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               Basic definitions from a quantum informatics point of view 

Qubit (quantum bit) — smallest element used for data storage in a quantum 

computer, compared to a classical bit a qubit has two simultaneously analyzable 

states |0 > and |1 >, each of them has a superposition. 

Superposition – probability of a certain state in a qubit (or in a quantum register), 

to remain after passing through a measurement gate [1]. 

Quantum register – a system that consists of two or more qubits, which are in a 

state of quantum entanglement, that makes analyzing and editing parameters of all 

states generated by this system possible. The number of states in which a quantum 

register can be is 2 , where “n” is the number of qubits, that are a part of that 

register. 

Researching the key operating principles of Grover’s algorithm  



Grover’s search algorithm (GSA) — a quantum algorithm that can serve 

as an alternative to classical linear search algorithms. GSA can find solutions to a 

problem (function) by analyzing all states of a quantum register [2]. 

The main phase of the algorithm is the oracle function 𝑓(𝑥) = 𝑦, which 

serves as a search criteria. It gets all of the possible states of the register 𝑥 on input 

and inverts the amplitude value of states which can serve as its solutions. 

Grover’s algorithm can be composed of 3 main steps:  

1) Forming uniform superpositions for all possible states of a quantum register, 

using Hadamart transformation gates. 

2) Developing and applying an oracle function that will invert the amplitude of 

states, that can serve as its solutions. 

3) Applying an amplitude amplification function, which will amplify the 

amplitude and superposition of states that were chosen by the oracle, also 

the amplitude of those states will be inverted again. 

Steps 2-3 are called Grover iterations and are repeated 𝑁 ≈ ∗  times 

(rounded down to the nearest whole number), to achieve the highest probability of 

receiving correct results, where 𝑁 is the number of all possible states of the system 

𝑁 = 2 , 𝑛 – number of qubits in the register, 𝑙 – number of expected solutions [3]. 

When the number of iterations exceeds 𝑁 , amplitude and superposition values of 

states chosen by the oracle will start decreasing. In similar circumstances a classic 

linear search algorithm in worst cases will need 𝑁 iterations, to find all possible 

solutions. To calculate the difference in required iterations between Grover’s 

algorithm and classical linear search we can use this formula:  
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Quantum circuit simulator «Quirk» was used for algorithm implementation 

and debugging purposes. It offers many useful sensors, that make analyzing 



transformations in quantum circuits a lot easier. Qubit numeration from high to low 

is performed from bottom to top, all qubits have |0 > value by default [4]. 

Let’s look at IBM’s implementation of Grover’s algorithm [5], which was re-

implemented in Quirk for easier analyzing: 

 

Pic. 1. IBM’s implementation of Grover’s algorithm 

 

Pic. 2. Oracle of this algorithm 

 

Pic. 3. Amplitude amplification 

This circuit uses a 2-qubit register, so the number of required Grover iterations 

equals: 𝑁 ≈  ∗ ≈ 1,57 ≈ 1 

The H-CNOT-H combination, is a more universal implementation of the 

controlled-Z gate (CZ), which isn’t available on some systems, but in Quirk this 

replacement is possible: 

 

Pic. 4. Circuit after replacing H-CNOT-H with CZ 



 

Pic. 5. Oracle after replacing H-CNOT-H with CZ 

It’s visible that this oracle inverted the amplitude of state |01 > 

 

Pic. 6. Amplitude of |01> before applying the oracle function 

 

Pic. 7. Amplitude of |01> after applying the oracle function 

After the amplitude amplification step, the amplitude of |01 >, becomes higher 

ang gets inverted again. 

 

Pic. 8. Amplitude amplification function and results 

 

Pic. 9. Final superposition of state |01> 

 

Pic. 10. Final amplitude of state |01> 



Since the state |01 > has the highest amplitude and superposition values, 

compared to other states, it is the solution for this oracle function. 

Developing mathematical oracles for Grover’s algorithm 

To develop a different oracle function, it’s important that it will invert the 

amplitude value of the solution states, without causing decoherence. To avoid 

decoherence, it is better to use the reversibility property of quantum gates, which 

are a part of the oracle but aren’t related to the amplitude inversion itself, for 

limiting their effect with the bounds of the oracle.  

Using the concepts shown above, it’s possible to make an algorithm with an 

oracle function for solving the problem of finding x in equation 𝑥 +  𝑎 =  𝑏, 

without transforming it. To solve this problem having two bits of data (n = 2), a 

classical linear search algorithm would require 𝑁 = 2 = 2  iterations, while 

Grover’s algorithm would only need 1: 

𝑁 ≈  
𝜋
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The oracle for this problem is made using the arithmetic and comparison operators 

available in Quirk, for demonstration purposes we assigned values to a = 10 and b 

= 11. Circuit elements «a =», «b =», «X =» are labels, that are made for 

clarification and don’t have any effect on the circuit. 



 

Pic. 11. Example oracle made using 2 qubit registers 

 

Pic. 12. Algorithm made using 2 qubit registers and it’s result X = 01  

This solution is scalable, a 3 qubit register version with а = 101 and b = 110 is 

shown below. 



  

Pic. 13. Example oracle made using 3 qubit registers 

 

Pic. 14. Algorithm made using 3 qubit registers and it’s result X = 001  



Conclusion 

In this article the key operating principles of Grover’s algorithm were 

researched, and the results were used to make a new oracle function, that illustrates 

the possibility of using Grover’s algorithm for solving more common search 

problems. The efficiency of this algorithm was also analyzed, and a formula that 

calculates the ratio between required iterations of linear search and Grover’s 

algorithm was proposed:  
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Grover’s algorithm seems to be most efficient in problems that can’t be 

effectively solved by common search algorithms due to there being too many 

possible states of a register, in the future it could even be applied to solve 

mathematical problems that may be harder to solve othervise.  
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