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Abstract 
 
In Feature Optics, a light pattern undergoes the process of provolution as it 
propagates; it is analogous to the Fractional Fourier Transform in conventional 
optics.  We study the physical basis of provolution in the simple beam, 
introducing and incorporating concepts such as imparity, symmetry inclination, 
and curvature. 

 

1 Introduction 
 
Feature Optics (FO) was recently introduced and elaborated in a series of articles1,2,3,4.  FO 
describes light in terms of its spatial symmetries and asymmetries3, which is useful for modeling 
diffraction and interference phenomena.  Previous work in FO demonstrated its application to 
beams and gratings2,4.  FO is an approximate theory; it sacrifices fidelity both for the sake of 
simplicity, and to reveal aspects of light that are conventionally overlooked.   
 
FO deals with patterns, i.e. functions of intensity vs position, in coherent light.  When a plane 
wave is shaped by an aperture, the transmitted pattern diffracts and changes shape as it 
propagates.  It eventually settles into a stable pattern which remains constant except for overall 
magnification; this final pattern is the Fourier Transform (FT) of the initial aperture pattern 
(along with a small residual curvature). 
 
While the FT is usually calculated in a single step, the change of the pattern actually occurs 
gradually as the light propagates.  This process is described by the Fractional Fourier Transform 
(FracFT), which progresses continuously through intermediate orders, eventually reaching the 
ordinary FT.  Ozaktas, Mendelovic, and others have produced a large body of work5,6,7 describing 
the FracFT both in purely mathematical terms, and applied to propagating light.  They have 
shown that the FracFT of a pattern ‘rides’ on a propagating wavefront, which both scales the 
pattern and imparts a curvature to it.   
 
While the FracFT may be applied to any arbitrary pattern, the simplest case is the Gaussian 
beam.  This elementary shape describes the simplest transverse mode of the electromagnetic 
field8. 
 



FO describes the same phenomena as conventional wave and beam optics, but uses a different 
set of concepts and a different physical interpretation.   This work ‘translates’ the FracFT of the 
conventional Gaussian beam into the corresponding concept of provolution in FO.  This work 
assumes that the reader is already familiar with theoretical framework developed in earlier work. 
 

2 Glow and shine imparities 
 
Features exist as one of two types: glow or shine.  Glow remains constant during propagation.  
Shine grows as a linear function of Z, and equals zero where the wavefront is flat.  In the simple 
beam, the glow A is equal to the waist width (in patches) and the shine divergence equals 1/A.  
Figure 2.1 shows an example.  
 
Figure 2.1, Glow and shine 

  
 
We now consider two different ratios between glow and shine: the shine imparity f(Z) and the 
glow imparity g(Z). 
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Fundamentally, these two functions are a single degree of freedom; each is simply the reciprocal 
of the another.  As Figure 2.2 shows, the shine imparity begins at 0 at the flat, rises to 1 at the 
elbow, and increases indefinitely thereafter.  The glow imparity begins at infinity at the flat, falls 
to 1 at the elbow, and approaches zero asymptotically.  The two functions coincide at 1 at the 
elbow. 
 



Figure 2.2, Glow imparity and shine imparity 

 
 
When the imparities are drawn on a log-log plot, they assume a particularly simple form.  Figure 
2.3 shows that both glow and shine imparities appear as straight lines, forming an ‘X’.  The two 
imparities appear symmetrical around the elbow.  The logarithmic symmetry is best seen by 
comparing the highlighted points A and B which are located at ZElbow/3 and 3∙ZElbow, respectively.  
While they are at different distances from the elbow (visible in the linear plot), they differ from 
the elbow by the same factor (which appears as distance in the log-log plot).  This factor 
determines the two points’ common imparity of 1/3.  Stated another way, the shine imparity at 
point A is equal to the glow imparity at point B. 
 
Figure 2.3, Points of equal imparity 

 
 

  



3 Inclination as imparity 

 

3.1 Gaussian beam Gouy phase, Fractional FT 
 

The wavefronts of an ideal plane wave are spaced exactly  apart in Z.  However, the wavefronts 
of a Gaussian beam are displaced from their ideal planes; this discrepancy is called the Gouy 
phase.  When the beam waist is located at Z = 0, and with ZR denoting the Rayleigh range, 
 

PGouy(Z) = arctan( Z / ZR)  
 
For a Gaussian beam, the change in Gouy phase between any two planes is also the FracFT order 
between those planes.  Any arbitrary plane may be chosen as the starting plane, where FracFT 
order is set to zero by definition.  Often, we count FracFT starting from Z = 0, where PGouy = 0; in 
this case, the FracFT order simply equals the Gouy phase. 
 
The FracFT deals with the pattern of the light in a transverse (X-Y) plane, rather than any axial (Z) 
displacement; so, the definition of Gouy phase given above does not give a clear physical 
interpretation of the FracFT.  Nonetheless, that is how FracFT is quantified in the Gaussian beam. 
 
Figure 3.1 shows the Gouy phase as a function of Z.  At the flat, PGouy = 0.  At the elbow (Rayleigh 

range), PGouy = /4.  The full FT occurs when PGouy =  /2; however, the beam approaches this 
level only asymptotically. 
 
Figure 3.1, Gouy phase and FracFT order in the Gaussian beam 

 
 

3.2 Inclination in the Feature-Optical beam 

 
In mathematical terms a pattern is represented by a state vector, which points in some direction 
or inclination in a complex vector space.  The FT is a unitary transformation, which rotates the 



vector to a different inclination.  It also has a rough spatial interpretation, as a later section will 
describe. 
 
Inclination in FO acts as a parallel concept to Gouy phase in conventional optics – not in the 
sense of an axial shift of the wavefront, but rather in the sense of the light’s ‘location’ in the 
progress of provolution.  The light provolves from one inclination, to another. 
 
Inclination in the beam is closely related to imparity, as Figure 3.2 shows.  It is formed piecewise 
from two segments, drawn in red and blue respectively.  In the first segment, the inclination is 
equal to the shine imparity, rising from 0 at the flat to 1 at the elbow.   
 
Figure 3.2, Inclination as a piecewise function 

 
 
In the second segment, it is easier to speak in terms of provolution, i.e. change in inclination.  
Here, the beam provolves with changes of glow imparity.  The changes have the same 
magnitude, but are rectified; i.e., the sense of change is flipped, so that inclination rises as glow 
imparity falls.  As a result, the inclination after the elbow resembles the glow imparity, reflected 
across a horizontal line passing through 1.  As the glow imparity asymptotically approaches 0 at 
infinite Z, the inclination asymptotically approaches its final value of 2, which represents a 
complete FT from the flat. 
 
The inclination can be expressed as  
 

i(Z)pre−elbow  =  f(Z)  
 

i(Z)post−elbow =   2 −  g(Z)  
 
Figure 3.3 shows the fidelity of the agreement between the Gaussian and FO models.  To 
facilitate the comparison, we have offset the vertical scale by plotting provolution relative to the 
elbow, rather than inclination per se (which is provolution relative to the flat).  Both at Z = 0 and 
(asymptotically) at Z = ∞, the two functions have the same slope.  However, the FO provolution 



at those extremes is greater than the Gaussian FracFT by the Gaussian correction factor , which 

has the value /4 and appears as a discrepancy in many similar approximations in FO.  Because 
of this factor, 8 radians corresponds to a complete cycle in FO, rather than 2π radians. 
 
Figure 3.3, Comparing Gaussian and FO models 

 
 

3.3 Ticks 
 
Provolution can be counted by evenly-spaced ticks.    Each tick corresponds to one patch. 
 
When a new feature sprouts, at some distance ZSprout from the flat, it is 1 patch in size by 
definition.  At distances 2∙ZSprout, 3∙ZSprout, etc. the feature grows to 2 patches, 3 patches, etc. in 
a linear fashion.  Finally the feature grows to some finite size N where it reaches closure and 
remains indefinitely.  Then a new feature sprouts, and the cycle continues. 
 
The sprouting and subsequent closure of a feature defines two sets of planes, as drawn in Figure 
3.4.  The planes at integer multiples of ZSprout are the advancing ticks.  The retreating ticks occur 
at inverse-integer fractions of ZClosure.  There are the same number of advancing and retreating 
ticks, and both sets always include the sprouting and closure planes, and sometimes some 
intermediate planes.  But, only one set corresponds to even ticks of provolution. 
 



Figure 3.4, Two kinds of ticks 

 
 
The plane locations are defined by 
 

Zadvancing =  Zsprout ∙ n,    n ∈ { 0, 1, 2, … , N } 

 

Zretreating = 
Zsprout ∙ N

n
 ,    n ∈ { N, (N-1), (N-2), … , 2, 1, 0 } 

 
When n = 0, imparity is 0.  For advancing ticks this occurs at the flat; for retreating ticks, this 
theoretically occurs at infinity.  Each growing feature has its own two sets of planes, but all 
features share the flat and infinity. 
 
Glow remains constant while shine increases; but, the logic of ticks and imparity is more easily 
understood if we imagine a counterfactual system in which both shine and glow can change.  
This is drawn in Figure 3.5, which uses yellow and purple to stand for different types of features; 
it does not matter which is glow and which is shine.  In this system, the yellow feature begins at 
size 0, then grows to size 3, which is the size of the purple feature.  Then, the purple feature 
decreases from 3 to 0. 
 
Figure 3.5, Ticks by growing and shrinking features 

 



 
One tick of inclination occurs each time a patch is added to or subtracted from the numerator of 
the imparity, while the denominator remains constant. 
 
In the actual physical process in the beam far field, imparity decreases because of an increasing 
denominator, i.e. increasing shine.  In physical terms, the glow (the numerator) remains 
constant.  But the retreating ticks occur at the glow-to-shine ratios that would correspond to the 
glow shrinking by one patch after another. 
 

3.4 Ticks in the beam 
 
The beam provolves in two stages.  As Figure 3.6 shows, the near field provolves by advancing 
ticks, while the far field provolves by retreating ticks. 
 
Figure 3.6, Two stages of ticks in the beam 

 
 
The imparities at these ticks are shown in Figure 3.7.  Because the glow equals 3, the shine 
imparity rises from 0 to 1 in 3 ticks of 1/3 each.  The glow imparity falls from 1 to 0 in 5 ticks of 
1/5 each; however, only 4 ticks occur in the finite space shown.  The final tick is calculated to 
occur at infinity, and is never realized. 
 



Figure 3.7, Imparity in the beam 

 
 
It is not possible to observe ticks in the beam.  It is possible to observe ticks in the revivals of the 
grating; however, these lie beyond the scope of this work. 
 
The logic of ticks in the beam is best shown using feature diagrams.  Note that in this section’s 
diagrams, left and right columns represent glow and shine, respectively; the two columns in later 
sections will have a different interpretation.  Figure 3.8 shows the beam near-field.  One 
advancing tick occurs with the growth of each additional patch of shine.  Each tick is a 
provolution of 1/A, where A is the glow. 
 
Figure 3.8, Ticks in feature diagram, near field 

 
 
After the elbow, shine patches continue to grow linearly with Z, with the highest-ranking shine 
now ranking with dark glow.  However, these patches do not represent even ticks of provolution.  
Instead, we must represent the provolution as shown in Figure 3.9.  We first imagine a virtual 
boundary to the space, even though there may be no physical boundary present.  Then, in each 
plane we calculate the size of a virtual dark feature (drawn in green) which represents the void 
between the bright shine and the virtual boundary.  Now, one retreating tick occurs with each 
decreasing patch of the virtual dark feature.  Note that the Z values and the number of bright 



patches at retreating ticks are not always integers.  Also, the retreating ticks are bunched near 
the elbow, and grow further apart. 
 
Figure 3.9, Ticks in feature diagram, far field 

 
 
The virtual boundary can be set arbitrarily, and this choice affects the ticks’ Z locations (but not 
the shape of the imparity-vs-Z curve).  So, the virtual dark shine is a kind of counting trick, not 
the actual physical cause of the beam’s provolution.  The real cause is the falling glow imparity.  
However, they are mathematically equivalent, because both vary in inverse proportion to the 
growing bright shine. 
 

4 Slab and wedge, width and depth 
 
In an earlier work3, we discussed the slab and wedge transforms.  These are defined 
mathematically as matrices which act on dark and bright state vectors, but they are more 
intuitively understood as glass optical devices acting on rays, as shown in Figure 4.1.  In the cases 
shown in the figure, slab and wedge act as asymmetry transforms, i.e. changing the light from 
one state to another.  However, when the same transforms are applied to certain patterns, they 
can also act as symmetry transforms which leave the state of the light the same, apart from a 
phase factor applied to the pattern’s state vector, which can be thought of as a trivial change. 
 



Figure 4.1, Slab and wedge generators 

 
 
Figure 4.2 shows a tracked-shine diagram of a simple beam, similar to those drawn in reference 
4.  This example has a width of 8 patches and a depth of 4 patches, for a total of 32 spatial 
patches, all of which have the same quantity of energy.  Naively, we interpret these numbers as  
sizes or lengths.  But now we add a second, subtly different physical interpretation – namely, 
how many symmetries the pattern has, i.e. the order of its symmetry group.  A symmetry 
generator is a transformation that replaces the energy of each spatial patch with 
indistinguishable energy from a different patch, such that the end result is entirely equivalent. 
 
Figure 4.2, Slab and wedge in the tracked-shine diagram 

 
 
Slab is the symmetry generator corresponding to width.  This is very intuitive – an optical slab 
shifts light laterally, and the width is the number of patches arrayed laterally in the plane, so a 
slab shifts each patch to the next (we imagine that the final patch is circled around to the first). 
 
Less obviously, wedge is the symmetry generator corresponding to depth.  Fundamentally, 
wedge symmetry is angular rather than translational.  It is analogous to the number of sides in a 
polygon, except that the total angle to be divided among the sides is 1 radian rather than a 



complete circle, as Figure 4.3 depicts.  The symmetry is not the total angle, which is fixed at 1 
radian; the symmetry is also not the angle of each section, though it is related by inverse.  
Rather, the symmetry is the degree of repetition – how many distinct but equivalent angles the 
light is spread over. 
 
Figure 4.3, Wedge symmetry 

 
 
Another way to understand wedge symmetry is as the number of source patches which emanate 
shine to a given target patch.  Different sources are necessarily at different angles to the target; 
an optical wedge transforms the angle of each source patch to the next.  In fact, a wedge applied 
in the target plane is equivalent to a slab applied in the source plane. 
 

5 Inclination as symmetry type 
 

5.1 Gaussian beam inclination 
 
Above, we stated earlier that the inclination can be interpreted as an angle in an abstract vector 
space.  In this section, we interpret the inclination angle as the symmetry type of the glow and 
shine features – whether a given feature has slab symmetry, wedge symmetry, or something 
intermediate.  Equivalently, the inclination of a feature can range from width to depth. 
 
Conventional optics does not include concepts of width and depth.  So, here we posit a set of 
axioms, and study their consequences in the Gaussian beam.  In the subsequent section, we 
adapt the results to the simple beam in FO. 
 
First, we define a plane whose coordinates consist of two orthogonal inclinations: width and 
depth, shown in Figure 5.1. 
 



Figure 5.1, Inclination concepts in Gaussian beam 

 
 
Second, we posit that we can represent the glow and shine as two vectors in the plane, with 
lengths proportional to their respective values. 
 
Third, we posit that the vectors are constrained to lie orthogonal to one another. 
 
Fourth, we posit that the vector sum of the two vectors is constrained to be wide, while the 
directions of the glow and shine vectors vary to accommodate the other constraints. 
 
Finally, we interpret the directions of the glow and shine vectors to mean the inclinations of their 
respective symmetries.  Inclination can be quantified in either of two equivalent ways: the 
angular distance from width to glow, or the angular distance from depth to shine. 
 
From these assumptions we find the behavior shown in Figure 5.2, which tracks the inclinations 
as the shine grows from 0 to very large, while the glow remains at constant magnitude.  At the 
waist in Figure 5.2a, the shine is 0 and the glow is purely wide.  In Figure 5.2b, the first shine 
appears.  Because the shine is much smaller than the glow, the vector sum deviates only slightly 
from the glow.  The vector sum is constrained to be wide, and the shine is constrained to be 
orthogonal to the glow; therefore, the shine is nearly deep (with a slight deviation). 
 



Figure 5.2, Width and depth vs shine growth 

 
 
As the shine grows, the angles of both glow and shine tilt.  By the elbow in Figure 5.2c, the two 
vectors are of equal magnitude and both symmetries incline intermediately between width and 
depth.  Beyond the elbow, the shine tilts further and further towards width while the glow tilts 
further and further towards depth, approaching those inclinations asymptotically as shine grows 
infinitely large. 
 
In summary, the effect of the provolution is that the glow tilts from width to depth, and the 
shine tilts from depth to width.  They are coupled together, and turn as a single unit.  Note that 
we consider the shine at the flat to be deep because the first patches to sprout are deep, even 
though the shine inclination at the flat is actually undefined because its magnitude is zero. 
 

5.2 Inclination by ticks in FO 
 
The conclusions of the previous section can also be applied to the FO beam, with only small 
adjustments.  Inclination in the FO beam can be converted to angle by simply multiplying by the 

Gaussian correction factor .  Figure 5.3 shows how advancing (near-field) and retreating (far-
field) ticks can be interpreted as even steps in angle.  Note that the inclinations shown in this 
figure apply to the glow; the shine is inclined perpendicular to the glow. 
 



Figure 5.3, Inclination angles 

 
 

5.3 Inclination in feature diagrams 
 
In the previous section, we allowed inclinations to assume a continuous range from wide to 
deep.  However, feature diagrams are not able to show such a range; instead, a feature can have 
one of only two discrete inclinations: width, or depth.  Therefore, we make the approximation 
shown in Figure 5.4; solid lines (of either color) represent width, while dotted lines (of either 
color) represent depth; red represents shine, while blue represents glow. 
 
Figure 5.4, Glow and shine, width and depth 

 
 
From the flat up to the elbow, the glow is wide while the shine is deep.  At the elbow, they 
abruptly exchange inclinations, which they maintain thereafter.  An equivalent statement is that 
the larger of the two is always wide, while the smaller is always deep. 
 
This approximation is very accurate at the flat and near the end field, but its fidelity diminishes 
near the elbow.  Therefore, feature diagrams follow the arbitrary convention of drawing the 
shine wide at the elbow, although it is actually halfway between wide and deep.  



 
Now we establish new conventions for indicating inclination in feature diagrams.  The need for 
these conventions will become more apparent in future works, where they will be applied to the 
grating. 
 
Figure 5.5 shows the beam near field.  For each plane, there are two columns, labeled ‘W’ and 
‘D’ for wide and deep.  (Note that this convention differs from the one used above in 3.1, as well 
as in previous work4, where the left column always represented glow and the right column 
always represented shine.)  Glow is drawn in dark grey, while shine is drawn in different colors 
for different features.  Glow is also highlighted with a dark background to make its inclination 
more visible. 
 
Figure 5.5, Inclination in near field in feature diagram 

 
 
In the near field, a red feature grows in the depth column, indicating that the shine is inclined 
deep.  At the elbow the lowest-ranked glow and shine switch inclinations, indicated in the 
diagram by their switching columns. 
 
Figure 5.6 shows the beam in the far field.  The available space is represented as dark glow, 
which works differently from bright glow.  Here, the shine immediately grows wide, which tilts 
the dark glow to depth.  As long as the beam propagates, bright shine continues to grow and to 
tilt an equal amount of dark glow. 
 



Figure 5.6, Inclination in far field in feature diagram 

 
 

6 Provolution as conjugation 
 
The above discussion has treated the glow and shine similarly to objects which may be rotated 
from one inclination or angle to another.  Mathematically, this may be represented by matrix 
multiplication.  For example, in previous work1 we described how the Fourier Transform (FT) acts 
to transform a state vector, yielding a new state vector.  For example, it turns a bright feature 
into a dark feature. 
 

FT ( 
1

√3
∙ [

1
1
1

] ) = [
0
1
0

] 

 
However, the FT matrix acts differently on the symmetry of the state vector; namely, it acts by 
conjugation, which is distinct from transformation.  Rather than act on a state, conjugation acts 
on another transformation.  In this case, the other transformation belongs to the symmetry 
subgroup or asymmetry subgroup of the state vector.  For instance, the FT conjugates the slab 
group S into the wedge group W. 
 

FT-1 ∙ S ∙ FT+1 = W 

 
The key principle can be stated as: when a state vector is transformed by any transformation T, 
then its symmetry and asymmetry subgroups are both conjugated by T as well. 
 
The concept of conjugation is best visualized through a more intuitive example.  As shown in 
Figure 6.1a, we begin with a cylinder with its axis ACylinder lying parallel to the vertical axis Y of the 
fixed coordinate system.  The symmetry group U of the cylinder includes all rotations around its 
symmetry axis ACylinder.  In terms of fixed coordinates, they rotate the cylinder around Y. 
 



Figure 6.1, Conjugation of symmetry 

 
 
Next as shown in Figure 6.1b, we apply an instantaneous transformation T, which reorients the 
cylinder by a quarter-turn so that its axis ACylinder lies horizontal. 
 
We contrast two possibilities for what happens to the symmetry group U, depending on whether 
we understand U to be defined relative to the fixed coordinate system, or relative to the 
cylinder’s own coordinates.  If U remains fixed, then it continues to rotate around Y.  Then, its 
effect post-T is to flop the cylinder end-over-end as shown in Figure 6.1c.  In this case, U is no 
longer a symmetry, but rather an asymmetry group. 
 
On the other hand, if we imagine that U ‘travels’ with the cylinder itself, then we conjugate U by 
transformation T, resulting in group U’, which consists of rotations around the horizontal axis X.  
U’ is a similar set of transformations to U, but they are performed from a different perspective.  
U’ continues to rotate the cylinder around ACylinder, as shown in Figure 6.1d, making it a symmetry 
group. 
 
While the previous figure shows only the endpoints of transformation T, Figure 6.2 shows the 
provolution as a series of many gradual steps.  This better resembles what actually occurs in the 
FracFT. 
 



Figure 6.2, Gradual change of inclination 

 
 
In FO, a provolution of 2 (i.e., the full FT) conjugates slab symmetry into wedge symmetry and 
vice-versa.  While these are all transformations, there is a great physical difference between the 
provolution and the symmetry transformations.  To clarify the distinctions: 
 

 The symmetry is only a possible or potential transformation; no physical motion actually 
takes place.  The provolution actually does take place. 

 The symmetry acts by transformation, while the provolution acts by conjugation. 

 The symmetry acts on the state vector of the light, while the provolution acts on the 
symmetry transformation matrices. 

 The symmetry transformation applies within a single plane at a given instant; the 
provolution occurs from one plane to another over finite time and distance. 

 The symmetry does not cause any change in the provolution.  However, the provolution 
does change the symmetry, conjugating it from one inclination to another. 

 In the far field, the provolution eventually slows and nearly stops, even as the beam 
continues to propagate and expand.  However, the symmetry persists indefinitely. 

 

7 Curvature 
 

7.1 Gaussian beam curvature 
 
The Gaussian beam is named for its transverse profile, whose intensity has a Gaussian 
distribution.  However, we will be concerned with other properties of the beam and how they 
vary along the propagation axis Z, not along the transverse axis.  The beam has a flat wavefront 
at the waist, but in any other plane the wavefront is curved like a portion of a notional sphere, as 
shown in Figure 7.1. 
 



Figure 7.1, Curved wavefronts in the Gaussian beam 

 
 

This radius of curvature varies with propagation in Z following the equation  
 

  R(Z) = Z ∙ [ 1 + (
ZR

Z
)

2
 ] 

 
Alternatively, the normalized curvature – i.e. the actual curvature, multiplied by ZR — is equal to 
the reciprocal of the sum of the glow and shine imparities. 
 

  CNorm,Gaussian(z)  =   
1

f(Z)+g(Z)
  

 
CNorm,Gaussian is drawn in Figure 7.2.  At the flat, it matches the shine imparity.  In the far field, it 
matches the glow imparity.  At the Rayleigh range (elbow), it has a rounded peak with a height of 
½. 
 
Figure 7.2, Normalized Gaussian curvature 

 
 



7.2 Piecewise normalized curvature in FO 
 
FO describes curvature using an approximation.  Normalized curvature can be expressed as a 
simple ratio 
 

CNorm,FO(Z) =  
depth(Z)

width(Z)
 

 
Depth and width are piecewise functions made from glow and shine imparities; so, CNorm can be 
expressed as 
 

CNorm,FO(z) = f(z) ,  Z  <  ZElbow  
   = g(z) ,  Z  ≥  ZElbow 

 
This function is drawn in Figure 7.3.  Before the elbow, the curvature rises proportionally to the 
distance Z; for example, at ½ ZElbow, CNorm is ½.  After the elbow, the curvature is inversely 
proportional to Z; for example, at 4x ZElbow, CNorm is ¼.  As Z becomes greater and greater, CNorm 
becomes smaller and smaller. 
 
Figure 7.3, Normalized curvature in FO as a piecewise function 

 
 
CNorm has a sharp, discontinuous peak at the elbow.  The peak height is 1 for all beams, which is 
twice the rounded peak in the Gaussian curvature. 
 
In terms of actual (non-normalized) curvature 
 

  C(z) =  
Z

glow4  ,  Z  <  ZElbow 

 



  C(z) =  
1

Z
   ,  Z  ≥  ZElbow 

 
The second component has the interpretation that in the far field, the wavefronts are formed 
from portions of a notional sphere whose center lies in the flat plane. 
 

8 The converging beam 

 

8.1 Even and odd parameters 

 
Up to this point, we have assumed that the beam begins at the flat waist.  However, a converging 
or focused beam may also exist, as drawn in Figure 8.1.  It is typically produced by passing a wide 
beam through a lens (not drawn); the wavefront leaving the lens has a concave curvature that 
causes the beam to narrow as it propagates.  From the waist onward, it is exactly the same as 
the beams we have studied up to this point. 
 
Figure 8.1, Converging beam 

 
 
Figure 8.2 shows the variables which describe the beam.  All have either even or odd symmetry 
around the waist, i.e. the value at any negative Z always has the same magnitude as at the 
corresponding positive Z, but its sign may be flipped.  
 



Figure 8.2, Many variables in converging beam 

 
 
For a hypothetical converging beam which extends infinitely far in both directions, the total 
provolution end-to-end equals 4 radians.  For a real, finite beam, it is always less than that.  
 
For Z < 0, shine is negative.  The existence of negative shine shows that one must not naively 
interpret increasing shine as something analogous to an expanding gas, for which a negative 
volume would be impossible.  Also, negative shine spontaneously moves towards zero as it 
propagates, which is the opposite of the behavior of a gas. 
 
While the magnitude of negative shine falls as it approaches the waist, and rises afterwards, 
these are actually two expressions of the same principle.  In both cases, the shine value increases 
in linear proportion to Z, regardless of whether shine is positive or negative.  This root principle 
determines the evolution of the beam shape; other properties such as curvature follow from the 
shine. 
 

8.2 Provolution across the flat 
 
In earlier sections we regarded the flat as the starting point of the beam, and accordingly we 
assigned the net provolution to be 0 at the flat.  In that case, the beam reached the full FT only 
at infinite Z.  But in general, the provolution may be counted from any plane, and the FT occurs 
for any net provolution of 2 radians. 
 
If the flat is taken as the starting plane, then the FT is approached only asymptotically with 
infinite propagation in Z.  If any plane after the flat is taken to be the starting plane, then the FT 



never occurs and is never approached even asymptotically, as long as the beam propagates 
freely with no lens.  However, if a plane before the flat is taken to be the starting plane, then the 
FT may be reached in finite distance. 
 
In this section, we will consider provolution counted from planes of negative shine, before the 
flat.  Figure 8.3 shows the provolution of a converging beam, counted from one tick before the 
flat – in this case, a tick of ¼ radian.  The full FT occurs at ¼ radian before the end field, which 
occurs at 4x the positive elbow distance.  Rather than provolving by 4 ticks of shine imparity and 
4 ticks of glow imparity, the beam provolves by 5 ticks of shine imparity and 3 ticks of glow 
imparity. 
 
Figure 8.3, Provolution from near flat 

 
 
Note that to simplify counting by ticks, we are considering the case in which both the bright glow 
and the available dark glow (which defines the virtual boundary) are of the same size, i.e. 4 
patches.  However, this is not strictly necessary. 
 
In another example shown in Figure 8.4, the negative elbow is taken as the starting plane.  Here, 
the beam provolves a full 2 radians in a distance of 2∙ZElbow.  The provolution proceeds by 8 ticks 
of shine imparity, each of increment ¼ radians.  It starts and ends at the same-magnitude 
imparity. 
 
Figure 8.4, Provolution from elbow 

 



 
Next we consider the case of a starting plane that falls only slightly after the negative elbow, 
shown in Figure 8.5.  It provolves by 7 ticks of shine imparity and 1 tick of glow imparity. 
 
Figure 8.5, Provolution from near elbow 

 
 
Finally, note that all of these cases have analogous equivalents in which forward and backward 
directions are reversed.  For example, Figure 8.6 below shows a case that is the reversed case of 
the previous Figure 8.5. 
 
Figure 8.6, Provolution from near elbow, reversed 

 
 

9 The lens and flip field 

 

9.1 The lens 
 
Conventionally, the principle of the lens is stated as: the lens causes a step change in the 
curvature of the beam; the size of this step is equal to the negative inverse of the focal length. 
 

Cout =  Cin + ∆Lens 
 



∆Lens=  −
1

FLens
 

 
In FO, in the context of the 2f system, the principle is stated differently: the lens exchanges the 
values of the glow and the shine; also, it flips the sign of the shine from positive to negative. 
 

shineOut =  −1 ∙  glowIn 
 

glowOut =  shineIn 
 
This does not change the width of the light.  It also does not change the magnitude of the depth; 
however, the sign of the depth is flipped. 
 
Note that these relations hold true only when the flat is located in the front focal plane of the 
lens, as in the standard 2f configuration.  Also note that in the context of these equations, the 
subscripts ‘in’ and ‘out’ refer to the front and rear surfaces of the lens, not to input and output 
planes of the 2f system. 
 
Because imparity between glow and shine is defined as the ratio of the smaller to the larger, it 
remains unaffected when the two values are exchanged.  Therefore, the lens changes shine 
imparity into glow imparity and vice-versa, but leaves the magnitude of the imparity the same. 
 

shineImparityOut =  −1 ∙  glowImparityIn 
 
glowImparityOut =  −1 ∙  shineImparityIn 

 
This abruptly changes inclination by -2 radians.  However we do not count this change as a 
provolution, i.e. it does not count towards the FT. 
 

9.2 The 2f system 
 
A free beam (i.e., no lens) can be parameterized by the width and Z-position of its waist.  
Accordingly, the lens changes one free beam into another free beam.  As Figure 9.1 shows, the 
beam entering the lens has a waist at the input plane; the beam leaving the lens has a waist in 
the output plane. 

 



Figure 9.1, Lens changes one beam to another 

 
 
Figure 9.2 illustrates the course of glow and shine in a typical 2f system.  The region before the 
lens is the same as in Figure 2.1; the glow stays constant while the shine increases linearly.  The 
lens then exchanges the glow and shine as described above in section 9.1. 
 
Figure 9.2, Glow and shine in 2f system 

 
 
In the flip field, the glow remains constant and becomes the final beam width in the output 
plane.  The negative-valued shine increases as it propagates, shrinking in magnitude.  Regardless 
of beam size, the shine reaches zero at the output plane because the divergence angle of the 
shine is equal to the inverse of the glow4. 
 

  divShine =   1
glow

  
 
Accordingly, for both sides of the lens 
 

shine(Z) ∙ glow = Z 
 



where Z is measured relative to the nearest focal plane.  Because both focal planes are the same 
distance from the lens (except for their opposite signs), the propagation through the flip field is 
precisely the distance needed to bring the shine to 0. 
 

9.3 Conversion to lensed space 
 
For every plane of a free beam, a corresponding plane can be found in a lensed system.  The 
pattern is identical except for a scale factor; this is trivial in the case of the beam, but significant 
for a grating or other pattern.  The inclinations of the two planes differ by exactly 2 radians.   
 
Figure 9.3 shows how the inclination corresponds between planes.  In this example the free 
beam propagates to a plane at 6x the elbow, so the glow imparity or remaining provolution (the 
distance below the asymptotic inclination of 2) falls to 1/6. 
 
Figure 9.3, Inclination in free beam vs lensed beam 

 
 
When a similar beam is passed through a lens with FLens = 2 ∙ ZElbow, the glow imparity falls to 1/2 
(inclination 3/2) before entering the lens.  The lens exchanges glow and shine, shifting the 
inclination by 2 and leaving the beam at an inclination of -1/2.   
 
After the lens plane, imparity changes differently in the two systems.  In the free beam, it is 
driven by the growth of shine in the denominator.  In the lensed beam, it is driven by the 
decrease of shine in the numerator.  Accordingly, in the free beam the distance from the flat 
increases by a factor of 3 ( 3∙ZLens = 6∙ZElbow ); in the lensed beam the distance to the rear focal 
plane decreases by a factor of 3. 
 



While different-sized beams may undergo different amounts of provolution before the lens, the 
provolution in the flip field is always exactly the right amount to bring the total provolution to 2 
radians, a complete FT.  But because of the jump of -2 radians caused by the lens, the final 
inclination is 0, i.e. the glow is wide and the shine is deep. 
 
A similar correspondence exists for magnification.  Figure 9.4 shows the width of the free beam 
WFree in the plane at 6 times the focal length.  When an identical beam passes through a lens, the 
corresponding plane is demagnified by a factor of 6.  As in the previous example, the plane is 
located at FLens/6 from the rear focal plane. 
 
Figure 9.4, Magnification in lensed space 
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