
A straightforward and Lagrangien proof of the mass as the internal energy of a system  

Özgür Berké (ozgur.berke@live.fr) 

I propose a Lagrangian proof of Einstein's well-known law that the mass system is its internal energy.  
The interest of this proof is to show how appears the distinction between internal degrees of 
freedom and the center of mass in the Lagrangian formalism.  

1. Introduction 
 The law 

According the expression of the law of physics via the principle of least action [Landau-Lifchitz] and 
the relativistic invariance: the mass 𝑚  of a material point “a” is simply the multiplicative coefficient 
appearing in the Lagrangien of this material point, interacting or not with an external field.  

𝑆[𝒓𝒂(𝑡)] = − 𝑚 . 𝑐. 𝑑𝑠
,

,

+ ⋯ = −
𝑚 . 𝑐

𝛾(𝒗𝒂)
𝑑𝑡 + ⋯ 

In 1905, Einstein tells us that whatever the system: a set of material points (dynamically 

characterised with a Lagrangien 𝐿 {𝒓𝒂},
𝒓𝒂 ) or a field (dynamically characterised with the 

Lagrangien 𝛬 𝜑,
𝒓

, ) we should have: 

𝑆[𝑹𝒄(𝑡), … ] = −
𝐸∗

𝛾(𝑽𝒄)
𝑑𝑡 + ⋯ 

o With 𝐸∗ = ∑
𝒓𝒂

∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  for a material point; 

o Or  𝐸∗ ≡ ∭
∗

∗ ∗

∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ for a scalar field (for example). 

Where the quantities with a star * are relative to the reference frame associated to the mass center 
K*. So 𝐸∗ is the internal energy. 

Thus, every system has a centre of mass which has a Lagrangian, analogous to a material point with a 

mass 𝑀 =
∗

²
. This is the famous law of Einstein. 

 The current proof 

This law is well established since its first publication in 1905 and was re-demonstrated more clearly 
after by other (Einstein himself, Von Laue ...). The simpler way (that the author know and read in 
[Landau Lifchitz]), is to demonstrate that the momentum is a 4 vector. 

Indeed, tanks to the stress energy tensor 𝑇  of the system, we can always associate to it a 4-vector  

 𝑃 (𝐾∗) ≡ ∫ ∭ 𝑇 𝑑𝑆
,

 ,  where we choose the hyper-surface of integration as the 

hyperplane of the reference frame K* (𝑡∗ = 𝑐𝑡𝑒). 

In any frame ([Janssen & Mecklenburg]), 𝑃 (𝐾∗)  can be written equivalently 



  𝑃 (𝐾∗) = ∫ ∭ 𝑇 𝛿 𝑛 𝑥 𝜂 (𝐾∗) . 𝜂 (𝐾∗) 𝑑 𝑥   

 where 𝜂 (𝐾∗) is an orthogonal vector of the hyperplane 𝑡∗ = 𝑐𝑡𝑒 of K* such that 
𝜂∗ (𝐾∗) = (1,0,0,0) in 𝐾∗. 

Thus, the Lorentz transformations tell us: 

𝑃 (𝐾∗) =
1

𝑐
𝐿 𝐿 𝑇∗ 𝛿(𝑡∗). 𝐿 . 𝜂∗ (𝐾∗) 𝑑 𝑥∗  = 𝐿 

1

𝑐
𝑇∗ (0, 𝑥∗ )𝑑𝑉∗

∗ ∗
 

So 𝑃 (𝐾∗) = 𝐿 𝑃∗ (𝐾∗) where 𝑃∗ (𝐾∗) = ∭ 𝑇∗ (0, 𝑥∗ )𝑑𝑉∗ 

But 𝐸∗ ≡ ∭ 𝑇∗ (0, 𝑥∗ )𝑑𝑉∗ and 𝑃∗ (𝐾∗) ≡ 0 by definition of K* 

So we have 𝑃 (𝐾∗) = 𝛾
∗

, 𝛾
∗

𝑽𝐊∗/𝐊 , hence 𝑷 =  𝛾
∗

𝑽𝐊∗/𝐊 => 𝑀 =
∗

²
  

That is to say, the 3-momentum of any system is the same as a material point: 

o with a mass 𝑀 =
∗

²
; 

o and a speed 𝒗 = 𝑽𝐊∗/𝐊. 

2 remarks: 
o 𝑃 (𝐾∗) is here relative to the particular time 𝑡∗ = 0 and is not a priori constant; 
o 𝑃 (𝐾∗) is not the only one 4-momentum since we can define a different one for each frame of 

reference, 𝑃 (𝐾), 𝑃 (𝐾′), 𝑃 (𝐾∗)  ..., all are associated to different hyperplane of simultaneity 
linked to each possible (an infinity) frame of reference K,K’,K*...(see [Janssen & Mecklenburg]). 
 

It exists a particular case where there is only one 4-momentum 𝑃 : 𝑃 (𝐾) = 𝑃 (𝐾′) = 𝑃 (𝐾∗)...In 
[Landau Lifchitz] we know that (in a general field theory): 

o if the system is locally conserved : the stress-energy tensor has a null divergence 
 𝜕 𝑇 = 0;  

o and if there is “nothing (other than gravitation field)” in infinite (in the sense of 
convergence to infinity). 

 𝑃 (𝐾) ≡ ∫ ∭ 𝑇 𝑑𝑆
,

  is conserved and doesn’t depend on the 

hyperplane of integration (thanks to the conservation law). 

----------------------- 
In a less general theorem (but more old) from Von Laue (cf. [Wang]) we can also say that if 𝜕 𝑇 = 0  
(and nothing to infiny): 

𝑃 = ∭ 𝑇 𝑑𝑉 is a 4-momentum  ∭ 𝑇 𝑑𝑉=0 
-------------- 

 Why (I am) searching another proof ? 
The proof above does not use the Lagrangian directly but indirectly via the stress energy tensor. 
However, the base of all dynamics in physics laws is (until now) always to start from the Lagrangien 
of a system with the appropriate variables (including degrees of freedom). We should be able to 
select the center of mass and the complementary degrees of freedom (which we called logically the 



internal degrees of freedom since they are seen in the “hidden” K*).  Unfortunately (for myself at 
least...), I never found any proof using this point of view. With the current approach (even if it is 
sufficient for physics) it is not clear, for me, how the centre of mass appears in the Lagrangian, in 
parallel with the internal degrees of freedom. Indeed the Lagrangien is reconstructed only a 

posterior, after to demonstrate that 𝑷𝒄 = 𝛾
∗

²
𝑽𝐂 (using the stress-energy tensor) (see [Janssen & 

Mecklenburg]). So we don’t clearly see the passage: 

 From an initial Lagrangien 𝑆[{𝒓𝒂(𝑡)}] = ∫ 𝐿 {𝒓𝒂},
𝒓𝒂 𝑑𝑡 or  𝑆[{𝜑(𝑥, 𝑡)}] = ∫ ∭ 𝛬 𝜑,

𝒓
, 𝑑Ω 

 To a Lagrangien of an apparent material point 𝑆[𝑹𝒄(𝑡), … ] = − ∫
∗

(𝑽𝒄)
𝑑𝑡 + ⋯ 

In this article, I propose, using directly the Lagrangien formalism, to give the proof, for a material 
system (to present the method), for a field (scalar in order to simplified) and finally a system where 
the two interact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Material system free 
 The proof  

We begin with the action principle for a set of particles: 

𝑆[{𝒓𝒂(𝑡)}] = 𝐿 {𝒓𝒂},
𝑑𝒓𝒂

𝑑𝑡
𝑑𝑡 

In this expression, we are using coordinates in a Galilean reference frame K. 
The degrees of freedom are the vectors {𝒓𝒂}, and we integrate the expression between the plan H1 
(𝑡 = 𝑐𝑡𝑒), and H2 ( 𝑡 = 𝑐𝑡𝑒′) in this frame. 
We want now separate: 
 the internal degree of freedom {𝒓𝒂

∗ } ,  defined in the  frame K*of the center of mass ; 
 from the external degree of freedom 𝑹𝒄 defined in the Galilean frame K. 
So the degrees of freedom {𝒓𝒂}, are equivalent to the degree o freedom {𝒓𝒂

∗ , 𝑹𝒄 }. 
---------------------- 

Note 1:  

Thanks to the relativist invariance we know that each terms of the action associated to a particle is invariant (𝐿. 𝑑𝑡 =

∑ −𝑚 . 𝑐𝑑𝑠 ). However in the frame K*, the border plan H1  and H2  are associated to different time for each particle (in 
Einstein relativity the simultaneity is relative to a frame). 

More explicitly, the Lorentz transformation said that a coordinate 𝑡′  seen in the frame K is expressed like 

 𝑡′ = 𝛾(𝑡) 𝑡∗ +
𝑽𝐂

²
𝒓𝒂

∗  , with 𝛾(𝑡) = 𝛾 𝑽𝐂(𝑡)  𝑎𝑛𝑑 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊(𝑡) , in the frame K*(𝑡) at the instant t (t’≠t, a priori, since 

t’ is a generic coordinate of K but t define the time of K for which the center of mass has the speed 𝑽𝐂(𝑡) . 

So a plane 𝑡′ = 𝑐𝑡𝑒 in K is view like a plane  𝛾(𝑡) 𝑡∗ +
𝑽𝐂

²
𝒓𝒂

∗ = 𝑐𝑡𝑒 in the frame K*(𝑡) around t. 

Thus a particle at the position 𝒓𝒂
∗ , see the plan 𝑡′ = 𝑐𝑡𝑒 at the instant  𝑡∗ =

( )
−

𝑽𝐂
²

𝒓𝒂
∗  

Furthermore, we remark that, since in K*(𝑡) we observe simultaneous events at (𝑡∗, 𝑪) we have 𝑡∗ ≡ 𝑡∗ = 𝑡∗  ∀𝑎. But 

𝑡∗ =
( )

−
𝑽𝐂

²
𝑹𝒄

∗ =
( )

around t. 

So ∀ particle  𝑎:  𝑡∗ = 𝑡∗ =
( )

 and 𝑑𝑡∗ = 𝑑𝑡∗ =
( )

=
( )

. 

Note 2 :  

In this note we use a reference frame K* for which the speed 𝑽𝐊∗/𝐊 is constant from t0=0 to t and from t0*=0 to t*. That is 
to say the K* considered à the time t has a priori the right speed only at the instant t. So the above reasoning is valid only if 
at each time we change the origin of time. 

𝑡 − 𝑡′
𝒓𝒂 + 𝑹𝒄 − 𝑹𝒄𝟎

= 𝐿.
𝑡∗ − 𝑡∗

𝒓𝒂
∗ + 𝟎∗  <=> 

𝑡 − 𝑡′ = 𝛾(𝑡) (𝑡∗ − 𝑡∗) +
𝜷

𝒓𝒂
∗

𝒓𝒂(𝑡 ) + 𝑹𝒄(𝑡 ) − 𝑹𝒄𝟎
(𝑡′ ) = 𝑐(𝑡∗ − 𝑡∗)𝛾(𝑡)𝜷 + 𝒓𝒂

∗ + (𝛾 − 1)
𝜷

. (𝜷𝒓𝒂
∗ )

  

Or more simply, for a movement of K* along x : 
𝑡 − 𝑡′ = 𝛾(𝑡) (𝑡∗ − 𝑡∗) + . 𝑥∗

𝑥 + 𝑋 − 𝑋 = 𝛾(𝑡)(𝑐(𝑡∗ − 𝑡∗)𝛽 + 𝑥∗ )

  

Then we see 𝑡 − 𝑡′ = 𝛾(𝑡) (𝑡∗ − 𝑡∗) +
𝜷

𝒓𝒂
∗  <=> 𝑡∗ =

( )
−

𝜷
𝒓𝒂

∗ + 𝑡∗ 



So by changing locally the origin of time, we have 𝑡∗ =
( )

−
𝜷

𝒓𝒂
∗  

---------------- 

Now we express the action in the local frames K*(t): 

𝑆[{𝒓𝒂
∗ (𝑡∗), 𝑹𝒄(𝑡)}] = 𝐿∗ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡∗
, 𝑹𝐂, 𝑽𝐂

𝒕𝒂,𝟐
∗

𝒕𝒂,𝟏
∗

𝑑𝑡∗ 

Taking account 𝑑𝑡∗ =
( )

 and returnig to the Galilean frame K we have: 

𝑆 = 𝐿∗ {𝒓𝒂
∗ },

𝑑𝑡

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂

𝒕𝒂,𝟐
∗

𝒕𝒂,𝟏
∗

𝑑𝑡∗

𝑑𝑡
𝑑𝑡 =

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂

𝛾(𝑽𝐂)
𝑑𝑡 

So far, nothing new. 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝒓𝒂
∗  :  

 relative to the internal time of K*, 𝑡∗ 
𝒓𝒂

∗

∗; 

 but instead relative to time of K, t: 𝒓𝒂
∗

. 

That is to say, the Lagrangien considered is 𝐿′ {𝒓𝒂
∗ },

𝒓𝒂
∗

, 𝑹𝐂, 𝑽𝐂 ≡
∗ {𝒓𝒂

∗ }, (𝑽𝐂)
𝒓𝒂

∗

(𝑽𝐂)
, instead of 

using the most « natural » 𝐿 {𝒓𝒂
∗ },

𝒓𝒂
∗

∗ , 𝑹𝐂, 𝑽𝐂 ≡
∗ {𝒓𝒂

∗ },
𝒓𝒂

∗

∗

(𝑽𝐂)
 

 

So, we can now calculate the momentum of the center of mass, with 𝑽𝐂 ≡ 𝑽𝐊∗/𝐊: 

𝑷𝒄 ≡
𝜕𝐿

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝛾(𝑽𝐂)
 

= 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕

𝜕𝑽𝐂

1

𝛾(𝑽𝐂)
+

1

𝛾(𝑽𝐂)

𝜕

𝜕𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
 

 
𝑽𝐂 (𝑽𝐂)

=
𝑽𝐂

1 −
𝑽𝐂

𝟐

𝒄²
=

𝑽𝐂

𝒄²

𝑽𝐂
𝟐

𝒄²

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
 

 
𝑽𝐂

𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝒓𝒂
∗

= ∑
(𝑽𝐂)

𝒓𝒂
∗

𝑽𝐂

∗

(𝑽𝐂)
𝒓𝒂

∗ = ∑
𝒓𝒂

∗
𝑽𝐂

𝟐

𝒄²

/

𝑽𝐂

∗

𝒓𝒂
∗

∗

 

=
𝑑𝒓𝒂

∗

𝑑𝑡

⎝

⎛

1
2

2
𝑽𝐂

𝒄²

1 −
𝑽𝐂

𝟐

𝒄²

/

⎠

⎞
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

=
𝑑𝒓𝒂

∗

𝑑𝑡
𝛾 (𝑽𝐂)

𝑽𝐂

𝒄²

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 



𝑷𝒄 = 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
−𝛾(𝑽𝐂)

𝑽𝐂

𝒄²
+

1

𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡
𝛾 (𝑽𝐂)

𝑽𝐂

𝒄²

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
−𝐿∗ {𝒓𝒂

∗ }, 𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾

𝑑𝒓𝒂
∗

𝑑𝑡

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²

⎝

⎛ 𝛾
𝑑𝒓𝒂

∗

𝑑𝑡

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

− 𝐿∗ {𝒓𝒂
∗ }, 𝛾(𝑽𝐂)

𝑑𝒓𝒂
∗

𝑑𝑡

⎠

⎞ 

= 𝛾(𝑽𝐂)
𝑽𝐂

𝑐²
∑

𝒓𝒂
∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  since 𝒓𝒂
∗

∗ = 𝛾(𝑽𝐂)
𝒓𝒂

∗

 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∑
𝒓𝒂

∗

∗

∗

𝒓𝒂
∗

∗

− 𝐿∗ {𝒓𝒂
∗ },

𝒓𝒂
∗

∗  is the internal energy. 

So we have our relation. 

𝐸∗ is relative to the hyperplane 𝑡∗=cte, the mass 𝑀 =
∗

²
 is dealing with events ( the spatio-

temporal positions of the particles) simultaneous in the frame K* and not in the frame K. This 

is well defined since 𝑡∗ =
𝑡′0(𝑡)

( )
=

𝑡′0(𝑡)

( )
 .  

𝑀 = 𝑀(𝑡∗) = 𝑀
𝑡 − 𝑡′0(𝑡)

𝛾(𝑡)
= 𝑀

𝑑𝑡′

𝛾(𝑡′)
 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector momentum 
to demonstrate it (we don’t even use the expression 𝐿. 𝑑𝑡 = ∑ −𝑚 . 𝑐𝑑𝑠 ).  

Finally, the Euler-Lagrange equations tell us that 𝛾
∗

𝒄²
𝑽𝐂 =

𝑹𝐂

𝐿′ {𝒓𝒂
∗ },

𝒓𝒂
∗

, 𝑹𝐂, 𝑽𝐂  

We have to note, in the proof, the importance to freeze the right variable 𝒓𝒂
∗

 (and not 𝒓𝒂
∗

∗  ) in 

order to have the good expression. 

 But what 𝒓𝒂
∗

   means ?   

Indeed the speed 𝒓𝒂
∗

 combines 2 quantities that each rely to 2 different reference frames: K* for 𝑑𝒓𝒂
∗  

and K for 𝑑𝑡. We can think that this ill-defined which would break the proof.  

We can write 𝒓𝒂
∗

=
𝒓𝒂

∗

∗

∗

,and according to according to [Yvan Simon] via Lorentz Transformation 
∗

= =
∗ ∗

 . So we have 𝒓𝒂
∗

=
𝒓𝒂

∗

∗ .  

However we don’t use this formula above in this article but 𝒓𝒂
∗

=
𝒓𝒂

∗

∗ instead. 



The difference between the first 𝒓𝒂
∗

 and the second 𝒓𝒂
∗

 is (see graph below) the fact that : 

 the former 𝒓𝒂
∗

 use the differential time 𝑑𝑡 between two events 𝑡∗, 𝒓𝒂
∗ (𝑡∗)   and 𝑡∗ +

𝑑𝑡∗, 𝒓𝒂
∗ (𝑡∗ + 𝑑𝑡∗)  seen in the frame K; 

 the latter 𝒓𝒂
∗

 use the differential time 𝑑𝑡 = 𝛾𝑑𝑡∗ which is the duration between two hyperplane 

𝑡∗ = 𝑐𝑡𝑒 and  𝑡∗ + 𝑑𝑡∗ = 𝑐𝑡𝑒′ of K* measured in the reference frame K. 

In short, 𝑑𝑡 is about the 2 positions of a material point seen in K and 𝑑𝑡  is the temporal distance 
between the 2 hyperplane of K* where the 2 events are contained. 

During the proof we only use the different time element𝑑𝑡 = 𝛾𝑑𝑡∗: in the integration time element, 

in the expression of the speed 𝒓𝒂
∗

 and in using the time 𝑡∗ of the reference frame which is actually 

𝑡∗ = ∫
( )

. This is coherent with viewing the entire internal dynamic (like internal energy) relative 

to the hyperplanes of K*. Moreover and interestingly, 𝑑𝑡 = 𝛾𝑑𝑡∗ is also the duration of the proper 
time associated to the apparent material point represented by the mass center C of the system. 

 

 Some remarks 

We can also notice that 𝑷𝒂 ≡
𝒓𝒂

∗ = 𝛾∗𝑚 .
𝒓𝒂

∗

∗  , so 𝑷𝒂 =
∗

𝒓𝒂
∗

∗

which is surprising but reassuring for 

the intelligibility of this quantity: this is the same as the one we would have in the frame of the 
centre of mass K*. 

More over the total momentum 𝑷𝒕𝒐𝒕𝒂𝒍 associated to the Lagrangien  𝐿′ {𝒓𝒂
∗ },

𝒓𝒂
∗

, 𝑹𝐂, 𝑽𝐂  is 



 𝑷𝒕𝒐𝒕𝒂𝒍 = ∑
𝒓𝒂

∗ +
𝑽𝐂

= ∑ 𝑷𝒂 + 𝑷𝒄 = 𝑷𝒄 since by definition of K*: ∑ 𝑷𝒂 ≡ 0. This is interesting 

since despite considering the internal variables on the same level as the mass center, we obtain as it 
should the total momentum is the one associated to the mass center. 

 

-------------------- 

Proof: 

Indeed 𝐿. 𝑑𝑡 = − ∑ 𝑚 . 𝑐𝑑𝑠  => 𝐿 = − ∑ 𝑚 . 𝑐 = − ∑ 𝑚 . 𝑐
∗

∗

= − ∑ 𝑚 . 𝑐² ∗  

But 
. ∗ = 1 −

𝒓𝒂
∗

∗

𝟐

𝒄²
= −

𝒓𝒂
∗

∗

𝟐

𝒄²
= −

𝒓𝒂
∗ 𝟐

𝒄²
 since 𝒓𝒂

∗

∗
= 𝛾(𝑽𝐂)

𝒓𝒂
∗

 

Moreover  𝒓𝒂
∗

. ∗ = 𝒓𝒂
∗ −

𝒓𝒂
∗ 𝟐

𝒄²
= −

𝟐
𝒓𝒂

∗

𝒄²

𝟏

𝒓𝒂
∗ 𝟐

𝒄²

= −
𝒓𝒂

∗

𝒄²
𝛾. 𝛾∗ 

So 𝑷𝒂 = − 𝒓𝒂
∗ ∑ 𝑚 . 𝑐² ∗ = 𝑚 . 𝑐²

𝒓𝒂
∗

𝒄²
𝛾. 𝛾∗ = 𝑚 .

𝒓𝒂
∗

∗
𝛾∗ 

------------- 

 The reduced action 

We can write: 

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝐿′ {𝒓𝒂

∗ },
𝑑𝒓𝒂

∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝑷𝒄. 𝑽𝒄 − 𝐸 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾

𝐸∗

𝑐²
𝑽𝐂 . 𝑽𝒄 − 𝛾𝐸∗ 𝑑𝑡 

= 𝑷𝒂.
𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝛾𝐸∗(𝛽 − 1) 𝑑𝑡 = 𝑷𝒂.

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡 

So  

𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] = 𝑷𝒂.

𝑑𝒓𝒂
∗

𝑑𝑡
−

𝐸∗

𝛾
𝑑𝑡  

If we ignore the final position of the internal degree of freedom, we have like a “spatial 
Maupertuis principle” (instead of a temporal used in [Landau Lifchitz]): 



𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

We can see that if all the internal momentum are constant, it exists a reduced action principle: 

𝑆 [𝑹𝒄(𝑡)] = −
𝐸∗

𝛾
𝑑𝑡 

We can surely generalize it for closed systems with internal separable variables where we’ve chosen 
well the variables with constant momentum. In this case, we see that for “stationary” system, in this 
restrict sense, the center of mass dynamic is the same as a material point. 

Note: my idea to consider the quantity 𝒓𝒂
∗

 comes initially from the willingness to make appear the 

Lagrangien of the apparent material point with this reduced action (in the same manner we make 

appear the virtual work theorem: 𝛿 ∫ ∑ 𝑷𝒂. 𝑑𝒓 − 𝐻 𝑷𝒂, 𝒓𝒂 𝑑𝑡 + ∑ 𝑷𝒂. 𝛿𝒓𝒂 = 0 and 

𝑷𝒂 = 𝒄𝒕𝒆=>  𝛿 ∫ 𝐻𝑷𝒂 𝒄𝒕𝒆, 𝒓𝒂 𝑑𝑡 = 0 ). 

------------------- 

Proof: 

Indeed (do the same that [Landau lifchitz] but for space and not for time)): 

𝛿𝑆[{𝒓𝒂
∗ (𝑡∗)}, 𝑹𝒄(𝑡)] + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 𝑑 [𝑷𝒂. 𝒓𝒂
∗ ] + 𝛿 −

𝐸∗

𝛾
𝑑𝑡 + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 𝑷𝒂. 𝒓𝒂
∗ + 𝛿 −

𝐸∗

𝛾
𝑑𝑡 + 𝑷𝒂. 𝛿𝒓𝒂

∗ = 0 

<=> 𝛿 −
𝐸∗

𝛾
𝑑𝑡 = 0 

------------------- 

 

 

 

 

 

 

 



3. Free field  

Now, I will repeat the same method for a field theory (a scalar field 𝜑 for simplify), and again: 

The important point to keep in mind is that we are not considering the variation of the internal 

degree of freedom 𝜑∗ :  

 relative to the internal time of K*, 𝑡∗ : 
∗

∗ ; 

 but instead relative to time of K, t: 
∗

. 

So without comments, we have successively: 

𝑆[{𝜑(𝑥, 𝑡)}] =
1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

=
1

𝑐
𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑Ω∗ = 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 𝑑𝑡∗ 

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗

𝑑𝑡

𝛾
 

=> 

𝑆[{𝜑∗(𝑥∗, 𝑡∗)}, 𝑹𝐂(𝒕)] = 𝐿′ {𝜑∗},
𝜕𝜑∗

𝜕𝒓∗
,

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑡 

With 𝐿′ {𝜑∗},
∗

𝒓∗
,

∗

, 𝑹𝐂, 𝑽𝐂 = ∭ 𝛬∗ 𝜑∗,
∗

𝒓∗
, 𝛾

∗

, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

So we can calculate the 3-momentum as: 

𝑷𝒄 ≡
𝜕𝐿

𝜕𝑽𝐂

=
𝜕

𝜕𝑽𝐂

1

𝛾
𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗  

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗

𝜕

𝜕𝑽𝐂

1

𝛾
+

1

𝛾

𝜕

𝜕𝑽𝐂

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

= 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²

+
1

𝛾

𝜕 𝛾
𝜕𝜑∗

𝜕𝑡

𝜕𝑽𝐂

𝜕

𝜕 𝛾
𝜕𝜑∗

𝜕𝑡

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

But  
𝑽𝐂

= −𝛾(𝑽𝐂)
𝑽𝐂

𝒄²
  ; 𝛾

∗

=
∗

∗  

And  

∗

𝑽𝐂

=
∗

𝑽𝐂

=
∗ 1−

𝑽𝐂
𝟐

𝒄²

𝑽𝐂

=
∗ −1

2
−2

𝑽𝐂

𝒄²

1−

𝑑𝒓𝒂
∗

𝑑𝑡

𝟐

𝒄²

3/2 =
∗ 𝑽𝐂

𝒄²
𝛾  



𝑷𝒄 = 𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ −𝛾(𝑽𝐂)

𝑽𝐂

𝒄²

+
1

𝛾

𝜕𝜑∗

𝜕𝑡

𝑽𝐂

𝒄²
𝛾

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ (−1)

+
𝜕𝜑∗

𝜕𝑡
𝛾

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ 

=
𝑽𝐂

𝒄²
𝛾 𝛬∗ 𝜑∗,

𝜕𝜑∗

𝜕𝒓∗
, 𝛾

𝜕𝜑∗

𝜕𝑡
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗ (−1) +

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ 𝜑∗,
𝜕𝜑∗

𝜕𝒓∗
,
𝜕𝜑∗

𝜕𝑡∗
, 𝑹𝐂, 𝑽𝐂 𝑑𝑉∗  

=
𝑽𝐂

𝒄²
𝛾

𝜕𝜑∗

𝜕𝑡∗

𝜕

𝜕
𝜕𝜑∗

𝜕𝑡∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ 

So we have again: 

𝑷𝒄 = 𝛾
𝐸∗

𝑐²
𝑽𝐂 

 

where 𝐸∗ ≡ ∭
∗

∗ ∗

∗

𝛬∗ − 𝛬∗ 𝑑𝑉∗ is the internal energy (associated to the 

hyperplane 𝑡∗ = 𝑐𝑡𝑒)  

 

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector to 
demonstrate it (we don’t even use the expression of any density Lagrangien).  

The Euler-Lagrange equations tell us that 𝛾
∗

𝒄²
𝑽𝐂 =

𝑹𝐂

𝐿′ {𝜑∗},
∗

𝒓∗
,

∗

, 𝑹𝐂, 𝑽𝐂  

We have to note, in the proof, the importance to freeze the right variable 
∗

 (and not 
∗

∗  ) in order 

to have the good expression. 

 

 

 

 

 

 



4. Interaction between a field and a particle 

We consider the simplified action: 

𝑆[𝒓𝒂(𝑡), {𝜑(𝑥, 𝑡)}] = −𝑚 . 𝑐
𝑑𝑠

𝑑𝑡
−

𝑒

𝑐
.
𝑑𝑠

𝑑𝑡
𝜑(𝒓𝒂, 𝑡) 𝑑𝑡 +

1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

So we have also: 

𝑆 = − 𝑚 +
𝑒

𝑐
𝜑(𝒓𝒂, 𝑡) . 𝑐.

𝑑𝑠

𝑑𝑡
𝑑𝑡 +

1

𝑐
𝛬 𝜑,

𝜕𝜑

𝜕𝒓
,
𝜕𝜑

𝜕𝑡
𝑑Ω 

= − 𝑚 +
𝑒

𝑐
𝜑 . 𝑐²

1

𝛾

𝑑𝑡

𝛾

+ 𝛬 𝜑 ,
𝜕𝜑

𝜕𝒓
, 𝛾

𝜕𝜑

𝜕𝑡
, 𝑹𝐂 , 𝑽𝐂 𝑑𝑉

𝑑𝑡

𝛾
 

Where we have specified the quantities relative to: 

 the frame 𝐾  of the center  of mass  𝐂𝜑 of the field 𝜑 ; 

 the frame 𝐾  of the center  of mass 𝐂𝑚 of the material points.  

𝑆 𝒓𝒂 (𝑡 ), 𝑹𝐂 (𝑡) , {𝜑 (𝑥 , 𝑡 )}, 𝑹𝐂 (𝒕)

= 𝐿′ 𝒓𝒂 ,
𝑑𝒓𝒂

𝑑𝑡
, 𝑹𝐂 , 𝑽𝐂 , 𝑡 𝑑𝑡

+ 𝐿′ {𝜑 },
𝜕𝜑

𝜕𝒓
,

𝜕𝜑

𝜕𝑡
, 𝑹𝐂 , 𝑽𝐂 𝑑𝑡 

So in this form, we can calculate the dynamic of the center of mass of one system and the other. 
We can see that each system is not free at all, but we have again: 
 

𝑷𝐂 = 𝛾 𝑽𝐂

𝐸

𝑐²
𝑽𝐂  

𝑷𝐂 = 𝛾 𝑽𝐂

𝐸

𝑐²
𝑽𝐂  

So 𝑀 =
²

, 𝑀 =
²

 

With the same method we can consider any set of systems. 

 

 

 

 



5. Conclusion 

We have a way to demonstrate the famous Einstein formula E*=Mc² directly from an appropriate 
Lagrangien function selecting the correct variable. 

Instead of 𝐿 {𝒓𝒂},
𝒓𝒂 , we use  𝐿 {𝒓𝒂

∗ },
𝒓𝒂

∗

, 𝑹𝐂, 𝑽𝐂 =
∗ {𝒓𝒂

∗ }, (𝑽𝐂)
𝒓𝒂

∗
,𝑹𝐂,𝑽𝐂

(𝑽𝐂)
.  

Instead of 𝐿′ {𝜑},
𝒓

, , we use 𝐿′ {𝜑∗},
∗

𝒓∗
,

∗

, 𝑹𝐂, 𝑽𝐂 =
∭ ∗ ∗,

∗

𝒓∗ ,
∗
,𝑹𝐂 ,𝑽𝐂

∗

.  

In the two cases we’ve calculated directly that  𝑷𝒄 ≡
𝑽𝐂

= 𝛾
∗

²
𝑽𝐂 

Some remark: 
1) A simple Lorentz transformation, shows that the 3-momentum is actually the one associated 

to 𝑃 (𝐾∗) = ∫ ∭ 𝑇 𝛿 𝑛 𝑥 𝑥 . 𝑑𝜂 (𝐾∗) 𝑑 𝑥, so it is a part of a 4-vector.Thus, 

among all the 4-momentum  𝑃 (𝐾), 𝑃 (𝐾′), 𝑃 (𝐾∗)... the Lagrangien method selects 𝑃 (𝐾∗). 
2) Since we have defined the mass center in 𝐾∗, it allows us to associated to it a true event (the 

center of the frame) which doesn’t change from a frame K to another K’, by the relativity of 
simultaneity. In consequence, we can show (not here) that the internal energy, so the mass, 
is an invariant in our case (like for a material point).  

It will be interesting to derive the stress-energy tensor with our method, in order to show how the 
internal degrees of freedom generate the pressure like the formula (35,2) of [Landau-Lifchitz]. 
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