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Abstract

The string model of gravitational force was proposed by author 40 years ago (Pardy, 1980; 1996).
In this model the string forms the mediation of the gravitational interaction between two gravitat-
ing bodies. It reproduces the Newtonian results in the first-order approximation and it predicts in
the higher-oder approximations the existence of oscillations of the massive bodies interacting by the
string. In case of the Moon it can be easily verified by NASA laser measurements.

PACS numbers: 03.20, 03.40, 02.30.J

1 Introduction

It is well known from the history of physics that the problem of action-at-a-distance
was for the first time seriously considered by Newton, in his letter to Bentley (Bentley,
1692; 1838), which is cited in ”Principia Mathematica” (Newton, 1966) and analysed in
the Stanford Encyclopedia of Philosophy (2006).

Instead of resolution of this problem Newton suggested the phenomenological theory
of the gravitational force, where there exists no answer concerning the dynamics, or, the
mechanism of action-at-a-distance. Newton himself was awared that it necessary exists
some mediation of interaction between two bodies at the different points in space because
he has written (Newton. 1966): ”It is inconceivable, that inanimate brute matter, should
without the mediation of something else which is not material, operate upon and affect
other matter without mutual contact .. ”. In other words, the crucial notion in the
Newton speculation is the mediation between two bodies. Now, we can say that Newton
considered the string model of gravity because string model of gravity is the natural result
of Newton scientific intuition.

The problem of mediation of the gravitational force between two bodies 1 and 2 can be
analysed by the way which forms the serious motivations for reconsidering the problem
od action-at-a-distance. If we trasmit body 1 with mass m from one point to other during
very short time interval, then the gravitational force acting to the second body 2 with
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mass M necessary changes. However, in case that the second body is far from the first
one, then much time elapses before it receives the gravitational input. The question is,
where is the gravitational perturbation when the first body after short motion is yet in
rest and the second one has no information on the motion on the first body?. It is evident
the gravitational input is between body 1 and 2 on the line or string connecting body
1 with the body 2. The string is the Newton medium which transmits the gravitational
force from one body to the other one.

It is well known that Newtonian theory is successful in its domain of validity, and
general relativity is successful in accounting for the discrepancies between observed
gravitational data and the Newtonian theory, as well as in resolving its problem of
compatibility with special relativity. Nevertheless, Newton theory does not involve the
string tension which is logical necessary as we have seen.

By analogy with the mechanical situation we will suppose the model where the atractive
force between two bodies is transmitted as tension in the fictitious string connecting the
one body with the another one. Then, the theoretical problem is to show that such model
works and gives not only the old results but new results which cannot be derived from
the original Newton law.

We will consider the string, the left end of which is fixed at the beginning of the
coordinate system and mass m is fixed on the right end of the string. The motion
of the system string and the body with mass m is the fundamental problem of the
equations of the mathematical physics in case that the tension is linearly dependent
on elongation (Tikhonov et al., 1977). We will show that it is possible to represent the
Newton gravitational law by the string with the nonlinear tension in the string. Because
of the strong nonlinearity of the problem the motion of the string and the body can be
solved only approximately. In the following text, we will give the aproximative solution of
the classical two-body problem and then we obtaine the string solution of this problem.

2 The classical two-body problem

Let us consider two bodies 1 and 2 with masses M and m, where M ≫ m. The body
1 is supposed to be fixed at the origin of the coordinate system and the body 2 is for the
simplicity moving in the interval

(R− δ, R + δ), (1)

where δ ≪ R, which corresponds to the motion of planets of our Sun system. The Newton
law

F = −κ
Mm

r2
, (2)

can be obviously expressed in the interval (1) approximatelly as

F ≈ aη + b; (−δ, δ) ∋ η, (3)

where

a =
2κMm

R3
, b = −κMm

R2
. (4)
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The motion of body 2 in the gravitational potential of body 1 is described by equation
(Landau et al., 1965)

m
..
r= −κ

Mm

r2
+

J2

mr3
, (5)

where J is the angular momentum of body 2. In the inerval (−δ, δ) we can write

r(t) = R + η(t) (6)

and using approximation

1

(R + η)2
≈ 1

R2
(1− 2η

R
),

1

(R + η)3
≈ 1

R3
(1− 3η

R
), (7)

we get after insertion of eq. (6) into eq. (5):

..
η +ω2η = λ, (8)

where

ω2 =
3J2

m2R4
− 2κM

R3
(9)

λ =
J2

m2R3
− κM

R2
. (10)

For the circle motion we have J = mωR2, r = R and from eqs. (9) and (10) it follows:

ω = R−3/2(κM)1/2; λ = 0. (11)

It is easy to see that the solution of eq. (8) is of the form:

η(t) = Λ cos(ωt+ ϑ) +
λ

ω2
, (12)

where Λ and ϑ are constants involving the initial conditions of motion of the body 2.
So far we have supposed no dynamics of mediation of the interaction between body

1 and 2. However, only the model involving the mechanism of mediation of interaction
can describe logically consistent reality and explain the Newton puzzle. Let us try to
elaborate the consistent and realistic model which describes the mechanism of mediation.

3 The string mediation of interaction

In this section we will solve the motion of a body 2 at the end of the string on the
assumption that the tension in the string is nonlinear and it generates the Newton law in
the statical regime. We will give the rigorous mathematical formulation of such problem
named the Newton-Pardy string mediation of interaction. While for the Hook tension
the problem has solution by the Fourier method, in case of the nonlinear tension it is not
possible to use this method.

There is no evidence about solution of this Newton-Pardy string problem in the
textbooks of mathematical physics, or, in the mathematical journals. So, it seems, we
solve this problem for the first time.
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Let be given the string, the left end of which is fixed at beginning and the right end is
at point l at the state of equilibrium. The deflection of the string element dl at point x
and time t let be u(x, t) where x ∈ (0, l) and

η(t) = u(l, t), η(0) = u(l, 0). (13)

Then, the motion of body 2 is described by the motion of the right end-point of the
string, when the left point is constantly fixed at the origin.

The differential equation of motion of string elements can be derived by the following
way: We suppose that the force acting on the element dl of the string is given by the law:

T (x, t) = −ES

(
∂u

∂x

)−2

, (14)

where E is the modulus of elasticity, S is the cross section of the string. We easily derive
that

T (x+ dx)− T (x) = 2ES (ux)
−3 uxxdx. (15)

The mass dm of the element dl is ϱESdx, where ϱ is the mass density of the string
matter and the dynamical equilibrium gives

ϱSdxutt = 2ESuxx (ux)
−3 dx. (16)

Putting

ϱ = ϱ0
2

(ux)
3 ; ϱo = const., (17)

we get

1

c2
utt − uxx = 0; c =

(
E

ϱ0

)1/2

. (18)

The last procedure was performed evidently in order to get the wave equation.
Now, let us look for the correspondence between the string tension and the Newton

law. Putting utt = 0 we get the stationary case with the solution

u(x, t) = αx+ β. (19)

Because u(0, t) ≡ 0, we get β = 0. Then ux(x, t) = α is not dependent on x and
according to the definition of the tension the force is constant along the length of the
string which is the same result as in the case with the Hook law.

For sufficiently big elongation we have u(l) ≫ l and the elongation at point l is the
distance of the right end of the string from the origin and it means that the force acting
on the right end of the string is proportional to the minus square of the distance of the
right end of the string as in the Newton gravitational law. So, we have demonstrated that
the Newton gravitational force can be realized by the string, while the Newton original
force involves no mediation between two bodies. Now, we can repeat the formulation of
the problem dscribed in the previous section in such a way that we will use the dynamical
equation (18) instead of eq. (5). So, let us approach the solution of the problem of the
motion of body on the end of the string where the tension of the string is defined by
equation (14).
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From (19) we have:

α =
u(l, t)

l
. (20)

Thus,

T (l, t) = − ESl2

u2(l, t)
= −κ

mM

u2(l, t)
, (21)

which gives the relation between the string constants and the gravitating parameters

ESl2 = κmM. (22)

The complete solution of eq. (18) includes the initial and boundary conditions. The
simplest nontrivial initial conditions can be chosen with regard to the character of the
problem and they are:

u(x, 0) =
R

l
x, ut(x, 0) = 0. (23)

The boundary conditions are given with respect to the dynamical equation (5):

u(0, t) = 0, mutt(l, t) = T (l, t) +
J2

mu3(l, t)
. (24)

The solution of the wave equation with the strongly nonlinear boundary conditions is
evidently beyond the possibility of the present mathematical physics. Nor the Fourier
method, nor the d’Alembert one can be used in solution of our problem. So we are forced
to find only the approximation of this problem. For this goal we write:

u(x, t) =
R

l
x+ v(x, t), (25)

from which follows

ux(x, t) =
R

l
+ vx, u(l, t) = R + v (26)

and we suppose that v ≪ R. In such a way the intial conditions are:

v(x, 0) = 0, vt(x, 0) = 0. (27)

The approximative formulae are given in the following form:

1

u2
x(x, t)

≈ l2

R2
− 2vxl

3

R3
, (28)

1

u3(x, t)
≈ 1

R3
− 3v

R4
. (29)

So, we get the new problem of mathematical physics: the wave equation

vtt = c2vxx (30)

with the initial conditions

v(x, 0) = 0; vt(x, 0) = 0 (31)
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and with the boundary conditions

v(0, t) = 0; mvtt(l, t) = a+ bvx(l, t) + dv(l, t), (32)

where we have put

a = −κ
Mm

R2
+

J2

mR3
; b =

2κMm

R3
l; d = − 3J2

mR4
. (33)

The equation (30) with the initial and boundary conditions (31) and (32) represents
one of the standard problems of the mathematical physics and can be easily solved using
the Laplace transform (Arfken, 1967):

L̂u(x, t)
d
=
∫ ∞

0
e−ptu(x, t)dt

d
= u(x, p). (34)

Using (30) we get with L̂v(x, t)
d
= φ(x, p):

L̂vtt(x, t) = p2φ(x, p)− pv(x, 0)− vt(x, 0) = p2φ(x, p) (35)

L̂vxx(x, t) = φxx(x, p); L̂a =
a

p
; L̂v(0, t) = φ(0, p) = 0. (36)

After elementary mathematical operations we get the differential equation for φ in the
form:

φxx(x, p)− k2φ(x, p) = 0; k = p/c. (37)

with the boundary condition in eq. (36).
We are looking for the the solution of eq. (37) in the form

φ(x, p) = c1 cosh kx+ c2 sinh kx. (38)

We get from the boundary conditions in eq. (36) c1 = 0 and

c2 =
a

p

1

(mp2 − d) sinh kl − bk cosh kl
. (39)

The corresponding φ(x, p) is of the form:

φ(x, p) =
a

p

sinh kx

(mp2 − d) sinh kl − bk cosh kl
(40)

The corresponding function v(x, t) follows from the theory of the Laplace transform as
the mathematical formula:

v(x, t) =
1

2πi

∮
eptφ(x, p)dp =

∑
p=pn

res eptφ(x, p) =

∑
p=pn

res ept
a

p

sinh kx

(mp2 − d) sinh kl − bk cosh kl
, (41)

where pn are poles of the function φ(x, p) and they are evidently given by equation[
(mp2 − d) sinh kl − bk cosh kl

]
= 0, (42)
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which is equivalent with k → ik to

tan kl =
−bk

mc2k2 + d
. (43)

In case of k ≪ 1 we have two solutions: p0 = 0 and

p1/2 = ±
(

3J2

m2R4
− 2κM

R3

)1/2

, (44)

which is in agreement with eq. (9) obtained by the approximation of classical Kepler
problem. Further we have got the oscillations with frequences pn in the higher order
approximation:

pn → nπ

l
, n ≫ 1 (45)

At present time it is still question, how to detect these oscillations, or, if it is possible
to use the experimental procedures of Braginskii et al. (1977) for the detection. The
analogous situation was in quantum physics, where the zero frequences of vacuum was
considered as meaningless till it was shown by Casimir that they give the atractive force
between two conductive plates. It is not excluded that the Zitterbewegung of cellestial
bodies will be confirmed by NASA laser experiments.

4 Discussion

The basic heuristical idea of this article was the string realization of the gravitational
force between two bodies.

In order to realize this idea we introduced the string of the length l with the nonlinear
tension which generates in the statical situation the Newton law at the distances much
greater then is the fundamental length of the string. We have solved this problem
only approximately because at present time the exact solution is beyond possibilities
of mathematics.

While the string with the Hook tension has the equilibrium state, our string is in the
dynamical state.

The difficulties with the action-at-distance as is an indication of the limitation of the
Newtonian theory. The general relativity solves the problem as the metric theory of the
gravitational interaction. General relativity is the geometry theory of space time and as
such it is the physical model based on the Riemann and Gauss ideas. In General relativity,
there is the fundamental notion, the metric tensor, while in the Newton theory the basic
building stone is force. In our theory, which is the dynamical version of the Hook theory
of string is the basic notion the tension of the string.

The string is between any two masses and it means that universe is occupied by strings,
vacuum and by bodies and particles. Our planet is for instance connected by strings with
all stars in universe.

Our problem was never defined to our knowledge in the mathematical or physical
textbooks, monographies or scientific journals. Thus, our approach is original.

The proposed model can be also related in the modified form to the problem of the
radial motion of quarks bound by a string and used to calculate the excited states of such
system. The original solution was considered by Bardeen et al. (1976; 1976) Chodos et
al. (1974) and by Frampton (1975). The new analysis of such problem was performed by
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Nesterenko (1990) and author (Pardy, 2016). So, there are open way in particle physics to
follow our approach. It is not excluded that the Zitterbewegung of moon will be confirmed
by NASA laser systems (NASA first!).
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