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Summary 
This paper further explores intuitions we highlighted in previous papers already: 

1. The concept of the matter-wave traveling through the vacuum, an atomic lattice or any medium 

can be equated to the concept of an electric or electromagnetic signal traveling through the 

same medium. 

2. There is no need to model the matter-wave as a wave packet: a single wave – with a precise 

frequency and a precise wavelength – will do. 

3. If we do want to model the matter-wave as a wave packet rather than a single wave with a 

precisely defined frequency and wavelength, then the uncertainty in such wave packet reflects 

our own limited knowledge about the momentum and/or the velocity of the particle that we 

think we are representing. The uncertainty is, therefore, not inherent to Nature, but to our 

limited knowledge about the initial conditions. 

4. The fact that such wave packets usually dissipate very rapidly, reflects that even our limited 

knowledge about initial conditions tends to become equally rapidly irrelevant. Indeed, as 

Feynman puts it, “the tiniest irregularities” tend to get magnified very quickly at the micro-scale. 

In short, as Hendrik Antoon Lorentz noted a few months before his demise, there is no reason 

whatsoever “to elevate indeterminism to a philosophical principle.”  
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Matter-waves, signals, electrons, and probability amplitudes 

De Broglie’s wave packet: concepts and issues 
Most models – including the model of Louis de Broglie himself1 – of de Broglie’s modelling of a matter-

particle lead to the following issues in the interpretation of de Broglie’s theory of the matter-wave: 

1. Heisenberg’s uncertainty principle, which assumes an Ungenauigkeit2 or an Ungewissheit3 in the 

energy value to be used in the (complex-valued) wavefunction which represents the matter-particle, 

leads physicists to consider a wave packet as a truthful representation of the matter-particle. A wave 

packet is a superposition of component waves of slightly different frequencies fi = Ei/h and with slightly 

different wavelengths λi = h/pi = h/miv, as opposed to a single wave.  

This epistemological or ontological predilection effectively amounts to considering uncertainty to be 

part of Nature or – as H.A. Lorentz famously put it – “elevating it to a philosophical principle” as 

opposed to relating it to (1) our lack of precise knowledge about initial conditions4 and/or (2) accepting 

the precision of any measurement will depend on the experimental set-up and/or the precision of the 

measurement apparatus. 

Note: Apart from uncertainty as a epistemological principle or as the imprecision in a measurement, we may, 
perhaps, identify yet another interpretation of uncertainty: the detail or, its corollary, the lack of detail in our 
theoretical models. Such detail often evolves as a result of the precision of our measurements. An example that 
readily comes to mind here is the theoretical explanation for the hydrogen spectrum. Schrödinger’s wave equation 
for electron orbitals was, effectively, hailed as a truthful model5 – or more precise and, therefore, more correct than 
the Bohr-Rutherford model – because it was able to also explain the fine structure of the hydrogen spectrum. 
However, it is quite obvious that there is also a hyperfine structure due to the coupling between the magnetic 
moments of the electron and the proton in a hydrogen atom.6 Schrödinger’s model is, therefore, also incomplete and 

 
1 We consider Louis de Broglie’s paper for the 5th Solvay Conference (La Nouvelle Dynamique des Quanta, 1927) to be the 
original truthful representation of these views. 

2 We prefer to use Heisenberg’s very first references to the concept of uncertainty to avoid the metaphysical connotation it 
acquired when, paraphrasing H.A. Lorentz, physicists decided to discard the assumption of causality by elevating indeterminism 
to a philosophical principle. Heisenberg used the term Ungenauigkeit to refer to a disturbance of the phenomenon by the 
measurement (in Compton scattering experiments, the classical velocity of an electron (both its direction as well as its 
magnitude) is changed as result of the probing by photons), which is related to the imprecision that is inherent to the 
measurement apparatus. A typical example of the latter is, effectively, the use of photons that have lower energy (and, 
therefore, longer wavelengths) to limit the impact of the measurement: as the wavelength of the photon determines the order 
of magnitude of the relevant length scale, a compromise must be made between the precision of the measurement and the 
disturbance it causes. 

3 The term Ungewissheit is yet another term avoiding Heisenberg’s Unbestimmtheit. We note the Uncertainty Principle is 
usually referred to as the Unbestimmtheitsprinzip or the Unschärferelation in German (see, for example, the German-language 
Wikipedia article on die Heisenbergsche Unschärferelation) 

4 If we knew the initial (base) state of the particle, we would not need the quantum-mechanical explanation: we would be able 
to explain the final state in terms of the initial state and classical physics explaining whatever happens between the initial and 
finale state.  

5 It is often mentioned that the Uncertainty Principle explains why an electrons just does not go sit on top of a proton, but the 
Bohr-Rutherford model of an atom did the same based on the Planck-Einstein relation. The reader should also note here that 
there is no uncertainty whatsoever in Schrödinger’s wave equation for the bound electron: the energy levels of the subshells 
are what they are, and exactly so. 

6 We think of the enigmatic Lamb shift as an even finer substructure which may or may not be explained by the anomaly in the 
magnetic moment of an electron which, as we argue in our paper on the electron structure, is not an anomaly at all: an easy 

http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
https://www.researchgate.net/publication/341177799_A_brief_history_of_quantum-mechanical_ideas
file:///C:/Users/conta/Documents/BELGIE/Physics/0%20-%20Solvay%20Conferences/Unschärferelation
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Feynman’s praise for it as “the most dramatic success in the history of the quantum mechanics” 7 is, therefore, plain 
hyperbole: whatever it is that Schrödinger’s equation for bound electrons actually represents, it gives us the energy 
levels and geometry of atomic subshells only. We may also remind the reader it is hard, if not impossible, to use the 
model to explain multi-nucleon atoms, let alone the structure of the nucleus itself. Hence, any detail below that of an 
electron subshell is left out of the model.   

2. Physicists then assume the dispersion relation that relates the fi frequencies (or the angular 

frequencies ωi = 2πfi) to the λi wavelengths (or the wavenumbers k = 2π/λi) should be directly related to 

the relativistic energy-moment relation8:  

E2 − p2𝑐2 = m2𝑐4⟺ ℏ2ω2 −
ℎ2

λ2
𝑐2 = ℏ2ω2 −

ℎ2

(2π ∕ k)2
𝑐2⟺ ℏ2ω2 − ℏ2k2𝑐2 = m2𝑐4 

⟺
ℏ2ω2

𝑐2
− ℏ2k2 = m𝑐2 

This relation mixes two energy and/or mass concepts. One should effectively remember the following: 

1. The m in the E2 – p2c2 = m2c4 relation is the rest mass and should, therefore, be written as m0.9  

2. The (linear) momentum is related to the kinetic energy of the particle only which only becomes 

a significant fraction of the total energy when the classical velocity of the particle starts 

approach the speed of light which – in most situations – it does not. 

There is, of course, no reason to not assume the Planck-Einstein relation does not apply to the rest mass 

(on the contrary, it is generally considered to be as universal or as fundamental as Einstein’s mass-

energy mass-equivalence relation E = mc2) and we may, therefore, re-write the (dispersion) relation 

above as: 

ℏ2ω2

𝑐2
− ℏ2k2 = m0𝑐

2 = E0 = ℏω0 

This, however, leads to a contradiction when assuming phase velocities equal to c = λ·f = ω/k: 

 
explanation arises when one does not assume a charge has zero dimension. To be precise, when assuming the Thomson radius 
of an electron is, somehow, real, one gets a very common-sense physical explanation for the anomaly. 

7 See: Feynman’s Lectures on Quantum Mechanics, Chapter 19: The Hydrogen Atom and the Periodic Table. 

8 We also have the pc = Ev/c or p = Ev/c2 relation, of course, but is rather significant one cannot derive this dispersion relation 
from it. When doing the same substitutions (p = ħk, E = mc2 and v = p/m), we just get the trivial ħk = ħk relation. The reader can 
also easily verify that the use of the Planck-Einstein relation (E = ħω) leads to the same triviality: 

p = ℏk =
E𝑣

𝑐2
=
ℏω𝑣

𝑐2
=
ℏωp

m𝑐2
=
ℏωℏk

ℏω
= ℏk = p 

In fact, the very different result – an identity versus an inconsistency – should make us think about the (non)sense of the 
dispersion relation one gets out of the momentum-energy relation. 

9 The reader will probably be aware of this but, if not, we refer him to any standard textbook. For ease of reference and 
because of its online availability, we used Feynman’s Lectures rather consistently over the past. The reader will find the 
derivation of the formula in section 5 of Chapter 16 of the first volume.  

https://www.feynmanlectures.caltech.edu/III_19.html
https://www.feynmanlectures.caltech.edu/I_16.html#Ch16-S5
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ℏ2ω2

𝑐2
− ℏ2k2 = ℏ2 (

ω2

𝑐2
− k2) = ℏ2 (

ω2

𝑐2
− k2) = m0𝑐

2 = E0 = ℏω0⟺ ℏ(
ω2

𝑐2
− k2) = ω0 

⇒ ℏ(k2 − k2) = ℏ ∙ 0 = 0 ≢ ω0 

It is a contradiction because we cannot equate ω0 to zero: the rest mass of our particle is not zero and, 

therefore, ω0 cannot be zero. The only way out is to assume phase velocities are not equal to c.10   

Indeed, if this dispersion relation would be correct, then we get superluminal phase velocities. You have, 

without any doubt, seen how this can be calculated. We can use the vphase = ω/k relation and the 

misguided substitutions for the momentum (or the wavenumber): 

𝑣phase =
ω

k
=
E ℏ⁄

p/ℏ
=
m𝑐2

m𝑣
=
𝑐2

𝑣
= 𝑐 β⁄ ≧ 𝑐 

This is, in fact, what physicists – since Louis de Broglie first wrote this – have consistently been jotting 

down. We must admit we are flabbergasted by the ease with which physicists – including Albert 

Einstein, who seconded Louis de Broglie’s 1924 PhD thesis – accepted this inevitable result. Academic 

physicists usually justify this by noting these component waves cannot transmit any signal because the 

group velocity – the velocity of the wave packet – as a whole is all that actually matters, and this group 

velocity does effectively correspond to the classical velocity of the particle that the wave packet must, 

somehow, represent.11 Indeed, differentiating the dispersion relation and combining it with the 

erroneous relation for the phase velocity above yields what Louis de Broglie wanted to prove: 

ℏ2ω2 − ℏ2k2𝑐2 = m0𝑐
4⟹ 2ℏ2ω𝑑ω = 2ℏ2𝑐2k𝑑k 

⟺ 𝑣group =
∂ω

∂k
= 𝑐2

k

ω
=

𝑐2

𝑣phase
=
𝑐2β

𝑐
= 𝑣particle 

The inverse proportionality between the group and phase velocity is rather remarkable because, among 

other nonsensical results, it obviously implies infinite phase velocities for v = 0. Another nonsensical 

result is this: while accepting the rather outrageous implication of superluminal phase velocities, we also 

accept a wave packet that cannot represent any real-life particle because it quickly dissipates. Indeed, 

the remarks above bring us to the third and final issue with mainstream interpretations of the matter-

wave.  

Before we will discuss that, however, we cannot help noting another small but significant inconsistency 

in de Broglie’s interpretation of the matter-wave: we already noted that mainstream theorists write the 

slightly diverging frequencies as fi = Ei/h and the slightly diverging wavelengths as λi = h/pi = h/miv. This 

raises the following obvious question: why assume an uncertainty in the energy E and the mass m but 

 
10 To get out of the contradiction, one might also assume that each of the component waves carries an infinitesimally small part 
of the energy (or, what amounts to the same, the equivalent mass) but, while one could work out a ‘mass without mass’ model 
of a particle based on such rather reasonable assumption, that is not how mainstream physicists proceed: they may assume 
some uncertainty about the energy or mass but they do not think in terms of the matter-wave actually carrying the energy or 
mass of the matter-particle. 

11 They sometimes add we should not think of the matter-wave as a real wave anyway. However, this is nonsensical: why 
should we think of the matter-wave as unreal if we talk phase velocity but, then, when talking the group velocity, think of it as 
something that actually is oscillating and moving in space at a velocity that corresponds to the classical velocity of the particle it 
is supposed to represent? 
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not in the velocity v: if we use a subscript for the Ei and mi – effectively assuming there is no precise 

value for them – then plain logic suggests that we should not assume a precise value for the classical 

velocity either. Let us now introduce the final and most glaring issue with the mainstream 

representation of a matter-particle by a wave packet. 

3. Prof. H. Pleijel, then Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of 

Sciences, dutifully notes the following on the nature of the new ‘matter waves’ in the ceremonial speech 

for the 1933 Nobel Prize, which was awarded to Heisenberg for “the creation of quantum mechanics”12: 

“Matter is formed or represented by a great number of this kind of waves which have somewhat 

different velocities of propagation and such phase that they combine at the point in question. 

Such a system of waves forms a crest which propagates itself with quite a different velocity from 

that of its component waves, this velocity being the so-called group velocity. Such a wave crest 

represents a material point which is thus either formed by it or connected with it, and is called a 

wave packet. […] As a result of this theory on is forced to the conclusion to conceive of matter as 

not being durable, or that it can have definite extension in space. The waves, which form the 

matter, travel, in fact, with different velocity and must, therefore, sooner or later separate. 

Matter changes form and extent in space. The picture which has been created, of matter being 

composed of unchangeable particles, must be modified.” 

This sounds very familiar: it is the basics of the basics of the mainstream interpretation of de Broglie’s 

matter-wave, in fact. The problem is this: it is, obviously, untrue. Real-life particles – electrons or atoms 

traveling in space – do not dissipate. They might change form and extent in space when traveling 

through one or more slits but, as Feynman and all mainstream physicists dutifully note I the context of 

the double-slit experiment with electrons: have to admit: electrons – or matter-particles in general – 

always come in identical lumps at the backstop: all these lumps are the same size, only whole lumps 

arrive, and they arrive one at a time.13 

So what is wrong and what is right here? 

De Broglie’s intuitions: right or wrong? 
De Broglie’s intuition in regard to the wave nature of matter is, essentially, correct. However, his 

modeling of it as a wave packet is not: modeling matter-particles as a simple two-dimensional oscillation 

in space does the trick. It is, however, a rather special oscillation: we interpret the real and imaginary 

part of the elementary wavefunction as the sine and cosine components of the orbital motion of a 

pointlike charge. The pointlike charge and its motion combine to explain Schrödinger’s discovery of the 

Zitterbewegung of the electron, which Paul Dirac describes as follows in his Nobel Prize speech: 

“It is found that an electron which seems to us to be moving slowly, must actually have a very 

high frequency oscillatory motion of small amplitude superposed on the regular motion which 

 
12 To be precise, Werner Heisenberg actually got a postponed prize from 1932: it is Erwin Schrödinger and Paul A.M. Dirac who, 
jointly, got the actual 1933 prize. Prof. Pleijel therefore acknowledges all three more or less equally in the introduction of his 
speech: “This year’s Nobel Prizes for Physics are dedicated to the new atomic physics. The prizes, which the Academy of 
Sciences has at its disposal, have namely been awarded to those men, Heisenberg, Schrödinger, and Dirac, who have created 
and developed the basic ideas of modern atomic physics.” 

13 See: Richard Feynman, Vol. III, Chapter 1, Section 4, An experiment with electrons. 

https://www.nobelprize.org/prizes/physics/1933/ceremony-speech/
https://www.nobelprize.org/prizes/physics/1933/ceremony-speech/
https://www.feynmanlectures.caltech.edu/III_01.html#Ch1-S4
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appears to us. As a result of this oscillatory motion, the velocity of the electron at any time 

equals the velocity of light. This is a prediction which cannot be directly verified by experiment, 

since the frequency of the oscillatory motion is so high and its amplitude is so small. But one 

must believe in this consequence of the theory, since other consequences of the theory which 

are inseparably bound up with this one, such as the law of scattering of light by an electron, are 

confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, 

December 12, 193314) 

The de Broglie relation (p = h/λ = ħk) is correct too, but it has a precise geometric interpretation which 

one can only appreciate by noting that the linear momentum of a particle is a vector quantity and that 

we, therefore, should probably also think of Planck’s quantum as a vector quantity: h has a magnitude 

as well as a direction. We should, likewise, think of the reduced Planck constant (ħ = h/2π) as a proper 

angular momentum, which can and should be written as ħ = I·ω: the product of an angular mass (the 

rotational inertia I) and an orbital angular frequency (ω). This, then, also gives meaning to the concept of 

spin (which is either up or down). Finally, this oscillatory motion also generates a classical magnetic 

moment which – equally classically – will precess in an external electromagnetic field. There is no 

uncertainty in this model, except for the uncertainty in regard to the initial plane of oscillation (which is 

given by the direction of ħ and ω). We have explored this model ad nauseam15 elsewhere so we will limit 

ourselves to a very brief presentation of it below only before we proceed to the main topic of our paper, 

which revolves around sensible wave equations and how the matter-wave may or may not move 

through a medium: the vacuum itself or, in a more practical context, a atomic lattice, such as 

semiconductor material. 

Indeed, we want this paper to be a first in a series focusing on the relevance of the ring current model of 

matter-particles for quantum computing and semiconductor engineering. Indeed, while we got some 

good feedback from other researchers – both academic as well as non-professional or amateur 

physicists (as we are) – we think the concept of a wave equation to model the properties of free space 

(or the vacuum as we know it) is rather limited: we think Maxwell’s equations model these properties 

quite well and we, therefore, do not see the need to add some new wave equation modeling the 

properties of the vacuum in the context of matter-waves: if an electromagnetic wave cannot travel any 

faster than light, why would the (components of the) matter-wave be able to do so?  

In contrast, the phase or group velocity of a matter-wave in a crystal lattice, a conductor or 

semiconductor would, obviously, correspond to the velocity of the signal which may or may not reach 

lightspeed and, hence, our reflections in this regard may, therefore, have an impact of how we think of 

signals and the processing thereof. 

Likewise, analyzing the uncertainty in regard to the spin of an electron (up or down) as an uncertainty in 

the actual direction of the actual magnetic moment of an electron may impact on how we think about 

the difficulties related to decoherence and quantum noise – and the related quantum error correcting 

(QEC) so as to improve fault-tolerance in quantum computing.  

 
14 This is Paul A.M. Dirac’s speech at the Nobel Banquet in Stockholm, December 10, 1933. 

15 We have documented the rather gradual development of what we refer to as a fully-fledged realist interpretation on Phil 
Gibb’s alternative science site (https://vixra.org/author/jean_louis_van_belle). 

https://www.nobelprize.org/prizes/physics/1933/dirac/speech/
https://vixra.org/author/jean_louis_van_belle
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Let us not get ahead of ourselves here. We will first present the basics of the Zitterbewegung or ring 

current model of an electron and then return to our discussion of wave equations.    

The Zitterbewegung or ring current model of an electron 
We request the reader to think of the (elementary) wavefunction r = ψ = a·eiθ as    representing the 

physical position of a pointlike elementary charge – pointlike but not dimensionless16 – moving at the 

speed of light around the center of its motion in a space that is defined by the electron’s Compton 

radius a = ħ/mc. This radius – which effectively doubles up as the amplitude of the wavefunction – can 

easily be derived from (1) Einstein’s mass-energy equivalence relation, (2) the Planck-Einstein relation, 

and (3) the formula for a tangential velocity, as shown below: 

E = m𝑐2

E = ℏω
} ⇒ m𝑐2 = ℏω

𝑐 = 𝑎ω⟺ 𝑎 =
𝑐

ω
⟺ ω =

𝑐

𝑎

} ⇒ m𝑎2ω2 = ℏω⟹ m
𝑐2

ω2
ω2 = ℏ

𝑐

𝑎
⟺ 𝑎 =

ℏ

m𝑐
 

The exceedingly simple derivation17 above gives us a geometric interpretation of Prof. Dr. Patrick R. 

LeClair’s understanding of the Compton wavelength as “the scale above which the particle can be 

localized in a particle-like sense.” 18 It effectively amounts to a very basic ring current model19 which 

allows us to interpret the elementary wavefunction r = a·ei = a·ei(E·t − p·x) as the position vector of the 

pointlike charge as Dirac’s pointlike electric charge.  

This Zitterbewegung (or ring current) electron may now move linearly and we may conveniently and 

without any loss on the generality of the argument choose our x-axis in our reference frame so it 

coincides with the direction of travel. We are then able to write its position along the direction of linear 

motion as a simple function of time itself: x(t) = v·t. This combination of a pointlike charge zittering 

around some center and the oscillation as a whole them moving linearly is visualized below20: the radius 

 
16 We think the non-zero dimension of the elementary charge explains the small anomaly in the magnetic moment which 
should, therefore, not be thought as being anomalous. We must thank Prof. Dr. Randolf Pohl from the Max Planck Institute for 
Quantum Optics for, effectively, telling us to not think of the anomalous magnetic moment as an anomaly. For more details, see 
our paper on the electron model. 

17 It is a derivation one can also use to derive a theoretical radius for the proton (or for any elementary particle, really). It works 
perfectly well for the muon, for example. However, for the proton, an additional assumption in regard to the proton’s angular 
momentum and magnetic moment is needed to ensure it fits the experimentally established radius. We shared the derivation 
with Prof. Dr. Randolf Pohl and the PRad team but we did not receive any substantial comments so far, except for the PRad 
spokesman (Prof. Dr. Ashot Gasparan) confirming the Standard Model does not have any explanation for the proton radius 
from first principles and, therefore, encouraging us to continue our theoretical research. In contrast, Prof. Dr. Randolf Pohl 
suggested the concise calculations come across as numerological only. We hope this paper might help to make him change his 
mind! 

18 Prof. Dr. Patrick LeClair, Introduction to Modern Physics, Course Notes (PH253), 3 February 2019, p. 10. Also see our physical 
interpretation of Compton scattering in our previous paper(s). 

19 In case the reader wonders what other ring current model might be on the current ‘market of ideas’, we are very much 
intrigued by electron models based on Dirac-Kerr-Newman geometries (A. Burinskii, 2018, 2019 and 2020) because they may 
answer the very fundamental question he asked us when we first submitted our thoughts to Prof. Dr. Alexander Burinskii: “I 
know many people who considered the electron as a toroidal photon  and do it up to now. I also started from this model about 
1969 and published an article in JETP in 1974 on it: "Microgeons with spin". [However] There was [also] this key problem: what 
keeps [the pointlike charge] in its circular orbit?” (Email from Dr. Burinskii to the author dated 22 December 2018) 

20 We thank Prof. Dr. Giorgio Vassallo and his publisher to let us re-use this diagram. It originally appeared in an article by 

https://vixra.org/pdf/2003.0094v2.pdf
https://vixra.org/pdf/2003.0144v7.pdf
http://pleclair.ua.edu/PH253/Notes/compton.pdf
https://www.researchgate.net/publication/341178139_The_difference_between_a_theory_a_calculation_and_an_explanation
https://www.researchgate.net/profile/Alexander_Burinskii
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of the circulatory motion must effectively diminish as the electron gains speed.21  

 

Figure 1: The Compton radius must decrease with increasing velocity 

We must, of course, immediately urge the reader to imagine the plane of oscillation to rotate or 

oscillate itself in line with our interpretation of the angular momentum vector ħ as a vector rather than 

a simple scalar quantity. Also, when thinking of the electron moving linearly in an electromagnetic field, 

its precessional motion will yield a very different trajectory than the Archimedes screw or helical motion 

which is illustrated above. However, this does not much of an impact on the geometric interpretation of 

the de Broglie wavelength which we advanced in previous paper(s) but which we will not repeat here.22  

To conclude our remarks on Figure 1, we just want to draw the attention of our reader to what happens 

when the classical (linear) velocity of the electron nears lightspeed: while its rotational motion and, 

therefore, its angular momentum does not vanish23, we can see that the circumference of the oscillation 

– which is nothing but the (circular) Compton wavelength – turns into a linear wavelength in the 

process!24 This rather remarkable geometric property relates the ring current model electron model 

with our photon model, which we will not talk about either here, however.25 All we want to do before 

getting into the meat of the matter of this paper – which is the subject of wave equations in atomic 

lattices – is to highlight the relativistic invariance of the argument of the wavefunction in this geometric 

interpretation of it. 

We can, effectively, denote the position and time in the reference frame of the electron itself by x’ and 

t’. Of course, the position of the electron  particle in its own reference frame will be equal to x’(t’) = 0 for 

all t’, and the position and time in the two reference frames will be related by Lorentz’s equations26: 

 
Francesco Celani, Giorgio Vassallo and Antonino Di Tommaso (Maxwell’s equations and Occam’s Razor, November 2017). 

21 However, we urge the reader to imagine imagine the plane of oscillation to rotate or oscillate itself in line with our 
interpretation of the angular momentum vector ħ as a vector rather than a simple scalar quantity. Also, when thinking of the 
electron moving linearly in an electromagnetic field, we will also have precessional motion. 

22 See earlier references. 

23 Its radius does diminish, however, and actually goes to zero: this should be compatible with relativity theory. However, we 
did not yet have the time to work out the math in this regard. 

24 We may, therefore, think of the Compton wavelength as a circular wavelength: it is the length of a circumference rather than 
a linear feature! 

25 The reason is the same: we do not want to repeat text from previous papers. If interested, the reader can look up our paper 
on Relativity, Light and Photons. 

26 These are the Lorentz equations in their simplest form. We may refer the reader to any textbook here but, as usual, we like 

https://www.researchgate.net/profile/Giorgio_Vassallo
https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
https://vixra.org/pdf/2001.0345v4.pdf
https://vixra.org/pdf/2001.0345v4.pdf
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𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows27: 

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the 

argument of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 

The reader may also note that, besides proving that the argument of the wavefunction is relativistically 

invariant, we also demonstrated the relativistic invariance of the Planck-Einstein relation.28 in the 

process! This is why we feel that the argument of the wavefunction (and the wavefunction itself) is more 

real – in a physical sense – than the various wave equations (Schrödinger, Dirac, or Klein-Gordon) for 

which it is some solution. 

Having said that, wave equations is what we want to talk about it here, so let us get on with it. 

Schrödinger’s wave equation in free space 
We quoted Dirac and his wave equation rather extensively above and, hence, the reader may wonder 

why we do not start with Dirac’s own wave equation. The reason is this: at the occasion of the 1948 

Solvay Conference, Paul Dirac himself admits his wave equation may not do the trick. Indeed, we may 

usefully quote the following remarks, which he makes as he tries to challenge Robert Oppenheimer’s 

presentation of the use of perturbation theory in quantum mechanics: 

“All the infinities that are continually bothering us arise when we use a perturbation method, 

when we try to expand the solution of the wave equation as a power series in the electron 

charge. Suppose we look at the equations without using a perturbation method, then there is no 

reason to believe that infinities would occur. The problem, to solve the equations without using 

perturbation methods, is of course very difficult mathematically, but it can be done in some 

simple cases. For example, for a single electron by itself one can work out very easily the 

solutions without using perturbation methods and one gets solutions without infinities. I think it 

is true also for several electrons, and probably it is true generally : we would not get infinities if 

 
Feynman’s lecture on it (chapters 15, 16 and 17 of the first volume of Feynman’s Lectures on Physics). 

27 One can use either the general E = mc2 or – if we would want to make it look somewhat fancier – the pc = Ev/c relation. The 
reader can verify they amount to the same. 

28 The relativistic invariance of the Planck-Einstein relation emerges from other problems, of course! The added value of the 
model here is the geometric interpretation of it: the Planck-Einstein relation models the integrity of the idea of a particle! 
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we solve the wave equations without using a perturbation method. However, if we look at the 

solutions which we obtain in this way, we meet another difficulty: namely we have the run-away 

electrons appearing. Most of the terms in our wave functions will correspond to electrons which 

are running away29, in the sense we have discussed yesterday. They can, therefore, not 

correspond to anything physical. Thus nearly all the terms in the wave functions have to be 

discarded, according to present ideas. Only a small part of the wave function has a physical 

meaning.”30 

In our interpretation of matter-particles, this small part of the wavefunction is, of course, the real 

electron, and it is the ring current or Zitterbewegung electron: it is the trivial solution that Schrödinger 

had found, and which Dirac himself mentioned in his Nobel Prize lecture from which we quoted above. 

The other part of the solution(s) are, effectively, bizarre oscillations which Dirac here refers to as ‘run-

away electrons’.  

With the benefit of hindsight, one wonders why Dirac did not see what we see now.31 In any case, we 

may come back to Dirac’s equation later. For the time being, we want to start where it all started32, and 

so that’s Schrödinger’s equation. Feynman derives it – without the term for the electrostatic potential 

around a positively charged nucleus33: 

∂ψ

∂t
= ⅈ

ℏ

2meff
∇2ψ = ⅈ

ℏ

m
∇2ψ 

What is meff? It is the concept of the effective mass of an electron which, in our ring current model, 

corresponds to the relativistic mass of the electric charge as it zitters around at lightspeed and so we can 

effectively substitute 2meff for the mass of the electron m = me = 2meff.34  

 
29 This corresponds to wavefunctions dissipating away. As we noted, the problem is that the matter-particles they purport to 
describe obviously do not dissipate away. 

30 This is our translation from French: Dirac must have made his remarks in his native language (English) but we were not able 
to find these. See pp. 282-283 of the report of the 1948 Solvay Conference, Discussion du rapport de Mr. Oppenheimer. 

31 One of our correspondents wrote us this: “Remember these scientists did not have all that much to work with. Their 
experiments were imprecise – as measured by today’s standards – and tried to guess what is at work. Even my physics 
professor in 1979 believed Schrödinger’s equation yielded the exact solution (electron orbitals) for hydrogen.” Hence, perhaps 
we should not be surprised. However, in light of the intellectual caliber of these men, we are. 

32 We probably Richard Feynman too much, but his hyperbole usually does reflect mainstream perceptions, so let us quote him 
once more: “Schrödinger’s equation was the first quantum-mechanical equation ever known. It was written down by 
Schrödinger before any of the other quantum equations we have described in this book were discovered. Although we have 
approached the subject along a completely different route [Feynman refers to the derivation of the Schrödinger’s equation 
wave equation in an atomic lattice here, so that is Schrödinger’s equation without the Coulomb term], the great historical 
moment marking the birth of the quantum mechanical description of matter occurred when Schrödinger first wrote down his 
equation in 1926.” 

33 For Schrödinger’s equation in free space or the same equation with the Coulomb potential see Chapters 16 and 19 of 
Feynman’s Lectures on Quantum Mechanics respectively. Note that we moved the imaginary unit to the right-hand side, as a 

result of which the usual minus sign disappears: 1/i = −i.  

34 For a derivation of the m = 2meff formula, we refer the reader to our paper on the ring current model of an electron, where 
we write the effective mass as meff = mγ. The gamma symbol (γ) refers to the photon-like character of the charge as it zips 
around some center at lightspeed. However, unlike a photon, a charge carries charge. Photons do not. Hence, we agree – with 
Burinskii – that one should not use terms such as toroidal photon to refer to the pointlike Zitterbewegung charge even if its rest 
mass – just like that of a photon – is equal to zero, which is why it (also) whizzes around at lightspeed. 

http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
https://www.feynmanlectures.caltech.edu/III_16.html#Ch16-S5
https://www.feynmanlectures.caltech.edu/III_16.html#Ch16-S5
https://www.feynmanlectures.caltech.edu/III_toc.html
https://vixra.org/pdf/2003.0094v2.pdf
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So far, so good. The question now is: are we talking one wave or many waves? A wave packet or the 

elementary wavefunction? Let us first make the analysis for one wave only, assuming that we can 

effectively write ψ as the elementary wavefunction ψ = a·eiθ = a·ei·(k(x−ωt).  

Now, two complex numbers a + i·b and c + i·d are equal if, and only if, their real and imaginary parts are 

the same, and the ∂ψ/∂t = i·(ħ/m)·∇2ψ equation amounts to writing something like this: a + i·b = i·(c 

+ i·d). Remembering that i2 = −1, you can then easily figure out that i·(c + i·d) = i·c + i2·d = − d + i·c. The 

∂ψ/∂t = i·(ħ/m)·∇2ψ wave equation therefore corresponds to the following set of equations35: 

• Re(∂ψ/∂t) = −(ħ/m)·Im(∇2ψ) ⇔ ω·cos(kx − ωt) = k2·(ħ/m)·cos(kx − ωt) 

• Im(∂ψ/∂t) = (ħ/m)·Re(∇2ψ) ⇔ ω·sin(kx − ωt) = k2·(ħ/m)·sin(kx − ωt) 

It is, therefore, easy to see that ω and k must be related through the following relation36: 

ω =
ℏk2

m
=
ℏ𝑐2k2

E
 

We can easily verify this makes perfect sense if we substitute the energy E using the Planck-Einstein 

relation E = ħ·ω and assuming the wave velocity is equal to c, which should be the case if we are talking 

about the same vacuum as the one through which Maxwell’s electromagnetic waves are supposed to be 

traveling37: 

ω =
ℏk2

m
=
ℏ𝑐2k2

E
=
ℏ𝑐2k2

ℏω
=
𝑐2k2

ω
⟺
ω2

k2
=
(2π𝑓)2

(2π λ⁄ )2
= (𝑓λ)2 = 𝑐2⟺ 𝑐 = 𝑓λ 

We know need to think about the question we started out with: one wave or many component waves? 

It is fairly obvious that if we think of many component waves, each with their own frequency, then we 

need to think about different values mi or Ei for the mass and/or energy of the electron as well! How can 

we motivate or justify this? The electron mass or energy is known, isn’t it? This is where the uncertainty 

comes in: the electron may have some (classical) velocity or momentum for which we may not have a 

definite value. If so, we may assume different values for its (kinetic) energy and/or its (linear) 

momentum may be possible. We then effectively get various possible values for m, E, and p which we 

may denote as mi, Ei and pi, respectively. We can, then, effectively write our dispersion relation and, 

importantly, the condition for it to make physical sense as: 

ω𝑖 =
ℏk2

m𝑖
=
ℏ𝑐2k𝑖

2

E𝑖
=
ℏ𝑐2k𝑖

2

E𝑖
=
ℏ𝑐2k𝑖

2

ℏω𝑖
=
𝑐2k𝑖

2

ω𝑖
⟺
ω𝑖
2

k𝑖
2 = 𝑐

2⟺ 𝑐 = 𝑓𝑖λ𝑖 

Of course, the c = fiλi makes a lot of sense: we would not want the properties of the medium in which 

 
35 We invite the reader to double-check our calculations. If needed, we provide some more detail in one of our physics blog 
posts on the geometry of the wavefunction. 

36 If you google this (check out the Wikipedia article on the dispersion relation, for example), you will find this relation is 
referred to as a non-relativistic limit of a supposedly relativistically correct dispersion relation, and the various authors of such 
accounts will usually also add the 1/2 factor because they conveniently (but wrongly) forget to distinguish between the 
effective mass of the Zitterbewegung charge and the total energy or mass of the electron as a whole. 

37 We apologize if this sounds slightly ironic but we are actually astonished Louis de Broglie does not mind having to assume 
superluminal speeds for wave velocities, even if it is for phase rather than group velocities. 

https://readingfeynman.org/2017/10/12/further-explorations-of-the-geometry-of-the-wavefunction/
https://en.wikipedia.org/wiki/Dispersion_relation
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matter-particles move to be different from the medium through which electromagnetic waves are 

travelling: lightspeed should remain lightspeed, and waves – matter-waves included – should not be 

traveling faster. Let us quickly sum up our key conclusions so far: 

1. If there is a matter-wave, then it must travel at the speed of light and not, as Louis de Broglie 

suggests, at some superluminal velocity. 

2. If the matter-wave is a wave packet rather than a single wave with a precisely defined frequency 

and wavelength, then such wave packet will represent our limited knowledge about the 

momentum and/or the velocity of the electron. The uncertainty is, therefore, not inherent to 

Nature, but to our limited knowledge about the initial conditions. 

Let us now look at Schrödinger’s wave equation in the context of a crystal lattice. This should be easy 

enough because Feynman actually derives Schrödinger’s wave equation in the very same context. He – 

and all academics who produced more recent textbooks based on his – then just substitutes the efficient 

mass (meff) for me rather than by me/2 noting, without any explanation at all, that the effective mass of 

an electron becomes the free-space mass of an electron outside of the lattice: 

∂ψ

∂t
= ⅈ

ℏ

2meff
∇2ψ = ⅈ

ℏ

2m
∇2ψ 

In fact, it is a happy or not-so-happy coincidence that this 1/2 mistake is not noticed when adding the 

electrostatic potential term so as to model an atom because – as we know – the solutions to 

Schrödinger’s equation for electron orbitals are actually solutions for orbitals with two electrons, so that 

is what then take care of the ½ factor: the only reason why Schrödinger’s equation for an atom – with 

the electrostatic potential and the ½ factor works is because it models electron orbitals for two 

electrons. In fact, that the substitution of the effective mass (meff) by the total mass of the electron (me) 

is rather nonsensical also follows from Feynman’s casual remark in another chapter which uses the same 

concepts to arrive at the same equation: 

“Don’t forget that meff has nothing to do with the real mass of an electron. It may be quite 

different—although in commonly used metals and semiconductors it often happens to turn out 

to be the same general order of magnitude, about 0.1 to 30 times the free-space mass of the 

electron.”38 

In fact, we may usefully note here that, in the original 1963 print edition we bought long time ago, the 

general order of magnitude is actually mentioned as being equal to “about 2 to 20 times” the mass of an 

electron. We think we should understand all of the above as follows: the effective mass (meff) can be 

(almost) any ratio or multiple of the total mass (me) but meff being equal to me, exactly, is the exception 

rather than the rule! To be precise, the exception is this: the ratio between the effective mass and the 

total mass is actually ½ in free space – so we should actually write Schrödinger’s equation in free space 

as 
∂ψ

∂t
= ⅈ

ℏ

m
∇2ψ. However, because the equation – in the context of electron orbitals – models the 

orbitals for two electrons, the ½ and 2 factor cancel each other out, and we get the Schrödinger 

equation we all memorized39: 

 
38 Feynman’s Lectures, Vol. III, Chapter 13, Section 3, Time-dependent states.  

39 The equation is usually written using the V(r) = −e2/r, with e the electron charge and r the distance between the proton and 

file:///C:/Users/conta/Documents/BELGIE/Physics/0%20-%20Solvay%20Conferences/Don’t%20forget%20that%20meff%20has%20nothing%20to%20do%20with%20the%20real%20mass%20of%20an%20electron.%20It%20may%20be%20quite%20different—although%20in%20commonly%20used%20metals%20and%20semiconductors%20it%20often%20happens%20to%20turn%20out%20to%20be%20the%20same%20general%20order%20of%20magnitude,%20about%200.1%20to%2030%20times%20the%20free-space%20mass%20of%20the%20electron.
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∂ψ

∂t
= ⅈ(

ℏ

2m
∇2 +

e2

ℏ𝑟
)ψ 

There is another accident in the history of ideas which we must mention here⎯and one that is definitely 

unhappy: for some reason I, once again, cannot understand, Feynman follows de Broglie and earlier 

theorists in associating the same ½ factor in Schrödinger’s equation with the ½ factor in the non-

relativistic KE = mv2/2 formula for kinetic energy and says we need a different wave equation, which is 

the Klein-Gordon equation. The Klein-Gordon relation is developed in pretty much the same way as 

Schrödinger’s equation: a heuristic argument is used but this time it is the relativistically correct energy-

momentum relation which, combining the E = mc2 (Planck-Einstein) and p = h/λ (de Broglie) relations, 

serves as the dispersion relation⎯as opposed to the much more intuitive ω = ħk2/m relation. We will 

come back to this later. 

Schrödinger’s wave equation in a crystal lattice 

Feynman’s lattice 
Feynman writes the following about his quantum-mechanical derivation of Schrödinger’s equation in 

crystal lattice: 

“We do not intend to have you think we have derived the Schrödinger equation but only wish to 

show you one way of thinking about it. When Schrödinger first wrote it down, he gave a kind of 

derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the 

arguments he used were even false, but that does not matter; the only important thing is that 

the ultimate equation gives a correct description of nature.”40 

Unfortunately, after playing with it for a while, he then discards it for the wrong reason: 

“In principle, Schrödinger’s equation is capable of explaining all atomic phenomena except those 

involving magnetism and relativity. […] The Schrödinger equation as we have written it does not 

take into account any magnetic effects. It is possible to take such effects into account in an 

approximate way by adding some more terms to the equation. However, as we have seen in 

Volume II, magnetism is essentially a relativistic effect, and so a correct description of the 

motion of an electron in an arbitrary electromagnetic field can only be discussed in a proper 

relativistic equation. The correct relativistic equation for the motion of an electron was 

discovered by Dirac a year after Schrödinger brought forth his equation, and takes on quite a 

different form. We will not be able to discuss it at all here.”41 

However, as we note above, Dirac’s equation is actually not correct (its solutions are dissipating wave 

packets: ‘run-away electrons’), and the ½ factor in Schrödinger’s equation may be relativistically correct 

 
the (two) electron(s). These remarks should allow the reader to relate our formulation to the rendering he or she is used to. 

40 Lectures, Vol. III, Chapter 16, p. 16-4. 

41 Lectures, Vol. III, Chapter 16, p. 16-13. We have re-read Feynman’s Lectures many times now and, in discussions with fellow 
amateur physicists, we sometimes joke that Feynman must have had a secret copy of the truth. He clearly doesn’t bother to 
develop Dirac’s equation because – having worked with Robert Oppenheimer on the Manhattan project – he knew Dirac’s 
equation only produces non-sensical ‘run-away electrons’. In contrast, while noting Schrödinger’s equation is non-relativistic, it 
is the only one he bothers to explore extensively. Indeed, while claiming the Klein-Gordon equation is the ‘right one’, he hardly 
devotes any space to it. 

https://www.feynmanlectures.caltech.edu/III_16.html
https://www.feynmanlectures.caltech.edu/III_16.html
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because it is related to the ½ factor in the meff = me/2 which relates the effective mass to the total mass 

in the ring current model of an electron! In fact, we may quickly insert the Klein-Gordon wave equation 

here which, according to Feynman, corrects Schrödinger’s supposedly non-relativistically correct wave 

equation42: 

1

𝑐2
∂2ψ

∂t2
−
m2𝑐2

ℎ2
ψ = ∇2ψ 

As explained above, we have no use for it because its solutions – any quantum-mechanical wave packet 

that comes out of it as a solution – dissipate away. Actual matter-particles do not. We do not adhere to 

mainstream wisdom here, according to which this equation incorporates a relativistically correct 

dispersion relation: superluminal wave velocities – even phase velocities – are effectively not compatible 

with relativity theory! Let us, therefore, explore Feynman’s derivation of Schrödinger’s equation – the 

very first wave equation in the history of quantum mechanics! – in all of its detail.  

In case you wonder, we do not do this to show off Feynman’s brilliance (we assume no one needs any 

convincing in this regard) but to get a better understanding of what might be real and what isn’t and – 

even more importantly – to better understand the difference between a matter-wave, a signal, an 

amplitude and the electron itself, as per the title of this paper. 

You will, of course, understand our analysis will be as heuristic as Feynman’s because we have a clear 

objective in mind: we want to show the moving electron is the moving electron, and the amplitude is 

the signal. Hence, we request the reader to be very critical but constructive: when everything is said and 

done, a probability must represent something, and if it isn’t the electron, then it should be the signal. 

What other common-sense candidates for reality are there? Let us, so as to focus our mind on what is 

what, copy Feynman’s illustration of – paraphrasing Wittgenstein here43 – whatever it is that might be 

the case (Figure 2).  

 
42 See: Richard Feynman, Waves in three dimensions, Lectures, Vol. I, Chapter 48. With the usual hyperbole, Feynman refers to 
it as the ‘grand equation, which corresponds to the dispersion equation for quantum-mechanical waves.’ In fact, because his 
students are – at that point – not yet familiar with differential calculus for vector fields (and, therefore, not with the Laplacian 

operator  2), Feynman writes it there like this:  
∂2ϕ

∂𝑥2
+
∂2ϕ

∂𝑦2
+
∂2ϕ

∂𝑧2
−
1

𝑐2
∂2ϕ

∂𝑡2
=
m2𝑐2

ℏ2
ϕ 

We are not ashamed to admit Feynman’s early introduction of this equation in his three volumes of lectures on physics which, 
as he clearly states in his preface, were written “to maintain the interest [in physics] of the very enthusiastic and rather smart 
students coming out of the high schools” did not miss their effect on us: I wrote this equation on a piece of paper on the 
backside of my toilet of my student room when getting my first degree (in economics) and vowed that, one day, I would 
understand this equation “the way I would like to understand it.” We now understand it to not represent anything real: I now 
understand it to model our uncertainty (our lack of knowledge about the past or initial conditions) rather than any fundamental 
uncertainty in Nature! 

43 The first proposition of Wittgenstein’s Tractatus Logico-Philosophicus (originally published in his native German language as 
the Logisch-philosophische Abhandlung) is this: “Die Welt ist alles, was der Fall ist” (“The world is all that is the case”) and it is 
usually interpreted as Wittgenstein’s definition of reality. One has to start somewhere, isn’t it?  

https://www.feynmanlectures.caltech.edu/I_48.html#Ch48-S6
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Figure 2: Feynman’s idea of a moving electron in an atomic lattice 

We should note, first, that this is a very classical picture: Feynman talks quantum mechanics but, to 

focus the mind, he pictures an electron as always being somewhere, and this somewhere is near an 

atom. In Feynman’s words44: 

“We want to see what happens if we put a single electron on this line of atoms. Of course, in a 

real crystal there are already millions of electrons. But most of them (nearly all for an insulating 

crystal) take up positions in some pattern of motion each around its own atom—and everything 

is quite stationary. However, we now want to think about what happens if we put an extra 

electron in. We will not consider what the other ones are doing because we suppose that to 

change their motion involves a lot of excitation energy. We are going to add an electron as if to 

produce one slightly bound negative ion. In watching what the one extra electron does we are 

making an approximation which disregards the mechanics of the inside workings of the atoms. 

Of course the electron could then move to another atom, transferring the negative ion to 

another place. We will suppose that just as in the case of an electron jumping between two 

protons, the electron can jump from one atom to the neighbor on either side with a certain 

amplitude.” 

At this point, we may already want to distinguish between the motion of the electron, and the possible 

motion of a whole series of electrons, as illustrated in Figure 3. This illustration is probably not by best 

drawing ever but you get the idea: think of the musical chairs game but with the chairs on a line and all 

players agreeing to kindly move to the next chair for the new arrival and – importantly – the last person 

on the last chair agreeing to leave the game to get a beer.   

  

Figure 3: The idea of a moving electric signal in an atomic lattice 

What happens in such game of musical chairs is the transmission of a signal: while each person needs 

 
44 We will (mostly) quote from Chapter 13 (Propagation in a Crystal Lattice) as well as Chapter 16 (Dependence of Amplitudes on 
Position) in Feynman’s Lectures on Quantum Mechanics here. Chapter 13 focuses on the wavefunction, whereas Chapter 16 
focuses more on the wave equation that might generate them as solutions. 

https://www.feynmanlectures.caltech.edu/III_13.html
https://www.feynmanlectures.caltech.edu/III_16.html
https://www.feynmanlectures.caltech.edu/III_16.html
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some time to get up – say Δt – and move to the next chair, an orchestra leader could, perhaps, make 

them all move at the same time and, hence, while each person would move only one chair, the 

transmission of the signal could be lightning fast. You may wonder: what is the signal here? It is just this: 

a new person has arrived and took the first chair.  

The difference between a traveling electric charge and a traveling electric signal 
What we explained above is, of course, the idea of an electron current: we know the typical drift speed 

of a free electron is actually quite low – it collides with many other charged particles (electron shells or 

other free electrons) – but the electric signal travels much faster. Why? When charged particles are 

forced into the wire – or any conductor really – an equal number are forced to leave because of the 

repulsion between like charges. That makes it actually difficult to increase the number of charges in a 

volume. Even if one charge enters, another leaves almost immediately, carrying the signal rapidly 

forward.45  

The question is how fast, exactly? We checked but find that textbooks will agree that the order of 

magnitude is the same as that of light but seem to shy away from actually calculating signal speeds. One 

course compares signal and charge drift velocity as follows: “Electrical signals are known to move very 

rapidly. Telephone conversations carried by currents in wires cover large distances without noticeable 

delays. Lights come on as soon as a switch is flicked. Most electrical signals carried by currents travel at 

speeds on the order of 108 m/s, a significant fraction of the speed of light. Interestingly, the individual 

charges that make up the current move much more slowly on average, typically drifting at speeds on the 

order of 10−4 m/s.”46  

We may rephrase the question: if the velocity of an electromagnetic field in free space is equal to c, then 

at what fraction of c can electric signals travel in a conductor, a semiconductor or whatever lattice-like 

structure? Lightspeed itself? Slower? Faster? Let us get back to Feynman’s analysis of quantum-

mechanical amplitudes and the associated wave equation(s) to see whether or not it may help to 

answer that question. The modeling is this47: 

1. The assumption is that the amplitude for an electron to go from one atom to the next is given by iA/ħ 

per unit time. Such assumption must, of course, assume that the electron that goes from one atom to 

the next starts out at the first atom which must, therefore, have a different energy. We, therefore, know 

– from the analysis of two-state systems in quantum mechanics – that A must be related to some energy 

difference.48  

Feynman does not give any explanation here but we may want to think, for example, of the extra 

 
45 It is quite astonishing but Feynman actually makes the case that a current-carrying wire is actually neutral: it only appears 
charged when the charges inside are set in motion. See Feynman’s lecture on the relativity of magnetic and electric fields. 

46 We simply googled and this course (from a private course provider which we must reference and/or credit here) was just one 
of the many textbooks to pop up. 

47 We stick closely to Feynman’s presentation here but, at the same time, we want to shorten and we do have our own nuances 
in the interpretation, so the reader should check with the original. We will try to limit our additions and critical remarks to 
footnotes. 

48 However, the reader should this system is not quite the same as a simple two-state system, in which we the two energy 

levels can be written as E0 + A and E0 − A states. The difference between the two energy levels in a two-state system is, 
therefore, 2A, while the difference between these two states and the zero state E0 is equal to A. 

https://www.feynmanlectures.caltech.edu/II_13.html#Ch13-S6
https://courses.lumenlearning.com/austincc-physics2/chapter/20-1-current/
https://www.feynmanlectures.caltech.edu/III_13.html
https://www.feynmanlectures.caltech.edu/III_13.html
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electron at atom n as occupying some orbital and its angular momentum will, therefore, be equal to 

some multiple of ħ. Such visualization or modeling has the advantage that it allows us to effectively 

interpret A/ħ as some energy per unit time.49 

The reader should also note that the amplitude is constant: it, therefore, increases linearly with time. 

Likewise, the associated probability (the squared absolute value) will also not increase exponentially but 

linearly.50 So far so good.  

One obvious question might be this: do we allow the electron to go back? If iA/ħ is the amplitude to go 

from atom n to atom n+1, then its (complex) conjugate, −iA/ħ, should be the amplitude to go from atom 

n to atom n−1, isn’t it? That sounds logical but that would amount to time reversal, which we do not 

allow: time goes in one direction only.51 That is why we have the imaginary unit in our iA/ħ expression: it 

comes with the chosen convention for modeling wavefunctions.  

All of this looks very reasonable. Hence, let us move on to the next assumption. 

2. The electron must be somewhere when it goes from one atom to another. Feynman writes the 

amplitude to on be on the nth atom as Cn and suggests to the following general functional form for it: 

𝐶𝑛 = 𝑎𝑛𝑒
−𝑖
E
ℏ
𝑡 = 𝑎(𝑥𝑛)𝑒

−𝑖
E
ℏ
𝑡 = 𝑎(𝑛 · 𝑏)𝑒−𝑖

E
ℏ
𝑡 

This looks pretty good – the amplitude varies with time so as to capture our uncertainty – but why the 

subscript in the an coefficient? Should the probability (the absolute square of the amplitude) not be the 

same for every atom? No. If the electron is not anywhere near atom n, it will probably not get there in 

the next instant. Hence, these amplitudes depend one on another!52 

Next assumption. 

 
49 See Chapter VII (The wavefunction and the atom) of our book on a realist interpretation of quantum mechanics, in which we 
assume the nth orbital (this n has, obviously, nothing to do with the atom number n in our lattice) to pack an angular 
momentum that is equal to n·ħ. It is then easy to show – at least for a simple hydrogen atom – that this orbital will be 

associated with an energy that is equal to E𝑛 = −
1

𝑛2
E𝑅  and an angular momentum that will be equal to L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ. The 

Planck-Einstein relation – written as En = n·ħ·ωn when modeling Bohr orbitals – then tells us the (angular) period or cycle time 

will be equal to 
Tn

2π
=

1

2π𝑓𝑛
=

1

ω𝑛
=
𝑛ℏ

En
. We can, therefore, see that we may now think of equating A/ħ to A/ħ = En/n·ħ   A = En/n 

and that 
𝐴

ℏ
=
En

𝑛ℏ
=
2π

Tn
= ω𝑛 can effectively be interpreted as an energy per unit time. This unit time corresponds logically to an 

angular period. 

50 This amounts to saying the past has no influence on the future here: it is not because an electron has been sitting on top of 
an atom for a while now that there is a greater likelihood it will soon make the next hop. 

51 In our paper on classical interpretations of quantum-mechanical concepts we argue that the convention that is used in regard 

to the plus or minus sign for the imaginary unit in the ae−iθ = ae−i(E/ħ) also fixes the direction of time. Such convention is 
necessary because time goes in one direction only. Hence, when taking the complex conjugate of an wavefunction or an 
amplitude you perform a mathematical operation that amounts to time reversal but this does not correspond to a real 
possibility in physics: time must go in one direction only. In the mentioned paper we show this is essentially rooted in the idea 
of motion itself: if we would allow for time reversal, we would not be able to define well-defined equations of motion. 

52 As for the substitution of an, one can easily appreciate an is a function of n or, what amounts to the same, the position xn = 
n·b. The latter substitution assumes we choose the origin of our line at atom zero and then uses the spacing between atoms b 
to get the rather logical xn = n·b equation. 

https://vixra.org/pdf/1901.0105vG.pdf
https://vixra.org/pdf/2004.0347v7.pdf
https://vixra.org/pdf/2004.0347v7.pdf


17 
 

3. We already know we want a wavefunction for our electron. Hence, remembering a wavefunction 

usually looks like 𝑒−𝑖(ω𝑡−k𝑥), Feynman suggests the following trial solution for an = a(xn): 

𝑎(𝑥𝑛) = 𝑒
𝑖k𝑥𝑛 

This gives us the wavefunction we had expected to see all along53: 

𝐶𝑛 = 𝑒
𝑖k𝑥𝑛𝑒−𝑖

E
ℏ
𝑡 = 𝑒−𝑖(ω𝑡−k𝑥𝑛) 

Richard Feynman shows off by showing how one can associate a set of Hamiltonian equations with this 

system but we conveniently look at this as unnecessary luggage for the time being. The question is this: 

we have some idea of what the ω frequency actually is, but what is k? It is an important question 

because it obviously answers one of the basic questions we started out with: what is the propagation 

speed of this wave? 

We have the model now. Hence, let us try to tackle all interpretational issues in the next section⎯if only 

to keep this rather long paper somewhat organized. Before we do so, we would like to note one thing 

here: Feynman gets a single wave. No wave packet. No uncertainty. Not in Nature, at least: once again, 

the uncertainty is only in our mind.        

The energy of an electron in a crystal lattice 
Feynman starts by noting k must be a real number: if it were an imaginary number, say i·k’, we’d get a 

real exponential function for the coefficient (an = e−ik’) and depending on your convention for the  sign 

for the imaginary unit for your wavefunction (or the  sign for k’), the amplitudes would blow up or, 

else, die off. In addition, we have no coefficient in front of our Cn = e−i(ωt− kx) wavefunction and its real and 

imaginary part, therefore, oscillate between −1 and +1. What more can we say about k? We should be 

able to relate it to the energy E, isn’t it? 

Correct, and that is where the model becomes more complicated. We joked about Feynman showing off 

his mathematical skills by developing a set of Hamiltonian equations but we actually need them. The 

amplitude to be in this or that state depends on the amplitude to be in that or this state. For a simple 

two-state system, we have two energy levels that are separated from the zero state E0 by A. These 

energy levels can, therefore, be written as E0 + A and E0 − A and the energy difference between them is, 

therefore, equal to 2A. The Hamiltonian equations for such two-state system are these54: 

ⅈℏ
𝑑𝐶1
𝑑𝑡

= 𝐸0𝐶1 − 𝐴𝐶2

ⅈℏ
𝑑𝐶2
𝑑𝑡

= 𝐸0𝐶2 − 𝐴𝐶1

 

We know this modeling – with the imaginary unit (i) in these differential equations – leads to what we 

want to see: probabilities “sloshing back and forth” between the two states⎯an oscillatory solution 

 
53 Richard Feynman shows off by showing how one can associate a set of Hamiltonian equations with this system but we 
conveniently look at this as unnecessary luggage. 

54 See, for example, Feynman’s development of the set of Hamiltonian equations for an ammonia maser in Chapter 8 (The 
Hamiltonian matrix) of his Lectures. 

https://www.feynmanlectures.caltech.edu/III_08.html
https://www.feynmanlectures.caltech.edu/III_08.html
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rather than, say, what happens “when water leaks between two tanks”, which will simply result in the 

water levels approaching each other (the comparison is Feynman’s, of course). The reader will probably 

be familiar with the comparison with paired pendulums.  

For this system – an electron moving through this linear array of atoms – we have a very large number 

of equations for a very large number of atoms. These equations look like this: 

ⅈℏ
𝑑𝐶1(𝑡)

𝑑𝑡
= 𝐸0𝐶𝑛(𝑡) − 𝐴𝐶𝑛+1(𝑡) − 𝐴𝐶𝑛−1(𝑡) 

We refer the reader to Feynman’s rather ingenious solution to this potentially infinite set of equations 

(we may, perhaps, not imagine an actually infinite array but the reader will understand there are a lot of 

atoms in a lattice). One of the grand results is the formula for the energy E, which is this: 

E = E0 − 2𝐴 cos(k𝑏) 

Figure 4 shows a graph of E as a function of k: E − E0 will be equal to 2A if cos(kb) is equal to −1 and, 

hence, if kb =  π  k =  πb. The reader can also verify the E − E0 = −2A condition, which is fulfilled if k 

= 0.  

 

Figure 4: Energy E as a function of the parameter k 

It is a very particular graph, but it will be familiar to most engineers: an electron in a crystal will always 

have an energy within this [E0 − 2A, E0 + 2A] band or, if we choose E0 such that it is equal to 2A, the [0, 

2A] band. No other energy is possible.  

Let us now look at what we wanted to look at: wave velocities. Let us, to simplify things, effectively 

choose E0 to be equal to 2A, so our energy equation can be re-written as: 

E = 2𝐴 − 2𝐴 cos k𝑏 = 2𝐴(1 − cosk𝑏) 

One single matter-wave or a wave packet? 
We may now, once again, ask this question: should we think of a single wave or of a superposition of 

waves? Richard Feynman definitely thinks the motion of an electron should be represented by a wave 

packet and effectively calculates a group velocity using the familiar vgroup = dω/dk equation. Let us go 

along with the argument for a while to see what does and does not make sense. First, we need to solve 

another small mathematical problem: how do you calculate dω/dk from the E = 2A(1 − cos kb) equation? 
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Here, Feynman assumes we may use the small-angle approximation because, because of the very small 

space inbetween atoms, he assumes the amplitudes should only vary very little from one xn to the next, 

which amounts to saying k must be very small.55 In such case, we may, perhaps, use the small-angle 

approximation for the cosine (cosθ = 1 − θ2)  and, therefore, write E as: 

E = 2𝐴(1 − cosk𝑏) = 2𝐴(1 − 1 +
k2𝑏2

2
) = 𝐴k2𝑏2 

Using the ω = E/ħ equation, we can now calculate wave velocities. Let us first calculate the phase 

velocity for a single wave: 

𝑣phase =
ω

k
=
𝐴k2𝑏

ℏk
=
𝐴k𝑏

ℏ
 

What can we do with this? Nothing much. We would need to relate A, somehow, to the energy of the 

electron or, to be precise, the difference in energies between an atom that has the extra electron and 

one that has not.56 We would also need to find some physical interpretation of k. At this point, Feynman 

defines the concept of the effective mass of an electron. However, we do not want to use this because: 

1. It has no relation whatsoever with the concept of effective mass as used in the context of the 

ring current model, in which it is associated with the relativistic mass of the pointlike charge as it 

zitters around at lightspeed. 

2. Feynman himself admits his concept of “effective mass has nothing to do with the real mass of 

an electron. It may be quite different—although in commonly used metals and semiconductors 

it often happens to turn out to be the same general order of magnitude, about 0.1 to 30 times 

the free-space mass of the electron.” 

What about the group velocity? We are not sure. We see no reason whatsoever to do what Feynman 

does, and that is to “make up a wave packet with a predominant wave number k0, but with various 

other wave numbers near k0.” We can then, effectively, use the E = Ak2b2 as a dispersion relation and, 

therefore, calculate a group velocity which is equal to: 

 
55 That is a matter of scale, of course, and we, therefore, regret Feynman does not do a better job at motivating this 
assumption. In fact, it is worse than that: Feynman actually shows that, in any case, we may always replace a large k by a much 
smaller k by choosing a ratio between these two values that ensures the physical states that are being described are the same. 
The principle is illustrated below and we refer the reader to Feynman’s explanation of it, which is easy enough but, in our not-
so-humble view, totally unacceptable! Indeed, if k is related to some real variable – which Feynman attempts to demonstrate – 
such as, for example, the momentum or velocity of the charge, then such substitutions should not be done, of course! 

 

56 See our remarks in footnote 49. 

https://www.feynmanlectures.caltech.edu/III_13.html#Ch13-S2
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𝑣group =
𝑑ω

𝑑k
=
𝑑(
Ak2b
ℏ
)

𝑑k
=
2𝐴𝑏2

ℏ
k 

And, yes, we can then define a totally artificial concept of effective mass by defining it as meff = ħ2/2Ab2 

to write what Feynman apparently wants to write in some desperate effort to show the concept of a 

wave packet related to some kind of momentum concept might make sense: 

ℏk = meff𝑣group =
ℏ2

2𝐴𝑏2
∙
2𝐴𝑏2

ℏ
k = ℏk 

Frankly, we do not see any use for it because of the above-mentioned reasons. We are not sure what 

use Feynman sees for it because he wraps up by summarizing what we have learned here as follows: 

“We have now explained a remarkable mystery—how an electron in a crystal (like an extra 

electron put into germanium) can ride right through the crystal and flow perfectly freely even 

though it has to hit all the atoms. It does so by having its amplitudes going pip-pip-pip from one 

atom to the next, working its way through the crystal. That is how a solid can conduct 

electricity.” 

Frankly, we knew that already, didn’t we? In fact, Feynman is plain wrong here: an electron does not 

“ride right through the crystal”, nor does it “flow perfectly freely even though it has to hit all the atoms.” 

What does go “pip-pip-pip” from one atom to the next, is the signal and, yes, that is what these 

mysterious probability amplitudes actually model and – another yes – that is how a solid can conduct 

electricity. In short, we do not see any added value of Feynman’s quasi-infinite set of Hamiltonian 

equations. Why not? The whole model, and all of the machinery that comes with it, does not give any 

answer to the two basic questions: 

1. What is the velocity of the electron itself? 

2. What is the velocity of the signal? 

Let us, therefore, wrap up this paper. 
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Conclusions 
This paper basically further explored intuitions we highlighted in previous papers already:  

1. The concept of the matter-wave traveling through the vacuum, an atomic lattice or any 

medium can be equated to the concept of an electric or electromagnetic signal traveling 

through the same medium. 

2. There is no need to model the matter-wave as a wave packet: a single wave – with a precise 

frequency and a precise wavelength – will do. 

3. If we do want to model the matter-wave as a wave packet rather than a single wave with a 

precisely defined frequency and wavelength, then the uncertainty in such wave packet 

reflects our own limited knowledge about the momentum and/or the velocity of the particle 

that we think we are representing. The uncertainty is, therefore, not inherent to Nature, but 

to our limited knowledge about the initial conditions. 

4. The fact that such wave packets usually dissipate very rapidly, reflects that even our limited 

knowledge about initial conditions tends to become equally rapidly irrelevant. Indeed, as 

Feynman correctly notes, “the tiniest irregularities” tend to get magnified very quickly at the 

micro-scale.   

In short, as Hendrik Antoon Lorentz noted a few months before his demise, there is no reason 

whatsoever “to elevate indeterminism to a philosophical principle.” We hope the added detail in this 

paper may finally convince our more skeptical readers.  

Jean Louis Van Belle, 12 May 2020 


