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Abstract
Rene Descartes and Francois Viete were the first to deal
substantially with the modeling of polynomial equations,
but to date no one saw in these works anything more than
remarkable constructions. The model presented here briefly
is the natural continuation of the model discovered by Viete
for the cubic equation.

According to the construction of Viete, the model of the
quartic equation should look something like this:



As is clear from the figure, this concerns the biquadratic
equation, whose roots are symmetrically arranged with re-
spect to the y-axis. Next to it is the solution to which the
geometric analysis of the figure leads. Intuition tells us that
good models lead to simple and elegant solutions, but this
solution is neither simple nor elegant. This may mean that
our model is not complete and must be supplemented by ad-
ditional geometric data.

To find this data, we first observe that the red cross inter-
sects the circle at four points. These points locate the roots.
We believe that there are additional geometric systems as-
sociated with the roots. So we draw four lines that are per-
pendicular to the x-axis and pass through the roots. These
lines will intersect the circle at eight points. Then we draw
all the lines that connect these points in pairs and rotate the
red cross to see which structures remain unchanged. With
this heuristic method we will come up with the following
figure.



As the red cross rotates around the fixed point α1 at an an-
gle ω1, the remaining crosses move vertically because the
values of α0,α2 change, keeping the angles ω0,ω2 constant.
The formulas within the big box come from the geometric
analysis of the figure. For the time being we cannot extract
the well-known formula for solving the biquadratic equa-
tion which is printed in the small box.



Now we are ready for the big leap. If the quartic equation
model exists, then the above figure will be a special case.
To this end, we observe that all three crosses are defined by
two parameters: (R,α0), (R,ω1), (R,α2). We can see that if
we combine the vertical with the rotational motion, then
each of the crosses will receive three degrees of freedom
(R,ωκ,ακ). Now our model takes the following form.

Using elementary trigonometry we can find that the sum of
the roots x1, x2, x3, x4 is equal to zero. Therefore, this
model identifies the roots of the equation x4+cx2+dx+e=0.
The higher the value of the coefficient d, the more asym-



metric the graph of the quartic function becomes. The same
goes for the roots. Later we will see that the radius R of the
circle is equal to

This relationship is valid when two of the roots are positive
and the other two are negative, all real. However, with ana-
lytical methods it can be shown that

The root factor 27/34 is not arbitrary but a product of analy-
sis.

Based on what has been said so far, draw a circle with a
random radius, with the center at the beginning of the axes.
Select a random point α on the y-axis and within the circle.
Draw a random chord passing through α. Now draw a
chord that passes through α and is perpendicular to the pre-
vious chord. The chords intersect the circle at four points.
From these points draw lines perpendicular to the x-axis.
Then these points on the x-axis will have a sum of zero and
will be roots of the equation x4 + cx2+dx+e=0. The radius



of the circle will be equal to

Because the term bx3 of the equation is zero, you can use
the following relationships to calculate the coefficients:



The following is a more detailed example.



In this example the x-axis passes through the center of the
cross. This option simplifies the various relationships we
can derive from the geometric analysis of the model. Imme-
diately now several such relationships will be given for the
equation

This equation is zeroed when x is equal to -42, -6, 21 and
27. The radius R is approximately equal to 43.42. The equa-
tion model has the following appearance.

In the following figures, the three subsystems of the model
(red, blue and green cross) are analyzed separately. Note
that the angles ω0, ω1 and ω2 are the smallest of the com-
plementary angles between two successive rays of the
cross. That is, ωκ is less than or equal to 45°.



Subsystem 0



Subsystem 1



Subsystem 2



The following are various relationships that apply to all
three of the above subsystems.

The next two pages are dedicated to the relationships be-
tween roots, coefficients and parameters of the model.







Solution methods
We first find the resolvent cubic.

We set

Because they apply

we will have

Therefore the resolvent cubic is



This can be solved as follows.

Since this equation does not recognize a sign in d, we must
in all methods of solving the quartic equation multiply the
derived roots by d/|d| in order to receive the correct sign.
Also, because the roots of the resolvent cubic are predeter-
mined when d=0, we can be led to all known or unknown
formulas for solving the biquadratic equation by replacing
and simplifying each of the presented methods.

General method



Eccentric method

Trigonometric method
This method, although a bit complicated, provides the best
geometric interpretation of the solutions. Typically, the tri-
gonometric method is applied when the equation has two
positive and two negative real roots. Otherwise its trigono-
metric functions may express corresponding hyperbolics.
For example, when three of the roots of the quartic equation
have the same sign and the other has the opposite sign, then
its model is not drawable as the angles ωκ become complex.
However, the trigonometric method can be applied.

(continue on the next page)





Special example 1



Identify real parts of complex roots
If we rotate the outer cross of the model (the outer subsys-
tem), at some point its arm will touch the circle. At the
same time, the two internal subsystems will overlap. Then,
when the arm of the outer subsystem is detached from the
circle, the inner crosses will disappear as their angles ac-
quire complex values. Then, the detachable arm of the ex-
ternal subsystem will locate on the x-axis the real parts of
the complex roots of the corresponding equation. This is
done in the way shown in the following example.

Example 1

(continue on the next page)





Example 2



Geometric interpretation of the biquadratic
equation

When d=0, the roots of the resolvent cubic and the radius of
the circle take the form:



By replacing and simplifying these relationships in the tri-
gonometric method, we get

Doing the same for the other roots of the biquadratic equa-
tion we will get the standard formula

How the relationship for the radius of the
circle arises
We start with the obvious relationship

Replace y0 and α with



We first analyze the y0-α with the help of the relationships
between the roots and the coefficients:

We add x1x2x3-x1x2x3 (=0) to the last representation to get
d:



About the existence of similar models for polyno-
mial equations of degree n with sum of roots
equal to zero
The following result shows whether it would be possible for
such an equation to have a similar model with parameters
R, α, ω.

If R,α and n have constant values with R>|α|>-1 and n>2,
then for every angle ω will be valid:

x1+x2+x3+...+xn=δcos(nω)

where δ is a constant. Therefore δ will be equal to the sum
of the roots for ω=0°. When n is an odd number it will be
δ=0 only if α=0, while when n is an even number it will al-
ways be δ=0 due to the symmetry that these systems have
with respect to the y-axis for ω=0.
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