mass C, for each time t of 
K. This knowledge imposes the movement of the reference frame K*  since we choose to define it 
such that, around each time t, it coincides with the family of Galilean reference frame K∗(t)

∈
 

o in a uniform rectilinear translation relative to K (with the speed of C: 𝑽𝑪/𝐊∗); 
o and having for spatial origin the position of C. 

So we have parameterized the reference frame K* with the time 𝑡  of K with a map, say g: 

𝒈: 𝑡 → 𝐾∗(𝑡 ) 𝑎𝑙𝑠𝑜 𝑛𝑜𝑡𝑒𝑑 𝐾∗ 

Secondly, what are the events involved in the two frames ? We are studying a particle “a” of a 
material system with C as its mass center. We can a priori think that, at the instant 𝑡  of K, since we 
study an event 𝑐𝑡 , 𝑥 (𝑡 )  , we have to study in 𝐾∗(𝑡 ) the same event seen with the different 

coordinate due to the direct application of the Lorentz transformation to 𝑐𝑡 , 𝑥 (𝑡 )  ...But it is 

actually not the case.  

Indeed, at the instant 𝑡  of K we apply the map g defined above and we observe in 𝐾∗(𝑡 ) all the 
elements which are simultaneous with the event associated to the spatio-temporal position of C:  
(𝑐𝑡 , 𝑥 ) . 

So contrary to the case 1), in the case 2): we are not studying the same event (the same spatio-
temporal position of the partcicle “a”) in two different frame but : 

 An event 𝑐𝑡 , 𝑥 (𝑡 )  in K; 
 And an event E = 𝑐. 𝑡 ( )

∗ , 𝑥 , ∗
∗ in 𝐾∗(𝑡 ) defined by its simultaneity with (𝑐𝑡 , 𝑥 ) .  

By the relativity of the simultaneity, this event E  in 𝐾∗(𝑡 ) cannot be associated to the instant 𝑡  of 
K. In fact, only the event (𝑐𝑡 , 𝑥 )  is analysed with the two reference frame K & 𝐾∗(𝑡 ). So we 
understand why we cannot use the expression of the case a). 
In order to visualize the situation, we show below the schematic view of what we are truly doing. 



 

This schematic view use the 2 following expressions calculated in ANNEX: 

 𝑐. 𝑡( ∗ )(𝑥) = 𝑐. 𝑡 +
( )

−
.

  

 𝑐. 𝑡( ∗ )(𝑥) = 𝑐. 𝑡 + 𝛽 . (𝑥 − 𝑥 (𝑡 )) +
∗

 

We also use the fact that, according to the definition of the reference frame of the centre of mass, 
the orientation all the hyperplane of simultaneity of 𝐾∗(𝑡 ) are (around 𝑡 ): 

o the hyperplanes 𝑡 ∗ = 𝑡 ( )
∗   

o and all the other separated by 𝑑𝑡 ∗ =  

Indeed, thanks to the Lorentz transformation between the reference frame K and  𝐾∗ ≡ 𝐾∗(𝑡 )  
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )

∗ + 𝛽 . 𝑥 ∗

𝑥 − 𝑥 (𝑡 ) = 𝛾 . 𝑥 ∗ + 𝛽 . 𝑡 ∗ − 𝑡 ( )
∗

 , we have 

 𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥 ∗ => 𝑐. 𝑡 = 𝑐. 𝑡 + 𝛾 . c 𝑡 ∗ − 𝑡 ( )

∗ + 𝛽 . 𝑥 ∗  

=> 𝑐. 𝑡( ∗ )(c𝑡 ∗)  = 𝑐. 𝑡 + 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑐𝑡𝑒  

Its results that relative to K, events situated, at rest, at the origin of 𝐾∗ (that is to say C) and having 
the time 𝑡 ∗ are observed at the time 𝑡( ∗ )(c𝑡 ∗)  = 𝑡 + 𝛾 . 𝑡 ∗ − 𝑡 ( )

∗ . 

This situation is of course relevant for the centre of mass C between the instant 𝑡  and 𝑡 : 

𝑡 − 𝑡 = 𝛾 . 𝑡 ∗ − 𝑡 , ∗  <=> 𝑡 ∗ − 𝑡 ( )
∗ = . 



This relation also relevant to all couples of events having the same position (at rest) in 𝐾∗(𝑡 ). So, we 
have the relation affirmed in 2) and showed in the picture above. 

The particle event of the reference frame K* are also parameterized by the time 𝑡 of K 
Indeed, we can define for a particle “a” a map: 

𝒈𝒂: 𝑡 → E = 𝑐. 𝑡 ( )
∗ , 𝑥 , ∗

∗
 

That is to say, at each time 𝑡  of K, we associate a frame 𝐾∗(𝑡 ) , then the event E  associated to the 
particle is the one localized in the hyperplane of 𝐾∗(𝑡 )  which contain also C at the instant 𝑡 . 
We are not saying that the particle “a” is seen at the instant  𝑡  in 𝐾∗(𝑡 ) (a non-sense in relativity) 
but instead it is associated to the instant  𝑡  in the map 𝒈𝒂 sense: indeed, the hyperplane of 
simultaneity of 𝐾∗(𝑡 ) is parameterized by 𝑡 . 
 
In order to more untangle these relation,  we give just below the explicit expression of E = E  in K.  
To insist in the fact that E  is parameterized by the time 𝑡 , I will always write it E . 

2.7.2. What is the coordinates of Et1  in K? 
We suppose the knowledge of the trajectory of C and the internal particle “a” relative to K 𝑥 (𝑡). 

At 𝑡 , E  has the same plane 𝑐. 𝑡∗ = 𝑐𝑡 ∗  than C which has the coordinate 𝑐𝑡 ( )
∗ , 0∗

∗ =

𝑐. ∫ , 0∗
∗
 in 𝐾∗(𝑡 ). 

Moreover at a given coordinate x of “a” in K we have: 

𝑐. 𝑡( . ∗
( )

∗ )(𝑥) = 𝑐. 𝑡 + 𝛽 . (𝑥 − 𝑥 (𝑡 )) 

What can we choose for x ?  

The expression was calculated for a particle “a” on the x-axis of K at a time of K where the function 
𝑥 (𝑡) is the x-coordinate associate to 𝑐. 𝑡( . ∗

( )
∗ )  which different from  𝑡  with a certain duration 

∆𝑡 . The time of K where E  took place is : 

𝑐. 𝑡( . ∗
( )

∗ ) 𝑥 (𝑡 + ∆𝑡 ) = 𝑐. 𝑡 + 𝛽 . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )) 

We can notice that, knowing the trajectories 𝑥 (𝑡) , 𝑥 (𝑡) ,  ∆𝑡   is a solution of the equation: 

∆𝑡 =
𝛽

𝑐
. (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )) 

o In a particular case where 𝑥 (𝑡 + ∆𝑡 )  can be developed at the first order, the latter 
equation is reduced to:  

∆𝑡 ( ) ≈
𝛽

𝑐
. 𝑥 (𝑡 ) +

𝑑𝑥

𝑑𝑡
(𝑡 )∆𝑡 ( ) − 𝑥 (𝑡 )  

<=> ∆𝑡 ( ) 1 −
𝛽

𝑐

𝑑𝑥

𝑑𝑡
(𝑡 ) ≈

𝛽

𝑐
. (𝑥 (𝑡 ) − 𝑥 (𝑡 )) 

<=>∆𝑡 ≈ ∆𝑡 ( ) ≡
𝛽

𝑐
.
𝑥 (𝑡 ) − 𝑥 (𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
 



o In a particular case where 𝑥 (𝑡 + ∆𝑡 )  can be developed at the second order, the latter 
equation is reduced to:  

∆𝑡 ( ) ≈
𝛽

𝑐
. 𝑥 (𝑡 ) +

𝑑𝑥

𝑑𝑡
(𝑡 ). ∆𝑡 ( ) +

𝑑 𝑥

𝑑𝑡
(𝑡 ).

∆𝑡 ( )

2
− 𝑥 (𝑡 )  

<=> 0 ≈
𝛽

2𝑐

𝑑 𝑥

𝑑𝑡
(𝑡 ) ∆𝑡 ( ) +

𝛽

𝑐

𝑑𝑥

𝑑𝑡
(𝑡 ) − 1 ∆𝑡 ( ) +

𝛽

𝑐
[𝑥 (𝑡 ) − 𝑥 (𝑡 )] 

<=>0 ≈
𝛽

2

𝑎

𝑐
(𝑡 ) ∆𝑡 ( ) − 1 − 𝛽

𝑉

𝑐
(𝑡 ) ∆𝑡 ( ) + ∆𝑡 ( ) 1 − 𝛽

𝑉

𝑐
(𝑡 )  

We can try to solve it directly, using the standard solution of the second order equation, but it should 
be not useful since the solution will not be applicable in the usual case where there is no 
acceleration...However, there is another way to solve it with the perturbation  𝜀 of the first order 

solution ∆𝑡 ( ): ∆𝑡 ( ) = ∆𝑡 ( ) + 𝜀 

0 ≈
𝛽

2

𝑎

𝑐
(𝑡 ) ∆𝑡 ( ) − ∆𝑡 ( ) − ∆𝑡 ( ) 1 − 𝛽

𝑉

𝑐
(𝑡 )  

<=> ∆𝑡 ( ) − ∆𝑡 ( ) ≈
( )

( )
∆𝑡 ( )  

Using ∆𝑡 ( ) = ∆𝑡 ( ) + 𝜀, we have: 

𝜀 ≈

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
∆𝑡 ( ) + 𝜀 =

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
∆𝑡 ( ) + 𝜀 + 2𝜀∆𝑡 ( )  

<=>  𝜀 =

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
∆𝑡 ( ) + 𝜀 + 2𝜀∆𝑡 ( )  

<=>  𝜀 ≈
( )

( )
∆𝑡 ( ) + 2𝜀∆𝑡 ( )  with ∆𝑡 ( ) ≫ 𝜀 

<=>  𝜀 1 − 2∆𝑡 ( )

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
≈

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
∆𝑡 ( )  

<=>  𝜀 ≈

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )

1 − 2∆𝑡 ( )

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )

∆𝑡 ( )  



=> 𝜀 ≈

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
. ∆𝑡 ( ) 1 + 2∆𝑡 ( )

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
≈

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
. ∆𝑡 ( )  

∆𝑡 ( ) = ∆𝑡 ( ) +

𝛽
2

𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
∆𝑡 ( )  

With ∆𝑡 ( ) ≡ .
( ) ( )

( )
 

The traditional calculation gives: 

∆= 1 − 𝛽
𝑉

𝑐
(𝑡 ) − 4.

𝛽

2

𝑎

𝑐
(𝑡 ). ∆𝑡 ( ) 1 − 𝛽

𝑉

𝑐
(𝑡 )  

<=>∆= 1 − 𝛽
𝑉

𝑐
(𝑡 ) 1 − 𝛽

𝑉

𝑐
(𝑡 ) +

𝑎

𝑐
(𝑡 ). 2∆𝑡 ( )  

<=>∆= 1 − 𝛽
𝑉

𝑐
(𝑡 ) 1 − 𝛽

𝑉

𝑐
𝑡 + 2∆𝑡 ( )  

∆> 0 <=> 1 > 𝛽 𝑡 +. ∆𝑡 ( )  which is always true 

=> ∆𝑡 ( ) =

1 − 𝛽
𝑉
𝑐

(𝑡 ) ± 1 − 𝛽 𝑉 (𝑡 ) 1 − 𝛽
𝑉
𝑐

𝑡 + 2∆𝑡 ( )

𝛽
𝑎
𝑐

(𝑡 )
 

<=> ∆𝑡 ( ) =

1 − 𝛽
𝑉
𝑐

(𝑡 ) ± 1 − 𝛽
𝑉
𝑐

(𝑡 ) 1 − 𝛽
𝑉
𝑐

(𝑡 ) +
𝑎
𝑐

(𝑡 ). 2∆𝑡 ( )

𝛽
𝑎
𝑐

(𝑡 )
 

<=> ∆𝑡 ( ) =

1 − 𝛽
𝑉
𝑐

(𝑡 )

𝛽
𝑎
𝑐

(𝑡 )
⎣
⎢
⎢
⎡
1 ±

1 − 𝛽
𝑉
𝑐

(𝑡 ) +
𝑎
𝑐

(𝑡 ). 2∆𝑡 ( )

1 − 𝛽
𝑉
𝑐

(𝑡 )
⎦
⎥
⎥
⎤
 

<=> ∆𝑡 ( ) =
1 − 𝛽 𝑉 (𝑡 )

𝛽
𝑎
𝑐

(𝑡 )
1 ± 1 −

𝛽
𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
. 2∆𝑡 ( )  

<=> ∆𝑡 ( ) ≈

1 − 𝛽
𝑉
𝑐

(𝑡 )

𝛽
𝑎
𝑐

(𝑡 )
1 ± 1 ∓

𝛽
𝑎
𝑐

(𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
. ∆𝑡 ( )  

<=> ∆𝑡 ( ) ≈ ∓∆𝑡 ( ) + (1 ± 1)

1 − 𝛽
𝑉
𝑐

(𝑡 )

𝛽
𝑎
𝑐

(𝑡 )
 

∆𝑡 ( ) ≈ ∆𝑡 ( ) ≡
𝛽

𝑐
.
𝑥 (𝑡 ) − 𝑥 (𝑡 )

1 − 𝛽
𝑉
𝑐

(𝑡 )
 

𝑜𝑟 ≈ −∆𝑡 ( ) + 2

1 − 𝛽
𝑉
𝑐

(𝑡 )

𝛽 𝑎 (𝑡 )
 



As explained, this solution relevant only when 𝑎 (𝑡 ) ≠ 0 

I will not use this one, I will use the first showed above. 

-------------------------------------------------------- 

The position where E  takes place in K is therefore 𝑥 (𝑡 + ∆𝑡 ): 

With  ∆𝑡 ≈ ∆𝑡 ( ) +
( )

( )
∆𝑡 ( ) , and ∆𝑡 ( ) ≡ .

( ) ( )

( )
 

We have finally: 

E = 𝑐. 𝑡 ( )
∗ , 𝑥 , ∗

∗ = 𝑐(𝑡 +  ∆t), 𝑥 (𝑡 +  ∆𝑡 )  

with  ∆𝑡 = . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )), that we can call it the shift time : the time to wait after 𝑡  

in order to have the event “the particle “a” arrives on the hyper plane of 𝐾∗(𝑡 ) ".  

We can notice that: 

 E ≠ (𝑐. 𝑡 , … )  

 𝒈𝒂: 𝑡 → E = 𝑐. (𝑡 + ∆𝑡 ), 𝑥 (𝑡 + ∆𝑡 )  
We clearly see that E  is parameterized by 𝑡  although it is not seen at this instant in K but at the 
instant   𝑡 = 𝑡 + ∆𝑡 . 

Another interesting point is that, at the 𝑡  , the internal events that take place in 𝐾∗(𝑡 ) are not of 
the kind 𝑐(𝑡 ), 𝑥 (𝑡 )  but the “shifted” version 𝑐(𝑡 +  ∆𝑡 ), 𝑥 (𝑡 + ∆𝑡 ) . That is to say the 

internal events considered (spatio-temporal position of particle) will happen in the future (or the 
past, depending the position compared to the mass centre). The weird consequence (another one of 
relativity...) is that the internal energy and so the mass, is relative to the future and the past of the 
material system (and also field as we will see below). 

2.7.3. What is the difference of coordinates of the particle for infinitesimal interval dt, 
seen in K ? 

With the same reasoning, we have at the instant 𝑡  just after 𝑡 : 

E = 𝑐. 𝑡 ( )
∗ , 𝑥 , ∗

∗ = 𝑐(𝑡 +  ∆𝑡 ), 𝑥 (𝑡 +  ∆𝑡 )  

With  ∆𝑡 ≈ ∆𝑡 ( ) +
( )

( )
∆𝑡 ( ) , and ∆𝑡 ( ) ≡ .

( ) ( )

( )
 

So by doing the simple algebraic difference in K, we have: 

E − E = 𝑐. (𝑡 + ∆𝑡 ), 𝑥 (𝑡 +  ∆𝑡 ) − 𝑐. (𝑡 + ∆𝑡 ), 𝑥 (𝑡 +  ∆𝑡 )  

= 𝑐. (𝑡 − 𝑡 ) + 𝑐(∆𝑡 − ∆𝑡 ), [𝑥 ]  ∆
 ∆  

With [𝑥 ]  ∆
 ∆

≡ 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 +  ∆𝑡 ) 



When (𝑡 − 𝑡 ) tends to dt (no 2nd degree), we have: 

o 𝛽 = 𝛽 + (𝑡 − 𝑡 ) 

o ∆𝑡 = ∆𝑡 + (𝑡2 − 𝑡1)
𝑑

𝑑𝑡
∆𝑡

𝑡1

 

With: 

o ∆𝑡 ≈ ∆𝑡 ( ) +
( )

( )
∆𝑡 ( )  

o ∆𝑡 ( ) ≡ .
( ) ( )

( )
 

o ∆𝑡 = ∆𝑡 ( ) + ∆𝑡 ( )  

Moreover [𝑥 ]  ∆
 ∆

= 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 +  ∆𝑡 ) = 𝑥 (𝑡 + (𝑡 − 𝑡 ) +  ∆𝑡 ) − 𝑥 (𝑡 +  ∆𝑡 ) 

= 𝑥 (𝑡 + (𝑡 − 𝑡 ) +  ∆𝑡 ) − 𝑥 (𝑡 + ∆𝑡 ) 

= 𝑥 𝑡 + (𝑡 − 𝑡 ) +  ∆𝑡 +
d∆𝑡

𝑑𝑡
(𝑡 − 𝑡 ) − 𝑥 (𝑡 +  ∆𝑡 ) 

= 𝑥 𝑡 +  ∆𝑡 + (𝑡 − 𝑡 ) 1 +
d∆𝑡

𝑑𝑡
− 𝑥 (𝑡 +  ∆𝑡 ) 

= 𝑥 (𝑡 +  ∆𝑡 ) +
d𝑥

𝑑𝑡  ∆
(𝑡 − 𝑡 ) 1 +

d∆𝑡

𝑑𝑡
− 𝑥 (𝑡 +  ∆𝑡 ) 

[𝑥 ]  ∆
 ∆

= (𝑡 − 𝑡 ).
d𝑥

𝑑𝑡  ∆
. 1 +

d∆𝑡

𝑑𝑡
 

=> E − E = 𝑐. (𝑡 − 𝑡 ) + 𝑐(∆𝑡 − ∆𝑡 ), [𝑥 ]  ∆
 ∆  

= 𝑐. (𝑡 − 𝑡 ) + 𝑐
d∆𝑡

𝑑𝑡
(𝑡 − 𝑡 ), (𝑡 − 𝑡 ).

d𝑥

𝑑𝑡  ∆
. 1 +

d∆𝑡

𝑑𝑡
 

= 𝑐. (𝑡 − 𝑡 ) 1 +
d∆𝑡

𝑑𝑡
. 1,

1

𝑐

d𝑥

𝑑𝑡  ∆
 

=>E − E = 𝑐. (𝑡 − 𝑡 ) 1 +
d∆𝑡

𝑑𝑡
. 1,

1

𝑐

d𝑥

𝑑𝑡  ∆
 

With: 

o ∆𝑡 ≈ ∆𝑡 ( ) +
( )

( )
∆𝑡 ( )  

o ∆𝑡 ( ) ≡ .
( ) ( )

( )
 



o ∆𝑡 = ∆𝑡 ( ) + ∆𝑡 ( )  

We can use this difference of events in order to calculate the speed of a particle “a” with these 2 
events, we have: 

𝑥 − 𝑥

𝑡 − 𝑡
,

=
𝑉 (𝑡 +  ∆𝑡 )

1 +
d∆𝑡
𝑑𝑡

 

The speed associated to the 2 events E & E  is actually different than the one associated to the 
speed measured by K in the standard way. It is of course different to study in K 2 events observed at 
the instant 𝑡  & 𝑡 + 𝑑𝑡 than the 2 others at 𝑡 +  ∆𝑡  & 𝑡 + ∆𝑡 . 

We recover the standard speed at a given time t when: 
 The particle is sufficiently close to the mass centre C =>∆𝑡 ( ) ≈ 0  

 the relative position of the particle and C is constant ∆𝑡 ( ) = 0;  

 the speed of C, the speed and the acceleration of “a” a are constant = 0. 

2.7.4. What is the difference of coordinates of the particle for infinitesimal interval dt, 
seen in K* 

The first event is: 

E = 𝑐𝑡
( ), ∗ , 𝑥

( ), ∗
∗

= 𝑐𝑡 ( )
∗ , 𝑥

( ), ∗

∗
= 𝑐. 𝑡 + 𝑐. ∆𝑡 , 𝑥 (𝑡 +  ∆𝑡 )  

Remark: we use the expression 𝑥
( ), ∗  as we have explained above that the events in 𝐾∗(𝑡 ) are 

parameterized via the map ga. 

According to Lorentz 
(𝑐. 𝑡 + 𝑐. ∆𝑡 ) − 𝑐. 𝑡 = 𝛾 . c 𝑡

( ), ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥

( ), ∗

𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 ) = 𝛾 . 𝑥
( ), ∗ + 𝛽 . 𝑡

( ), ∗ − 𝑡 ( )
∗

  

<=>

𝑐 𝑡
( ), ∗ − 𝑡 ( )

∗ = 𝛾 . (𝑐. 𝑡 + 𝑐. ∆𝑡 − 𝑐. 𝑡 ) − 𝛽 . (𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 ))

𝑥
( ), ∗ = 𝛾 . 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . (𝑐. 𝑡 + 𝑐. ∆𝑡 − 𝑐. 𝑡 )

  

<=>
𝑡

( ), ∗ = 𝛾 . 𝛽 . (𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 )) − 𝛽 . (𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 ))

𝑥
( ), ∗ = 𝛾 . 𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . 𝑐. ∆𝑡

  

<=>
𝑐 𝑡

( ), ∗ − 𝑡 ( )
∗ = 0 =>   𝑎𝑠 𝑖𝑡 𝑠ℎ𝑜𝑢𝑙𝑑

𝑥
( ), ∗ = 𝛾 . 𝑥 (𝑡 +  ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . 𝛽 . 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )

  

<=>
𝑡

( ), ∗ − 𝑡 ( )
∗ = 0

𝑥
( ), ∗ =

(  ∆ ) ( )
=

∆

.

  

We use ∆𝑡 = . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )) 

 



The second event is: 

E = 𝑐𝑡
( ), ∗ , 𝑥

( ), ∗
∗

= 𝑐. 𝑡 ( )
∗ , 𝑥

( ), ∗

∗
= 𝑐. (𝑡 + ∆𝑡 ), 𝑥 (𝑡 + ∆𝑡 )  

But, in point of view of 𝐾∗ we have also  

E = 𝑐. 𝑡
( ), ∗ , 𝑥

( ), ∗
∗

= 𝑐. 𝑡 + 𝛽 . (𝑥 (𝑡 ) − 𝑥 (𝑡 )), 𝑥 (𝑡 )  

Remark: 

o In the notation 𝑡
( ), ∗ we have to note the small change: this is the event in the 

hyperperplane of 𝐾∗(𝑡 ) parametrized at 𝑡  but seen by an observatory in the frame𝐾∗(𝑡 ). 
o 𝑐. 𝑡

( ), ∗ ≠ 𝑡 ( )
∗   a priori 

 

𝑐 𝑡
( ), ∗ − 𝑡 ( )

∗ = 𝛾 . 𝑐. (𝑡 + ∆𝑡 ) − 𝑐. 𝑡 − 𝛽 . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ))

𝑥 , ∗ = 𝛾 . 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . (𝑐. (𝑡 + ∆𝑡 ) − 𝑐. 𝑡 )
  

 

𝑐 𝑡𝑎 𝑡2
,𝐾

1

∗ − 𝑡 ( )
∗ = 𝛾 . 𝑐. (𝑡 + ∆𝑡 ) − 𝑐. 𝑡 − 𝛽 . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ) − 𝑥 (𝑡 ) + 𝑥 (𝑡 ))  

= 𝛾 . 𝑐. (𝑡 + ∆𝑡 ) − 𝑐. 𝑡 − 𝑐
∆

𝛽 − 𝛽 (−𝑥 (𝑡 ) + 𝑥 (𝑡 ))   

= 𝛾 . 𝑐. 𝑡 + 𝑐. ∆𝑡 − 𝑐. 𝑡 − 𝑐
∆

𝛽 − (𝑡2 − 𝑡1) 𝑉 (𝑡 )   

= 𝛾 . 𝑐. (𝑡 − 𝑡 ) + 𝑐. ∆𝑡 − 𝑐
∆

𝛽 − (𝑡2 − 𝑡1)𝛽   

= 𝛾 . 𝑐. ∆𝑡2 1 −
𝛽

𝛽
+ (𝑡2 − 𝑡1) 1 −

𝛽

𝑐
 

because  ∆𝑡 = ∆𝑡 + (𝑡 − 𝑡 ) ∆𝑡  

and ∆𝑡 = . (𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 )) 

= 𝛾 . 𝑐.

⎝

⎛∆𝑡

⎝

⎛1 −
𝛽

𝛽 +
𝑑𝛽
𝑑𝑡

(𝑡 − 𝑡 )
⎠

⎞ +
(𝑡 − 𝑡 )

𝛾

⎠

⎞ 

1

𝛽 +
𝑑𝛽
𝑑𝑡

(𝑡 − 𝑡 )
=

1

𝛽
+

𝑑

𝑑𝑋

1

𝑋

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) =

1

𝛽
+

−1

𝑋

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) 

=
1

𝛽
−

1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) 

= 𝛾 . 𝑐. ∆𝑡 1 − 𝛽
1

𝛽
−

1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) +

(𝑡 − 𝑡 )

𝛾
 

= 𝛾 . 𝑐. ∆𝑡
1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) +

(𝑡 − 𝑡 )

𝛾
 

= 𝛾 . 𝑐. ∆𝑡
1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) +

(𝑡 − 𝑡 )

𝛾
 

= 𝑐.
(𝑡 − 𝑡 )

𝛾
+ 𝛾 . 𝑐. ∆𝑡

1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) 



= 𝑐.
(𝑡 − 𝑡 )

𝛾
+ 𝛾 . 𝑐. ∆𝑡1 + (𝑡2 − 𝑡1)

𝑑

𝑑𝑡
∆𝑡1

𝑡1

1

𝛽

𝑑𝛽

𝑑𝑡
(𝑡 − 𝑡 ) 

 

𝑐 𝑡𝑎 𝑡2
,𝐾

1

∗ − 𝑡 ( )
∗

∗  

= 𝑐.
(𝑡2 − 𝑡1)

𝛾
𝑡1

+ 𝛾
𝑡1

.
𝑐. ∆𝑡

𝛽
𝑡1

𝑑𝛽
𝑡

𝑑𝑡 𝑡1

(𝑡2 − 𝑡1) 

 
But, since we use at each time a local Galilean frame, there are non acceleration for this frame (the condition for 

the use of Lorentz transformation): 
,

≡ 0 

 

𝑐 𝑡𝑎 𝑡2
,𝐾

1

∗ − 𝑡 ( )
∗ = 𝑐.

(𝑡2 − 𝑡1)

𝛾
𝑡1

 

 

𝑥
( ), ∗ = 𝛾 . 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . (𝑐. (𝑡 + ∆𝑡 ) − 𝑐. 𝑡 )  

= 𝛾 . 𝑥 (𝑡 + (𝑡2 − 𝑡1) + ∆𝑡 ) − 𝑥 (𝑡 ) − 𝛽 . 𝑐. ∆𝑡 + 𝑐. (𝑡2 − 𝑡1)  

= 𝛾 . 𝑥 𝑡 + (𝑡 − 𝑡 ) + ∆𝑡 + (𝑡 − 𝑡 )
𝑑

𝑑𝑡
∆𝑡 − 𝑥 (𝑡 ) − 𝛽 . 𝑐 ∆𝑡 + (𝑡 − 𝑡 )

𝑑

𝑑𝑡
∆𝑡 − 𝛽 . 𝑐. (𝑡 − 𝑡 )  

= 𝛾 . 𝑥 𝑡 + ∆𝑡 + (𝑡 − 𝑡 ) 1 +
𝑑

𝑑𝑡
∆𝑡 − 𝑥 (𝑡 ) − 𝛽 . 𝑐 ∆𝑡 + (𝑡 − 𝑡 ) 1 +

𝑑

𝑑𝑡
∆𝑡  

= 𝛾 . 𝑥 (𝑡 + ∆𝑡 ) +
𝑑

𝑑𝑡
𝑥

∆

. (𝑡 − 𝑡 ) 1 +
𝑑

𝑑𝑡
∆𝑡 − 𝑥 (𝑡 ) − 𝛽 . 𝑐 ∆𝑡 + (𝑡 − 𝑡 ) 1 +

𝑑

𝑑𝑡
∆𝑡  

= 𝛾 . 𝑥 (𝑡 + ∆𝑡 ) − 𝑥 (𝑡 ) + 𝑉 (𝑡 + ∆𝑡 ). (𝑡 − 𝑡 ) 1 +
𝑑

𝑑𝑡
∆𝑡 − 𝛽 . 𝑐∆𝑡 − 𝛽 . 𝑐(𝑡 − 𝑡 ) 1 +

𝑑

𝑑𝑡
∆𝑡  

= 𝛾 . 𝑐
∆𝑡

𝛽
− 𝛽 . 𝑐∆𝑡1 + (𝑡2 − 𝑡1). 1 +

𝑑

𝑑𝑡
∆𝑡1

𝑡1

𝑉 (𝑡 + ∆𝑡1) − 𝛽 . 𝑐  

= 𝛾 . 𝑐∆𝑡
1 − 𝛽

𝛽
+ (𝑡2 − 𝑡1). 1 +

𝑑

𝑑𝑡
∆𝑡1

𝑡1

𝑉 (𝑡 + ∆𝑡1) − 𝛽 . 𝑐  

= 𝛾 .
𝑐∆𝑡

𝛾

1

𝛽
+ (𝑡2 − 𝑡1). 1 +

𝑑

𝑑𝑡
∆𝑡1

𝑡1

𝑉 (𝑡 + ∆𝑡1) − 𝛽 . 𝑐  

= 𝛾 (𝑡2 − 𝑡1). 1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

. 𝑐
𝑉

𝑐
(𝑡 + ∆𝑡1) − 𝛽  

Because  𝑥
( ), ∗ =

(  ∆ ) ( )
=

∆

.
 

The expression of the 
 

𝑥
( ), ∗ − 𝑥

( ), ∗ = 𝛾 (𝑡2 − 𝑡1). 1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

. 𝑐
𝑉

𝑐
(𝑡 + ∆𝑡1) − 𝛽

𝑐 𝑡
( ), ∗ − 𝑡 ( )

∗
= 𝑐.

(𝑡2 − 𝑡1)

𝛾
𝑡1

 

 
 
 
 
 
 
 



2.7.5. What is the expression of the speed in K and K*and what are their relation (velocity 
addition formula)? 

Using the expression above, we calculate different speed for different frame. 
o Relative to the internal frame 𝐾∗(𝑡 ) 

𝑥
( ), ∗ − 𝑥

( ), ∗

𝑡
( ), ∗ − 𝑡

( ), ∗
=

𝛾 (𝑡2 − 𝑡1). 1 +
𝑑
𝑑𝑡

∆𝑡1
𝑡1

. 𝑐
𝑉
𝑐

(𝑡 + ∆𝑡1) − 𝛽

𝑐.
(𝑡2 − 𝑡1)

𝛾
𝑡1

 

o <=> ( ), ∗
( ), ∗

( ), ∗
( ), ∗

= 𝛾 1 +
𝑑

𝑑𝑡
∆𝑡

𝑡1

. 𝑉 (𝑡 + ∆𝑡1) − 𝑉 (𝑡 )  

 
 

o => 
( ), ∗

( ), ∗

𝑡2−𝑡1
= 𝛾 . 1 +

𝑑

𝑑𝑡
∆𝑡

𝑡1

. 𝑉 (𝑡 + ∆𝑡1) − 𝑉 (𝑡 )  

 
o A new velocity addition formula  

 

Since 
,

=
(  ∆ )

∆ , we have 

 
𝑥

( ), ∗ − 𝑥
( ), ∗

𝑡
( ), ∗ − 𝑡

( ), ∗
= 𝛾 1 +

𝑑

𝑑𝑡
∆𝑡1

𝑡1

. 𝑉 (𝑡 + ∆𝑡1) − 𝑉 (𝑡 )  

= 𝛾 1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

.
𝑥 − 𝑥

𝑡 − 𝑡
,

1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

− 𝑉 (𝑡 )  

= 𝛾 1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

.
𝑥 − 𝑥

𝑡 − 𝑡
,

1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

− 𝑉 (𝑡 )  

 

<=>

, ∗ , ∗

( ), ∗
( ), ∗

1+
𝑑

𝑑𝑡
∆𝑡1

𝑡1

+ 𝑉 (𝑡 ) =
,

1 +
𝑑

𝑑𝑡
∆𝑡1

𝑡1

 

 

<=> 
,

=

, ∗ , ∗

( ), ∗
( ), ∗

( ) 1+
𝑑

𝑑𝑡
∆𝑡1

𝑡1

1+
𝑑

𝑑𝑡
∆𝑡1

𝑡1

2  

<=> 
,

=

( ), ∗
( ), ∗

( ), ∗
( ), ∗

( ) 1+
𝑑

𝑑𝑡
∆𝑡1

𝑡1

1+
𝑑

𝑑𝑡
∆𝑡1

𝑡1

2  

 
 
 
 
 



o A second new velocity addition formula  
 

Since ( ), ∗
( ), ∗

𝑡2−𝑡1
= 𝛾 . 1 +

𝑑

𝑑𝑡
∆𝑡

𝑡1

. 𝑉 (𝑡 + ∆𝑡1) − 𝑉 (𝑡 )  

<=> 
( ), ∗

( ), ∗

𝑡2−𝑡1

1+
𝑑

𝑑𝑡
∆𝑡

𝑡1

+ 𝑉 (𝑡 ) = 𝑉 (𝑡 + ∆𝑡1) 

We use now: 
,

=
(  ∆ )

∆  

=>
,

=
∆

( ), ∗
( ), ∗

𝑡2−𝑡1

1+
𝑑

𝑑𝑡
∆𝑡

𝑡1

+ 𝑉 (𝑡 )  

<=> 
,

=

( ), ∗
( ), ∗

𝑡2−𝑡1
( ) 1+

𝑑

𝑑𝑡
∆𝑡

𝑡1

∆
 

 
With  

o ∆𝑡 ≈ ∆𝑡 ( ) +
( )

( )
∆𝑡 ( )  

o ∆𝑡 ( ) ≡ .
( ) ( )

( )
 

o ∆𝑡 = ∆𝑡 ( ) + ∆𝑡 ( )  

2.7.6. Conclusion about the proof 
We can conclude that although during the proof we use a particular duration of time 𝑡 = 𝛾𝑑𝑡∗ , it is 
well defined as I try to convince the reader in this paragraph 2.6.  We should carefully take care to 
the events implied by this way of reasoning. 

 

 

 

 

 

 

 

 

 

 



3. Free field  

Now, I will repeat the same method for a field theory (a scalar field 𝜑 for simplify), and again: 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝜑∗ :  

 relative to the internal time 𝑡∗ of K* : 
∗

∗  ; 

 but instead relative to time t of K : 
∗

. 

So without comments, we have successively: 

𝑆[{𝜑(𝑥, 𝑡)}] =
1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

=
1

𝑐
𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑Ω∗ = 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 𝑑𝑡∗ 

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗

𝑑𝑡

𝛾
 

=> 

𝑆[{𝜑∗(𝑥∗, 𝑡∗)}, 𝑹𝐂(𝒕)] = 𝐿′ {𝜑∗},
𝜕𝜑∗

𝜕𝒓∗
,

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 

With 𝐿′ {𝜑∗},
∗

𝒓∗
,

∗

, 𝑹𝐂, 𝑽𝐂 = ∭ 𝛬∗ 𝜑∗,
∗

𝒓∗
, 𝛾

∗

, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

So we can calculate the 3-momentum as: 

𝑷𝒄 ≡
𝜕𝐿

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

1

𝛾
𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗  

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗

𝜕

𝜕𝑽𝐂

1

𝛾
+

1

𝛾

𝜕

𝜕𝑽𝐂

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²

+
1

𝛾

𝜕 𝛾
𝜕𝜑∗

𝜕𝑡

𝜕𝑽𝐂

𝜕

𝜕 𝛾
𝜕𝜑∗

𝜕𝑡

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

But  
𝑽𝐂

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
  ; 𝛾

∗

=
∗

∗  

And  

∗

𝑽𝐂

=
∗

𝑽𝐂

=
∗ 1−

𝑽𝐂
𝟐

𝒄²

𝑽𝐂

=
∗ −1

2
−2

𝑽𝐂

𝒄²

1−

𝑑𝒓𝒂
∗

𝑑𝑡

𝟐

𝒄²

3/2 =
∗ 𝑽𝐂

𝒄²
𝛾  



𝑷𝒄 = 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²

+
1

𝛾

𝜕𝜑∗

𝜕𝑡

𝑽𝐂

𝒄²
𝛾

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ (−1)

+
𝜕𝜑∗

𝜕𝑡
𝛾

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ (−1) +

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗  

=
𝑽𝐂

𝒄²
𝛾

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ 

So we have again: 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∭
∗

∗ ∗

∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ is the internal energy (associated to the 

hyperplane 𝑡∗ = 𝑐𝑡𝑒)  

 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector to 
demonstrate it (we don’t even use the expression of any density Lagrangien).  

The Euler-Lagrange equations tell us that 𝛾
∗

𝒄²
𝑽𝐂 =

𝑹𝐂

𝐿′ {𝜑∗},
∗

𝒓∗
,

∗

, 𝑹𝐂, 𝑽𝐂  

We have to note, in the proof, the importance to freeze the right variable 
∗

 (and not 
∗

∗  ) in order 

to have the good expression. 

 

 

 

 

 

 



4. Interaction between a field and a particle 

We consider the simplified action: 

𝑆[𝒓𝒂(𝑡), {𝜑(𝑥, 𝑡)}] = −𝑚 . 𝑐
𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
.
𝑑𝑠

𝑑𝑡
𝜑(𝒓𝒂, 𝑡) 𝑑𝑡 +

1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

So we have also: 

𝑆 = − 𝑚 +
𝑒

𝑐
𝜑(𝒓𝒂, 𝑡) . 𝑐.

𝑑𝑠

𝑑𝑡
𝑑𝑡 +

1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

= − 𝑚 +
𝑒

𝑐
𝜑 . 𝑐²

1

𝛾

𝑑𝑡

𝛾

+ 𝛬 𝜑 ,
𝜕𝜑

𝜕𝒓
, 𝛾

𝜕𝜑

𝜕𝑡
, 𝑹𝐂 , 𝑽𝐂 𝑑𝑉

𝑑𝑡

𝛾
 

Where we have specified the quantities relative to: 

 the frame 𝐾  of the center  of mass  𝐂𝜑 of the field 𝜑 ; 

 the frame 𝐾  of the center  of mass 𝐂𝑚 of the material points.  

𝑆 𝒓𝒂 (𝑡 ), 𝑹𝐂 (𝑡) , {𝜑 (𝑥 , 𝑡 )}, 𝑹𝐂 (𝒕)

= 𝐿′ 𝒓𝒂 ,
𝑑𝒓𝒂

𝑑𝑡
, 𝑹𝐂 , 𝑽𝐂 , 𝑡 𝑑𝑡

+ 𝐿′ {𝜑 },
𝜕𝜑

𝜕𝒓
,

𝜕𝜑

𝜕𝑡
, 𝑹𝐂 , 𝑽𝐂 𝑑𝑡 

So in this form, we can calculate the dynamic of the center of mass of one system and the other. 
We can see that each system is not free at all, but we have again: 
 

𝑷𝐂 = 𝛾 𝑽𝐂

𝐸

𝑐²
𝑽𝐂  

𝑷𝐂 = 𝛾 𝑽𝐂

𝐸

𝑐²
𝑽𝐂  

So 𝑀 =
²

, 𝑀 =
²

 

With the same method we can consider any set of systems. 

 

 

 

 



5. Conclusion 

We have a way to demonstrate the famous Einstein formula E*=Mc² directly from an appropriate 
Lagrangien function selecting the correct variable. 

Instead of 𝐿 {𝒓𝒂},
𝒓𝒂 , we use  𝐿 {𝒓𝒂

∗ },
𝒓𝒂

∗

, 𝑹𝐂, 𝑽𝐂 =
∗ {𝒓𝒂

∗ }, (𝑽𝐂)
𝒓𝒂

∗
,𝑹𝐂,𝑽𝐂

(𝑽𝐂)
.  

Instead of 𝐿′ {𝜑},
𝒓

, , we use 𝐿′ {𝜑∗},
∗

𝒕∗
,

∗

, 𝑹𝐂, 𝑽𝐂 =
∭ ∗ ∗,

∗

𝒓∗ ,
∗
,𝑹𝐂 ,𝑽𝐂

∗

.  

In the two cases we’ve calculated directly that  𝑷𝒄 ≡
𝑽𝐂

= 𝛾
∗

²
𝑽𝐂 

Some remark: 
1) A simple Lorentz transformation, shows that the 3-momentum is actually the one associated 

to 𝑃 (𝐾∗) = ∫ ∭ 𝑇 𝛿 𝑛 𝑥 𝑥 . 𝑑𝜂 (𝐾∗) 𝑑 𝑥, so it is a part of a 4-vector.Thus, 

among all the 4-momentum  𝑃 (𝐾), 𝑃 (𝐾′), 𝑃 (𝐾∗)... the Lagrangien method selects 𝑃 (𝐾∗). 
2) Since we have defined the mass center in 𝐾∗, it allows us to associated to it a true event (the 

center of the frame) which doesn’t change from a frame K to another K’, by the relativity of 
simultaneity. In consequence, we can show (not here) that the internal energy, so the mass, 
is an invariant in our case (like for a material point).  
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6. Annex 
6.1. Annex calculation 

We want to draw the K* axis seen by K, that is to say the different axis in function of the x axis. 

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥 ∗

𝑥 − 𝑥 (𝑡 ) = 𝛾 . 𝑥 ∗ + 𝛽 . 𝑡 ∗ − 𝑡 ( )
∗

  

o In K, the equation of a static point in K* (𝑥 ∗=cte) in function of x , that is to say 

𝑐. 𝑡( ∗ )(𝑥) is 

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . 𝑐 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥 ∗ = 𝛾 .

𝑥 − 𝑥 (𝑡 )

𝛽 . 𝛾
−

𝑥 ∗

𝛽
+ 𝛽 . 𝑥 ∗  

=
𝑥 − 𝑥 (𝑡 )

𝛽
− 𝑥 ∗ . 𝛾

1

𝛽
1 − 𝛽 . =

𝑥 − 𝑥 (𝑡 )

𝛽
−

𝑥 ∗

𝛾 . 𝛽
 

𝑐. 𝑡 = 𝑐. 𝑡 +
𝑥 − 𝑥 (𝑡 )

𝛽
−

𝑥 ∗

𝛾 . 𝛽
 

=>𝑐. 𝑡( ∗ )(𝑥) = 𝑐. 𝑡 +
( )

−
.

 at time  t=𝑡  

So the equation of 𝑥 ∗=0 is  𝑐. 𝑡
∗

(𝑥) = 𝑐. 𝑡 +
( )  at time  t=𝑡  

Between 𝑥 (𝑡 ) and 𝑥 (𝑡 ), the variation is at should: 

 𝑐. 𝑡
∗

(𝑥 (𝑡 )) − 𝑐. 𝑡
∗

(𝑥 (𝑡 )) =
( ) ( )

=
( ).( )

= 𝑐. (𝑡 − 𝑡 ) 

 
o In K, the equation of (t*=cte) in function of x , that is to say 𝑐. 𝑡( ∗ )(𝑥) is 

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 . 𝑥 ∗

𝑥 − 𝑥 (𝑡 ) = 𝛾 . 𝑥 ∗ + 𝛽 . 𝑡 ∗ − 𝑡 ( )
∗

  

 
𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )

∗ + 𝛽 . 𝑥 ∗

= 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 .

𝑥 − 𝑥 (𝑡 )

𝛾
− 𝛽 . c 𝑡 ∗ − 𝑡 ( )

∗  

𝑐. 𝑡 − 𝑐. 𝑡 = 𝛾 . c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 .

𝑥 − 𝑥 (𝑡 )

𝛾
− 𝛽 . c 𝑡 ∗ − 𝑡 ( )

∗  

= 𝛾 . 1 − 𝛽 c 𝑡 ∗ − 𝑡 ( )
∗ + 𝛽 .

𝑥 − 𝑥 (𝑡 )

𝛾
=

c 𝑡 ∗ − 𝑡 ( )
∗

𝛾
+ 𝛽 . (𝑥 − 𝑥 (𝑡 )) 

𝑐. 𝑡 = 𝑐. 𝑡 + 𝛽 . (𝑥 − 𝑥 (𝑡 )) +
c 𝑡 ∗ − 𝑡 ( )

∗

𝛾
 



=>𝑐. 𝑡( ∗ )(𝑥) = 𝑐. 𝑡 + 𝛽 . (𝑥 − 𝑥 (𝑡 )) +
∗

 

And in particular 

𝑐. 𝑡( ∗
∗ )(𝑥) = 𝑐. 𝑡 + 𝛽 . (𝑥 − 𝑥 (𝑡 )) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


