Gravity Depends on Another Constant Besides c and G

Karl De Paepe*

Abstract

We consider a system of two free particles on a fixed line. We show gravity depends on another constant besides c and G.

Units are chosen so that $c=G=1$. Let x, y, z be coordinates of space. Let A and B be free particles on the x axis. Gravitational attraction causes A and B to move towards each other. Let B come from positive x infinity. When B is at infinity let A be at rest and have total energy M and B be at rest and have total energy m.

Let $h \geq 0$ and let the energy gain function $E(M, m, R, h)$ be the amount of energy B gains as it moves from an absolute difference $R+h$ to an absolute difference R between the x values of A and B. Let $a>0$ and define

$$
\begin{equation*}
L(M, h)=\lim _{a \rightarrow 0} E\left(M+a, \frac{M+a}{N}, N(M+a), h\right) \tag{1}
\end{equation*}
$$

where $N>0$ is a natural number. For small $m / M, M / R$, and h / R we have from Newton approximation to gravity the amount of energy B gains on moving from infinity to an absolute difference of R between the x values of A and B is approximately $M m / R$ hence E is approximately $M m h / R^{2}$. Consequently L for large N is approximately h / N^{3}. There is then a dimensionless function $f(h / M)$ of the dimensionless variable h / M such that

$$
\begin{equation*}
L(M, h)=\frac{h}{N^{3}} f\left(\frac{h}{M}\right) \tag{2}
\end{equation*}
$$

The left hand side of (2) is defined for $M=0$ but the right hand side is not unless $f(h / M)$ is a constant. Let $f(h / M)=b$. Now $L(0, h)=0$ hence $b=0$ so $L=0$. This contradicts B gaining energy as it moves towards A. For a gravity with constants c, G, and l where l has dimensions of length we could have f dependent on variables h / l and M / l so that

$$
\begin{equation*}
f\left(\frac{\frac{h}{l}}{\frac{M}{l}}\right)=f\left(\frac{h}{M}\right) \tag{3}
\end{equation*}
$$

when $M / l \neq 0$ and $f=0$ when $M / l=0$.

References

[1] Physics Essays, September 2016

[^0]
[^0]: *k.depaepe@utoronto.ca

