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Abstract

We prove that it is necessary to introduce the non-zero gluon
masses into the fundamental Lagrangian of Quantum Chromodynam-
ics in order to describe the mass-gap in the reaction of electron-
positron annihilation into hadrons. A mew restriction on the gluon
masses is obtained. The renormalized theory with non-zero Lagrangian
gluon masses is constructed.

1 Introduction

Quantum Chromodynamics (QCD) is considered as the real theory of strong
interactions since the famous discovery [1] of asymptotic freedom. The colour
gauge symmetry of the Lagrangian ensures renormalizability and the possi-
bility to use perturbation theory in calculations. The gauge bosons of QCD,
the gluons, are made massless to have gauge invariance. It is not possible
to make gluons massive via the famous Englert-Brout-Higgs mechanism of
the spontaneous symmetry breaking [2] since coloured Higgs particles are
forbidden by experiments.
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In the present paper we prove that it is necessary to introduce the non-zero
gluon masses into the fundamental Lagrangian of QCD to describe the mass-
gap in the reaction of electron-positron annihilation into hadrons. The mass-
gap in this case means that below the first physical two-pion threshold the
value of the total cross section of electron-positron annihilation into hadrons
is zero and becomes non-zero above the two-pion threshold.

The concept of a gluon mass is often used in contemporary studies of
QCD. However, while sometimes it is used as a parameter in effective models,
it is not understood as a fundamental mass appearing at the level of the QCD
Lagrangian but rather as a dynamically created property. This sets those
studies aside from the present one where the gluon masses are introduced on
the level of the fundamental QCD Lagrangian.

Hence we get the theory with massive gluons which is the theory of the
massive vector bosoms. This non-abelian Yang-Mills theory [3] with masses
of the Proca type is known to be non-renormalizable.

Recently it was found that such a theory is in fact on mass-shell renormal-
izable [4]. On mass-shell renormalizability means that although the Green
functions are non-renormalizable the physical S-matrix elements are renor-
malizable, see e.g. [5]. Thus one can have the consistent theory with massive
gluons.

Introduction of gluon mass terms into the QCD Lagrangian by hands
breaks gauge invariance and that is why is not acceptable. But it turns out to
be possible to introduce gluon masses via the mechanism of the spontaneous
symmetry breaking with subsequent removal of the coloured Higgs particles
from the Lagrangian, preserving renormalizability and unitarity of the theory.
Thus the mechanism of the spontaneous symmetry breaking plays in this case
the role of the effective mathematical tool to get the consistent theory with
gluon masses.

2 A restriction on the gluon masses and the

mass-gap.

The standard QCD Lagrangian is

LQCD = −1

4
F a

µνF
a µν + iψfγ

µ(∂µ − igAa
µT

a)ψf −mfψfψf (1)

−1

ξ
(∂µAa

µ)2 + ∂µca(∂µc
a − gfabccbAc

µ) + counterterms.

Notations are usual. The summation over the quark (flavour) index f =
u, .., t is assumed. The general covariant gauge with the parameter ξ is
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chosen. mf is the renormalized quark mass, g is the renormalized strong
coupling constant, g2/(16π2) ≡ as.

It is known [6], that the covariant gauge in (1) does not fix the gauge
ambiguity uniquely. Hence QCD with the Lagrangian (1) is not the complete
theory of strong interaction. It should be considered only as the theory which
correctly reproduces the perturbative expansion of the complete theory [5].
One can choose e.g. the Hamilton gauge which fixes the gauge ambiguity
uniquely [5] to get the complete theory. But this gauge is not convenient for
perturbative calculations.

To show the necessity of the non-zero Lagrangian gluon masses for the
mass-gap and to obtain a new restriction on the gluon masses let us consider
electron-positron annihilation into hadrons via the virtual Z boson.

The quantity to be considered is the squared matrix element of the Z
boson decay into hadrons summed over all final hadron states. It is expressed
in the usual way as the imaginary part of a correlator of weak neutral quark
currents ∑

h

< 0|Jµ|h >< h|Jν |0 >= 2ImΠµν , (2)

Πµν = i
∫
eiqx < 0|T (Jµ(x)Jν(0))|0 > .

Here Jµ is the neutral quark current coupled to the Z boson in the Standard
Model.

The Z boson decay into hadrons is completely described within the Stan-
dard SU(3) × SU(2) × U(1) Model. For our purpose we will work in the
leading order of the weak coupling constant and in all orders of the strong
coupling constant. In other words one considers the Källen-Lehmann spec-
tral representation [7] for the correlator of weak neutral quark currents (2)
within QCD, see e.g. [8] for the case of electron-positron annihilation into
hadrons via the virtual photon. It is worthwhile to note that the Källen-
Lehmann spectral representation is one of the most rigorous statements of
Quantum Field Theory.

One type of Feynman diagrams among the diagrams contributing to the
correlator (2) is of special interest. These are the three-loop diagrams con-
sisting of two quark loops connected by two gluon propagators, each quark
loop has a Z boson vertex. The diagram of this type was first calculated in
[9]. The imaginary parts of these diagrams contain, in particular, Cutcosky
cuts going only through two gluon propagators. These cuts give the con-
tributions to the cross section of electron-positron annihilation which start
from zero energy if gluons are massless. The contributions are of the order a2

s

in the strong coupling constant. Of course there is an infinite series of such
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contributions (starting from zero energy) coming from diagrams of higher
orders in as.

One considers for convenience the famousR-ratio instead of the total cross
section of electron-positron annihilation into hadrons. This ratio is the total
cross-section itself divided by the tree level cross section of electron-positron
annihilation into the muon-antimuon pare. One gets the perturbative QCD
(pQCD) contribution to the R-ratio

R(s)pQCD = ρgluon(s) + ρquark(s). (3)

Here s is the squared momentum transfer of the process. ρgluon(s) is the gluon
contribution starting from zero s. It is produced by the Cutcosky cuts going
via the gluon propagators only. ρquark(s) is the quark contribution starting
from the u-quark threshold s = 4m2

u, where mu is the mass of the lightest
u-quark. It comes from the Cutcosky cuts going through quark propagators.

Thus pQCD gives non-zero contributions to R(s) starting from zero s.
This contradicts to experiments which dictate that non-zero contributions to
R(s) start only from the first physical threshold, i.e. the two-pion threshold
s = 4m2

π, where mπ is the pion mass. Hence one must somehow nullify the
pQCD contributions in the energy interval 0 < s < 4m2

π.
The first naive suggestion is that one should not trust the perturbation

theory below the two-pion threshold since the perturbative series heavily
diverges at low energies. But the perturbative series is well defined at any
energy since its coefficients are rigorously calculable in renormalizable theory
at any energy.

One could also suggest that perturbative contributions are cancelled by
non-perturbative terms, i.e. by contributions of the type

e−1/as = 0 · as + 0 · a2
s + ..., (4)

which are invisible in the perturbative expansion at the point as = 0+. But
the non-perturbative terms have completely different analytical structure as
compared to the perturbative terms. Hence non-perturbative contributions
can not exactly cancel perturbative series in the continuous interval 0 < s <
4m2

π.
We adopt here a constructive approach that the perturbation theory ad-

equately reproduces the perturbative expansion of the exact solution of the
complete theory. We could obtain this exact solution if we can do enough
mathematics. If the perturbative expansion is non-zero below the two-pion
threshold then the exact solution is also non-zero there. Thus the perturba-
tive contribution should be exactly zero below the two-pion threshold.

Sometimes one objects that the perturbation theory predicts its own fail-
ure at the Landau pole, so what sense does it make to calculate beyond that.
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But the perturbation theory can not predict its own failure if QCD is a phys-
ical theory, just because it should mathematically strictly produce exact zero
below the two-pion threshold.

Thus the only way to move the gluon contributions ρgluon(s) above the
two-pion threshold is to introduce the non-zero Lagrangian gluon masses.
Since the corresponding Cutcosky cuts (crossing only gluon propagators) in
the lowest order in as go only via two gluon propagators, we get the restriction
for the lightest gluon mass (2Mgl)

2 > (2mπ)2 or

Mgl > mπ. (5)

The Lagrangian gluon masses depend on the renormalization point. So the
question arises what kind of the gluon mass Mgl should we choose in (5).

The natural choice is to take the perturbative pole mass. It arises as a
pole of the complete perturbative gluon propagator which is obtained after
summation of all loop propagator insertions. The perturbative pole mass is
known to be a renormalization group invariant. It is the perturbative pole
gluon mass which is taken in (5).

We would like to mention that in the previous work [8] we considered
the process of electron-positron annihilation into hadrons via the photon. In
that case the corresponding Cutcosky cuts (crossing only gluon propagators)
in the lowest order in as go via three gluon propagators. Hence we got there
the restriction Mgl >

2
3
mπ which can be compared with the new result (5).

To produce the mass-gap in the energy interval 0 < s < m2
π one should

move also quark thresholds above the two-pion threshold. This can be done
by imposing the restriction Mu > mπ on the perturbative pole mass of the
lightest u-quark.

Thus we should modify the QCD Lagrangian by adding the gluon masses.

3 Adding the gluon masses to the QCD La-

grangian.

To construct QCD with massive gluons we will follow the approach of [4].
It is presently the only known way to obtain renormalizable (or on mass-
shell renormalizable) theory with massive gluons without coloured scalars.
One should start with a renormalizable theory using the Englert-Brout-Higgs
mechanism of the spontaneous symmetry breaking [2]. Hence one adds to
the standard QCD Lagrangian (1) the scalar part:

LQCD+scalars = −1

4
F a

µνF
a µν + iψfγ

µ(∂µ − igAa
µT

a)ψf −mfψfψf+ (6)
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(DµΦ)+DµΦ + (DµΣ)+DµΣ− λ1

(
Φ+Φ− v2

1

)2
− λ2

(
Σ+Σ− v2

2

)2

−λ3

(
Φ+Φ + Σ+Σ− v2

1 − v2
2

)2
− λ4

(
Φ+Σ

) (
Σ+Φ

)
+ Lgf + Lgc

+counterterms,

where Φ(x) and Σ(x) are the triplets of scalar fields in the fundamental
representation of the SU(3) colour group. We add two triplets to generate
masses for all eight gluons. If one adds only one triplet of scalar fields then
only five gluons get masses.

λi are coupling constants of scalar self interactions. vi are the vacuum
parameters. Lgf is the gauge fixing part in some renormalizable gauge and
Lgc is the gauge compensating part with the Faddeev-Popov ghost fields.

One makes shifts of scalar fields to generate masses of gluons:

Φ(x) =

 φ1(x) + iφ2(x) + v
φ3(x) + iφ4(x)
φ5(x) + iφ6(x)

 , Σ(x) =

 σ1(x) + iσ2(x)
σ3(x) + iσ4(x) + v
σ5(x) + iσ6(x)

 . (7)

Here we take for simplicity v1 = v2 ≡ v. This variant of the shifts is chosen
to avoid non-diagonal in Aa

µ terms in the quadratic form of the gluon fields.
One gets four massive Higgs fields and eight Goldstone bosons.

We obtain the following mass terms for gluons

LM = m2
gl

[
(A1)2 + (A2)2 + (A3)2 +

1

2
(A4)2+ (8)

1

2
(A5)2 +

1

2
(A6)2 +

1

2
(A7)2 +

1

3
(A8)2

]
,

here m2
gl ≡ g2v2 is the gluon mass parameter.

The scalar fields as usual are divided into unphysical Goldstone bosons
and ’physical’ Higgs fields. Here are four Higgs particles and eight Goldstone
bosons after the spontaneous symmetry breaking.

For renormalization of ultraviolet divergences it is convenient to use the
Bogoliubov-Parasiuk-Hepp (BPH) subtraction scheme [10]. This scheme has
a convenient property that counterterms of primitively divergent Feynman
diagrams are truncated Taylor expansions of diagrams themselves at fixed
values of external momenta. Thus counterterms of diagrams depending on
some masses are also mass dependent. The subtractions of the BPH scheme
in the case of the spontaneous symmetry breaking can be chosen consistently
[11] with the Slavnov-Taylor identities [12],[13].

Let us consider only Green functions without external Higgs particles
since we want to get rid of the Higgs fields from the Lagrangian.
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In a renormalizable gauge one can remove all diagrams containing the
Higgs propagators together with subtractions corresponding to these dia-
grams. These diagrams and subtractions are distinguishable due to their
specific dependence on the Higgs masses. The remaining diagrams without
the Higgs propagators stay renormalizable since they are not influenced by
the removed subtractions depending on the Higgs masses.

It means that one can remove from the Lagrangian all terms with the
Higgs fields and the corresponding counterterms with the specific dependence
on the Higgs masses. As a result one gets renormalizable theory of massive
gluons without Higgs fields. This theory is renormalizable since it is obtained
from the original renormalizable theory (6). The adding of the quark fields
is straightforward.

Unitarity of the new theory can be established in the standard way [5]
by the transition to the unitary gauge in the generating functional of Green
functions.

The above derivation with the removal of the Higgs fields from the La-
grangian can be compared with the following case. Let us consider standard
QCD with six quark flavours. One can remove all diagrams with the top
quark propagators and their subtractions from all Green functions. At the
Lagrangian level it means the removal of all terms with the top quark field
and corresponding counterterms from the Lagrangian. Then one is left with
the standard QCD Lagrangian with five quark flavours which is also renor-
malizable and unitary.

The Lagrangian of the obtained theory of massive gluons is quite in-
volved since it contains eight gluons and eight Goldstone bosons plus ghosts.
To make it simpler one can consider the unitary gauge instead of a renor-
malizable gauge. Then Goldstone bosons and ghosts disappear and one has
only physical degrees of freedom in the lagrangian.

Renormalizability is violated in the unitary gauge but on mass-shell renor-
malizability is known to survive. It means that only the S-matrix elements
are renormalizable. As a result one obtains the on mass-shell renormalizable
massive Yang-Mills theory of the Proca type. Hence the Englert-Brout-Higgs
mechanism is an efficient mathematical tool to derive on mass-shell renor-
malizability of the massive Yang-Mills theory of the Proca type. This is far
from to be obvious in advance.

The resulting Lagrangian of QCD with massive gluons in the unitary
gauge is

Lmassive QCD = LM − 1

4
F a

µνF
a
µν + iψfγµDµψf −mfψfψf (9)

+counterterms,
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where the expression for LM with gluon mass terms is given in (8).
Let us note that on mass-shell renormalizability does not mean that

quarks and gluons appear as external particles of S-matrix elements. It
means that the S-matrix elements with the physical external particles are
finite.

The one-loop β-function in the massive QCD with the Lagrangian (9)
was calculated in [8]. The calculation of the β-function is simpler of course
in the minimal subtraction scheme where it does not depend on masses of
the theory.

It turns out that asymptotic freedom remains valid in QCD with massive
gluons.

4 Conclusions

We have demonstrated that it is impossible to produce the mass-gap for
the process of electron-positron annihilation into hadrons in QCD with zero
Lgrangian gluon masses. One should introduce the non-zero Lagrangian
gluon masses into the fundamental Lagrangian of QCD to produce the nec-
essary mass-gap. We have obtained the new restriction on the lowest pertur-
bative pole gluon mass Mgl > mπ.

We have also demonstrated that it is possible to construct QCD with
non-zero Lagrangian gluon masses retaining renormalizability and unitarity
of the theory.
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