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Abstract

We discuss a generalization of the equations of hydrodynamics based
on space-time algebra of sedeons. It is shown that the fluid dynamics
can be described by sedeonic second-order wave equation for scalar and
vector potentials. The generalized sedeonic Navier-Stokes equations for a
viscous fluid and vortex flows are also discussed. The main peculiarities
of the proposed approach are illustrated on the equations describing the
propagation of sound waves.

1 Introduction

The analogy between the equations of hydrodynamics and electrodynamics is
actively discussed for a long time. Apparently first, some similarity between
vortex dynamics of fluid and electromagnetic phenomena induction was pointed
out by H. Helmholtz in [1]. Subsequently, several attempts were made to de-
scribe the fluid dynamics by vector fields (similar to electric and magnetic fields)
satisfying some Maxwell-like equations [2]-[10]. However a common drawback of
the approach used in these works is that the equation for the vortex component
of the fluid motion is obtained simply by taking the ”curl” operator from the
Euler equation for velocity and therefore it is not independent. In particular, in
[4] the linearized equations for a free isentropic compressible fluid are reduced
to the following form:

c2[∇×H]− ∂E

∂t
= J,

[∇×E] +
∂H

∂t
= 0,

(∇ ·E) = g,

(∇ ·H) = 0,

(1)
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where vector fields E and H are defined by the following expressions:

E = −∂v

∂t
−∇h,

H = [∇× v],
(2)

and the field sources

g = − ∂

∂t
(∇ · v)−4h,

J =
∂2v

∂t2
+
∂

∂t
(∇h) + c2[∇× [∇× v]].

(3)

Here v is the velocity of the fluid, h is the enthalpy per unit mass, c is the speed
of sound.

By the form, the system (1) coincides with Maxwell’s equations, however,
these equations do not have any predictive power, since the field sources are
determined through the quantities v and h, which themselves must be found
from the equations. In addition, by substituting the definition of fields (2) and
sources (3) into equation (1), we obtain the identity. A similar situation is
observed in the works of other authors.

During the past decades the essential progress is observed in the reformu-
lation of the equations for electromagnetic field and fluid motion based on the
different algebras of hypercomplex numbers such as quaternions [11]-[14] and
octonions [15-18], which take into account the symmetry of physical values with
respect to operation spatial inversion. A natural generalization of this approach
is the inclusion of time reversal symmetry in an algebraic structure, which re-
quires consideration of extended sixteen-component algebras such as sedenions
[19], [20].

Recently, we proposed an associative algebra of sixteen-component sedeons,
which takes into account the properties of physical quantities with respect
to space-time inversion and implements a scalar-vector representation of the
Poincare group [21]. This formalism has been successfully applied to describe
classical and quantum fields [21]-[24]. In the present paper we discuss the ap-
plication of sedeonic algebra to the generalization of the equations describing
dynamics of viscous fluid.

2 Algebra of space-time sedeons

The algebra of sedeons encloses four groups of values, which are differed with
respect to spatial and time inversion.

1. Absolute scalars (A) and absolute vectors (A) are not transformed under
spatial and time inversion.
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2. Time scalars (Bt) and time vectors (Bt) change sign under time inversion
and are not transformed under spatial inversion.

3. Space scalars (Cr) and space vectors (Cr) are changed under spatial in-
version and are not transformed under time inversion.

4. Space-time scalars (Dtr) and space-time vectors (Dtr) change sign under
spatial and time inversion.

The indexes t and r indicate the transformations (t for time inversion and r
for spatial inversion), which change the corresponding values. All introduced
values can be integrated into one space-time sedeon S̃, which is defined by the
following expression:

S̃ = A+ A +Bt + Bt + Cr + Cr +Dtr + Dtr. (4)

The system of sedeons is based on the Macfarlane’s quaternion algebra [25].
Any vector is presented in the basis of unit vectors a1, a2, a3 as

A = A1a1 +A2a2 +A3a3, (5)

with the following rules of multiplication

anam = δnm + iεnmkak, (6)

where δnm is Kronecker delta, εnmk is Levi-Civita symbol (n,m,k ∈ {1, 2, 3})
and i is imaginary unit (i2 = −1). The rules of multiplication and commutation
for unit vectors are also summarized in Table 1.

The main advantage of this approach is the Clifford’s product of vectors

AB = (A ·B) + i[A×B], (7)

that allows to write the equations in very compact form.
The space-time properties of physical values can be taken into account using

an additional basis et, er, etr, where et is the time scalar unit; er is the spatial
scalar unit; etr is the space-time scalar unit. The rules of multiplication and
commutation for space-time units are presented in Table 2. The space-time
units et, er, etr commute with vectors a1,a2,a3

aneα = eαan, (8)

α ∈ (t, r, tr), n ∈ (1,2,3).

In general algebra of sedeons is the tensor product of two algebras of Macfarlane
quaternions [25] {an} and {eα}. It is associative algebra, which is isomorphic
to the algebra of (4× 4) Dirac matrices [26].

Using the space-time basis we can rewrite the sedeon (4) in terms of absolute
scalars and absolute vectors as follows:

S̃ = A+ A + etB + etB + erC + erC + etrD + etrD. (9)

Thus the sedeon S̃ is a compound space-time object consisting of absolute
scalar, time scalar, space scalar, space-time scalar, absolute vector, time vector,
space vector and space-time vector.
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Table 1: The rules of multiplication for absolute unit vectors

a1 a2 a3

a1 1 ia3 −ia2

a2 −ia3 1 ia1

a3 ia2 −ia1 1

Table 2: The rules of multiplication for space-time units

et er etr

et 1 ietr −ier

er −ietr 1 iet

etr ier −iet 1

3 Symmetric form of equations for ideal fluid

The dynamics of an ideal vortex-less fluid is described by the following well
known system of equations

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = q,

∂ρ

∂t
+ (v · ∇)ρ+ ρ(∇ · v) = 0,

[∇× v] = 0,

(10)

where v is local flow velocity of fluid, ρ is a density, p is a pressure, q is a
force for unit mass [27]. This system includes the Euler equation, the continuity
equation and the condition of the absence of vortices.

The solutions of equations (10) depend on the specific type of fluid motion.
In the cases of barotropic, isothermal and isentropic motion under the additional
assumption of constant velocity of sound the system (10) becomes simplified.
Below we show that in all these specific cases the equations (10) can be rewritten
in a universal symmetric form, which allows the natural generalization on the
basis of the sedeonic approach.

3.1 The barotropic fluid motion

In the case of a simple model of barotropic fluid, the the pressure depends only
on density, so the state equation takes the following form:

p = p(ρ). (11)
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We assume that the speed of sound in the medium is constant:

c2B =
∂p

∂ρ
= const. (12)

Then equations (10) take the form:

∂v

∂t
+ (v · ∇)v +

c2B
ρ
∇ρ = q,

1

ρ

∂ρ

∂t
+

1

ρ
(v · ∇)ρ+ (∇ · v) = 0,

[∇× v] = 0.

(13)

Let us introduce new notation:

uB = cB ln(ρ),

fB =
1

cB
q,

(14)

then the system of equations for ideal fluid becomes symmetric:

1

cB

(
∂

∂t
+ (v · ∇)

)
v +∇uB = fB ,

1

cB

(
∂

∂t
+ (v · ∇)

)
uB + (∇ · v) = 0,

[∇× v] = 0.

(15)

3.2 The isothermal fluid motion

For the isothermal fluid we assume the constant speed of sound

c2T =

(
∂p

∂ρ

)
T

= const, (16)

and use the thermodynamic relation for the Gibbs potential

dz = −sdT +
1

ρ
dp, (17)

where z is the Gibbs potential, s is the entropy referred to the unit mass, T is
the temperature. In the case of T = const we have:

dz =
1

ρ
dp =

c2T
ρ
dρ, (18)

and therefore
1

ρ
∇p = ∇z,

∂ρ

∂t
=

ρ

c2T

∂z

∂t
,

∇ρ =
ρ

c2T
∇z = 0.

(19)
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Then equations (10) take the form:

∂v

∂t
+ (v · ∇)v +∇z = q,

1

c2T

∂z

∂t
+ (v · ∇)z + (∇ · v) = 0,

[∇× v] = 0.

(20)

Introducing the notations:

uT =
1

cT
z,

fT =
1

cT
q,

(21)

we derive the system of equations for ideal fluid, which again becomes symmet-
ric:

1

cT

(
∂

∂t
+ (v · ∇)

)
v +∇uT = fT ,

1

cT

(
∂

∂t
+ (v · ∇)

)
uT + (∇ · v) = 0,

[∇× v] = 0.

(22)

3.3 The isentropic fluid motion

We denote the speed of sound in the case of isentropic motion as

c2S =

(
∂p

∂ρ

)
S

= const. (23)

Let us use the thermodynamic relation for enthalpy

dh = Tds+
1

ρ
dp. (24)

Here h is the enthalpy referred to the unit mass. In the case of s = const we
have:

dh =
1

ρ
dp =

c2S
ρ
dρ, (25)

and therefore
1

ρ
∇p = ∇h,

∂ρ

∂t
=

ρ

c2S

∂h

∂t
,

∇ρ =
ρ

c2ST
∇h = 0.

(26)
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Then equations (10) take the form:

∂v

∂t
+ (v · ∇)v +∇h = q,

1

c2S

∂h

∂t
+ (v · ∇)h+ (∇ · v) = 0,

[∇× v] = 0.

(27)

Let us introduce new notation:

uS =
1

cS
h,

fS =
1

cS
q,

(28)

then the system of equations for ideal fluid takes the following symmetric form:

1

cS

(
∂

∂t
+ (v · ∇)

)
v +∇uS = fS ,

1

cS

(
∂

∂t
+ (v · ∇)

)
uS + (∇ · v) = 0,

[∇× v] = 0.

(29)

4 The sedeonic equation for a vortex-free flow

Using the algebra of sedeons, equations (15), (22) and (29) can be represented
as a single generalized first-order wave equation in the following form:(

iet
1

c

(
∂

∂t
+ (v · ∇)

)
− er∇

)
(etrv − u) = f , (30)

where the set

{c, u, f} ∈ {{cB , uB , fB}, {cT , uT , fT }, {cS , uS , fS}} (31)

depending on the type of fluid motion. Indeed, after the action of the operator
on the left side of equation (30), we have

er
1

c

(
∂

∂t
+ (v · ∇)

)
v + iet (∇ · v) + iet [∇× v]

+iet
1

c

(
∂

∂t
+ (v · ∇)

)
u+ er∇u = erf .

(32)
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Separating the quantities with different space-time properties, we obtain the
following system of equations:

1

c

(
∂

∂t
+ (v · ∇)

)
v +∇u = f ,

1

c

(
∂

∂t
+ (v · ∇)

)
u+ (∇ · v) = 0,

[∇× v] = 0.

(33)

As can be seen, equations (33) coincide with equations (15), (22) and (29).
Using analogy with electrodynamics, a generalized equation describing the

dynamics of a fluid can be represented in the form of a sedeonic wave equation
for potentials. Let us introduce scalar ϕ and vector A potentials according to
the following relations:

u =
1

c

(
∂

∂t
+ (v · ∇)

)
ϕ+∇ ·A,

v = −1

c

(
∂

∂t
+ (v · ∇)

)
A−∇ϕ,

[∇×A] = 0,

(34)

and denote the operator

_

∇ =

{
iet

1

c

(
∂

∂t
+ (v · ∇)

)
− er∇

}
, (35)

then equations (33) are equivalent to the following second-order wave equation:

_

∇
_

∇ (ietϕ+ erA) = erf . (36)

Indeed after the first operator action we have

_

∇ (ietϕ+ erA) = etrv − u (37)

and equation (36) is rewritten as

_

∇ (etrv − u) = erf , (38)

that coinsides with equation (30).

5 Sedeonic equations for vortex flow

The equation (30) can be generalized for the vortex motion. Let us introduce
the vector w as

w = [∇×A]. (39)
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Here w(r, t) is vector field of vortex lines [1] in the fluid

w = c 2Θ, (40)

where Θ is the vector of angle of rotation for vortex line. It connected with
speed of vortex line rotation ω [1] as

1

c

dw

dt
= 2ω. (41)

In this case the relations for potentials are changed as following:

u =
1

c

(
∂

∂t
+ (v · ∇)

)
ϕ+∇ ·A,

v = −1

c

(
∂

∂t
+ (v · ∇)

)
A−∇ϕ,

w = [∇×A].

(42)

Then we have
_

∇ (ietϕ+ erA) = −u+ etrv + iw (43)

and the generalized wave equation (30) is rewritten as

_

∇ (−u+ etrv + iw) = erf . (44)

This equation is equivalent to the following system:

1

c

(
∂

∂t
+ (v · ∇)

)
u+ (∇ · v) = 0,

1

c

(
∂

∂t
+ (v · ∇)

)
v +∇u+ [∇×w] = f ,

1

c

(
∂

∂t
+ (v · ∇)

)
w − [∇× v] = 0,

(∇ ·w) = 0.

(45)

Here the third equation is well known relation between velocity of vortex line
rotation ω and vorticity of linear velocity [1]:

2ω = [∇× v]. (46)

6 Sedeonic equations for viscous fluid

The equation (30) can be generalized for the description of viscous fluid. The
viscosity can be taken into account by modifying the operator (35) as

_

∇ν =

{
ie1

1

c

(
∂

∂t
+ (v · ∇)− ν4

)
− e2∇

}
, (47)
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where ν is the coefficient of kinematic viscosity [28]. Then generalized equation
for the viscous vortex flow is

_

∇ν (−u+ e3v + iw) = e2f . (48)

This equation is equivalent to the following system:

1

c

(
∂

∂t
+ (v · ∇)− ν4

)
u+ (∇ · v) = 0,

1

c

(
∂

∂t
+ (v · ∇)− ν4

)
v +∇u+ [∇×w] = f ,

1

c

(
∂

∂t
+ (v · ∇)− ν4

)
w − [∇× v] = 0,

(∇ ·w) = 0.

(49)

The sedeonic relation (48) is the generalized Navier-Stokes equation for viscous
vortex flow.

The system (49) can be also represented as the second-order wave equation
for potentials

_

∇ν
_

∇ν (ie1ϕ+ e2A) = e2f , (50)

where the relations between parameters u,v,w and potentials ϕ,A have the
following form:

u =
1

c

(
∂

∂t
+ (v · ∇)− ν4

)
ϕ+∇ ·A,

v = −1

c

(
∂

∂t
+ (v · ∇)− ν4

)
A−∇ϕ,

w = [∇×A].

(51)

Besides, the linearized system (49) can be written also for the time derivative
of enthalpy u̇, linear acceleration a and speed of rotation Ω as

1

c

(
∂

∂t
− ν4

)
u̇+ (∇ · a) = 0,

1

c

(
∂

∂t
− ν4

)
a +∇u̇+ [∇×Ω] =

∂f

∂t
,

1

c

(
∂

∂t
− ν4

)
Ω− [∇× a] = 0,

(∇ ·Ω) = 0,

(52)

where Ω = cω. The third equation in (52) describes the vortex diffusion. The
term [∇ × Ω] describes the circulation of Ω and in particular it is responsible
for the generation of toroidal vortex under a force impulse.
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7 Sound waves in ideal fluid

Let us consider the sound waves in ideal fluid. In this case we can neglect
the convective derivative and sedeonic wave equation (36) is equivalent to the
following system (

− 1

c2
∂2

∂t2
+ ∆

)
ϕ = 0,(

− 1

c2
∂2

∂t2
+ ∆

)
A = f ,

(53)

which is similar to the wave equations for electromagnetic field. The parameters
u,v,w are expressed through the potentials as

u =
1

c

∂ϕ

∂t
+ (∇ ·A),

v = −1

c

∂A

∂t
−∇ϕ,

w = [∇×A],

(54)

and the system (45) is rewritten as

1

c

∂u

∂t
+ (∇ · v) = 0,

1

c

∂v

∂t
+∇u+ [∇×w] = f ,

1

c

∂w

∂t
− [∇× v] = 0,

(∇ ·w) = 0.

(55)

If we neglect the changes of enthalpy (u = 0), which is equivalent to the condition

1

c

∂ϕ

∂t
+ (∇ ·A) = 0 (56)

similar to Lorentz gauge, then the system (55) is reduced to the Maxwell-like
equations

1

c

∂v

∂t
+ [∇×w] = f ,

1

c

∂w

∂t
− [∇× v] = 0,

(∇ · v) = 0,

(∇ ·w) = 0.

(57)

Multiplying the first two equations by v and w, respectively, and adding, we
obtain

1

2c

∂

∂t
(v2 + w2) + (∇ · [v ×w]) = (v · f). (58)
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This expression is an analogue of the Poynting relation for sound waves in the
uncompressible fluid.

Besides, differentiating (57) with respect to time, we obtain the equations
relating the angular velocity of the vortex Ω with the linear acceleration a of
the fluid in the sound wave

1

c

∂a

∂t
+ [∇×Ω] =

∂f

∂t
,

1

c

∂Ω

∂t
− [∇× a] = 0,

(∇ · a) = 0,

(∇ ·Ω) = 0.

(59)

8 Sound waves in viscous fluid

Let us consider the free sound waves in viscous fluid. In this case neglecting the
convective derivative the equation (48) is rewritten as{

ie1
1

c

(
∂

∂t
− ν4

)
− e2∇

}
(−u+ e3v + iw) = 0. (60)

This equation is equivalent to the following system:

1

c

(
∂

∂t
− ν4

)
u+ (∇ · v) = 0,

1

c

(
∂

∂t
− ν4

)
v +∇u+ [∇×w] = 0,

1

c

(
∂

∂t
− ν4

)
w − [∇× v] = 0,

(∇ ·w) = 0.

(61)

Multiplying the first three equations by u, v and w, respectively, and adding,
we obtain

1

2c

∂

∂t
(u2 + v2 + w2) + (∇ · (uv + [v ×w]))

−1

c
ν (u4u+ (v · 4v) + (w · 4w)) = (v · f).

(62)

This expression is an analogue of the Poynting relation for sound waves in
viscous fluid.

The equation (60) has the plane wave solution. Let us find the solutions in
the following form:

u = u0 exp(iωt− i(k · r)),

v = v0 exp(iωt− i(k · r)),

w = w0 exp(iωt− i(k · r)),

(63)
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where u0,v0,w0 are amplitudes that are independent of coordinates and time,
ω is frequency, k is wave vector. The dispersion relation for the equation (60)
is

ω2 − i2νk2ω − ν2k4 − c2k2 = 0, (64)

and consequently
ω = ±ck + iνk2. (65)

Here k = |k|. Substituting (63) into the system (61) we have

u0 = (n · v0),

v0 = u0n + [n×w0],

w0 = −[n× v0],

(n ·w0) = 0,

(66)

where n = k/k. In case of vortex-less motion (w0 = 0) we have

u0 = (n · v0),

v0 = u0n,
(67)

and in sound wave the vector v0 is parallel to the vector k. In case of incom-
pressible fluid (u0 = 0) the system (66) is reduced to

(n · v0) = 0,

v0 = [n×w0],

w0 = −[n× v0],

(n ·w0) = 0,

(68)

and we have transverse sound wave, where v0 ⊥ w0.

9 Conclusion

Thus, we proposed the generalized equations of hydrodynamics based on space-
time algebra of sedeons. It has been shown that the fluid dynamics can be
described by sedeonic second-order wave equation for scalar and vector poten-
tials. In simple model the viscosity was taken into account by modifying the
differential operator using ν4 term. The equations for vortex flow have been
derived by introducing angle vector w in sedeonic wave equation. As a result,
we have obtained the generalized Navier-Stokes equation in sedeonic form (50)
and in equivalent form as the system (49). In system (49) the first equation
describes the convection-diffusion [29, 30] of enthalpy. Essentially, it is a conti-
nuity equation taking into account the process of self-diffusion in viscous fluid.
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The second equation is the diffusion of linear momentum. The term [∇ × w]
in this equation is responsible for the vortex line distortion. The third equa-
tion describes the vortex diffusion. In case of viscous-less fluid it is well known
relation between angle rotation of vortex line and vorticity of linear velocity [1].

As an example we considered the linearized equations for sound waves. It
is seen from (66) that in sound wave the vector of vortex lines w0 always per-
pendicular to the wave vector k, while vector v0 has some angle with wave
vector k. In case of incompressible fluid the oscillations of fluid are described
by Maxwell-like equations (57) and we have transverse sound waves (68) with
w0 × v0 = n. In this wave, fronts with oppositely directed speed v alternate
with vortex planes with opposite vorticity of w.

The proposed sedeonic equations of hydrodynamics may become the conve-
nient theoretical platform for the further analysis of the complex vortex dynam-
ics and turbulent flows.
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[14] M. E. Kansu, M. Tanışlı, S. Demir, Quaternionic comparisons of electro-
magnetism using Lorentz transformations, The European Physical Journal
- Plus. 135, 187 (2020).

[15] A. Gamba, Maxwell’s equations in octonion form, Nuovo Cimento A,
111(3), 293-302, (1998).

[16] B.C. Chanyal, P.S. Bisht, O.P.S. Negi, Generalized octonion electrodynam-
ics, International Journal of Theoretical Physics, 49(6), 1333-1343 (2010).
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