Specification of the Photon by
Unification of Maxwell- and
gravitational Field

Rolf Warnemünde
© 2020 CC BY-NC-ND
E-Mail: rolf.warnemuende@t-online.de
Abstract

A derivation of continuously differentiable, fluctuating 3-dimensional vector fields as generalized Maxwell Fields leads to Identification of Einstein’s space as the result of a deformation of a Euclidean space and the fluctuating hypersurface of Einstein’s space as gravitational wave propagation.

The consequence is the union of Maxwell field and Gravitational field which leads to

1. the explanation of the photon and its formation by describing the detailed quantization process.

2. the characterization of the photon resulting from the deformation movement defined in a point, which from here screws through space in a direction at the speed of light. These are discussions that are beyond the range of quantum mechanics and quantum field theory because of the uncertainty relation, although such connections seem qualitatively obvious.

By the described unification electromagnetism is directly led back to the most fundamental terms of physics, space and time.

Last but not least the importance of the Einstein-Equations for microphysics is proved.
Contents

1 Introduction 5

2 Definition of Markov Processes with natural causality 7

3 Stochastic and deterministic general vector fields 10
   3.1 The Transition: stochastic theory $\leftrightarrow$ deterministic theory . . . . . . . 11
   3.2 The deterministic fluctuation-equations . . . . . . . . . . . . . . . . . 13
      3.2.1 The vacuum Maxwell Equations . . . . . . . . . . . . . . . . . 16
   3.3 Surfacelike deformation-fluctuations in 3-dimensional space . . . . 16
   3.4 1-dimensional deformation-fluctuations in 3-dimensional space . . . 18

4 Space-Time-fluctuations in General Relativity 20
   4.1 Space-Time of General Relativity and its Riemannian hypersurface  . 21
   4.2 The Ricci Tensor in the origin of a local inertial-system . . . . . . . 24
   4.3 The Ricci Tensor of the Einstein Space in dependence of temporal
       fluctuations of its Riemannian hypersurface . . . . . . . . . . . . . 25

5 Unification of Maxwell Field and gravitational field 27
   5.1 Gravitational waves corresponding to electromagnetic Fluctuations . . 27
   5.2 The energy-momentum-tensor of the electromagnetic field . . . . . . . 30
   5.3 The quantitative relation of electromagnetic and gravitational waves . 33

6 The Photon within classical physics 38
   6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Stochastic Fluctuation movements with prescribed Velocity Direction</td>
<td>39</td>
</tr>
<tr>
<td>6.3 The deterministic Fluctuation Equations for fluctuations with pre-</td>
<td>41</td>
</tr>
<tr>
<td>scribed Velocity Direction</td>
<td></td>
</tr>
<tr>
<td>6.4 An Equation for a Photon or a Graviton from a classical viewpoint</td>
<td>44</td>
</tr>
<tr>
<td>6.4.1 The quantization process within classical Physics</td>
<td>45</td>
</tr>
<tr>
<td>7 Summary</td>
<td>47</td>
</tr>
<tr>
<td>Bibliography</td>
<td>48</td>
</tr>
</tbody>
</table>
1 Introduction

In this treatise, gravitational and electrodynamic fields are unified and not forces, as is desired from the point of view of elementary particle physics. The unification of physically different fields requires a uniform mathematical description. This is for the gravitational and the electromagnetic field not evident. The gravitational field is seen as the consequence of the curved Space-Time characterized by nonlinear differential geometric formulations. The electromagnetic field satisfies the requirements for the linear Maxwell-Equations. In physics it is rated as sure knowledge that nonlinear and linear fields are assessed totally differently. On the other hand electrodynamic fields are suggestive of being properties of Space-Time. How to cut this Gordian knot proceeds as follows:

At first, it is searched for fluctuation equations of general 3-dimensional sufficiently often continuously differentiable vector fields. This is achieved by finding out the connection of a stochastic ensemble consideration of an unlimited number of existent deterministic fluctuating continuum fields with the deterministic consideration of a single ensemble system resulting in quasi-linear generalized Maxwell Equations. Requiring constant propagation speed the linear vacuum Maxwell Equations are found. The mentioned Gordian knot is cut considering the movements of the Riemannian hypersurface of the Einstein-Space as deformation fluctuations of a suitable Euclidean observer space. As these fluctuations proceed with light velocity the fluctuations are described by the usual Maxwell Equations. So there are the following results:

1. The Maxwell-Field is understood as a fluctuating deformation Field of Space,
2. By Einstein's equations the quantitative relationship between the electromagnetic field and the deformation of space is explained.
3. These considerations lead to general gravitational waves from a new perspective.
4. A further consequence is the explanation of the Photon:
   The photon in a space-time point, its complex movement out of this point and its formation by describing the detailed quantization process is described in one space-time point. It spirals through the space in one direction. This is impossible within the framework of quantum electrodynamics (simultaneous determination of position and momentum of a quantum particle).

With the described unification electromagnetism is directly led back to the most fundamental terms of physics, space and time.
Last but not least the importance of the Einstein-Equations for microphysics is proved.
2 Definition of Markov Processes
with natural causality

A probabilistic theory of continuum movements is related to random distributions of velocities $\vec{\pi}$ moving from $(\vec{x}, t)$ to $(\vec{x} + \vec{\pi} t, t + t_e)$. These velocity distributions may get together of vortex and curvature vector fields

$$\vec{\pi} = \vec{\omega} \times \frac{\vec{b}}{b^2}.$$  

The transport from $(\vec{x} - t_e \vec{\pi}', t - t_e)$ to $(\vec{x}, t)$ is additionally controlled by transition probabilities

$$W_{t_e} = W_{t_e}(\vec{x}, t, \vec{\pi}, \vec{\pi}')$$,

resulting in

$$f_{t_e}(\vec{x}, t, \vec{\pi}) = \int_{\vec{\pi}'} W_{t_e}(\vec{x}, t, \vec{\pi}, \vec{\pi}') f_{t_e}(\vec{x} - t_e \vec{\pi}', t - t_e, \vec{\pi}') d\vec{\pi}'.$$

Such a relation we call a Markov Process of natural causality. According to Sen [12] there is a so called Newtonian causality in nonrelativistic physics implying the possibility of unlimited velocities. However Newtonian causality is restricted to Newtonian mechanics and stochastic processes of physics ending with diffusion equations when applied practically.¹ This applies not for formulations of the general or linear Boltzmann Equation. In electrodynamics the velocity of light is the limiting velocity. In this treatise one essential statement is: classical physics is generally not Newtonian. Further on

1. is shown, that diffusion equations can only be approximations of an exact description. The diffusion equation is related to an unlimited propagation speed. The diffusion coefficient is correlated with the velocity of sound. Exact descriptions lead via Boltzmannlike formulations.

2. is shown, that the second Newtonian law applies to fluid dynamics in limiting cases only. In field theories as fluid dynamics not force- but acceleration fields

¹This statement applies to the Fokker-Planck and Langevin equation. See, for example, Chandrasekhar[2]
are expressed. These are generally not free of rot (equivalently curl) in contrary to a Newtonian force field. That is why it is reasonable to distinguish conservative from non conservative acceleration fields. In classical physics one has normally non conservative fields. (Though for students a contrary impression may occur.)

The Newtonian causality proves to be a limiting case of non relativistic classical physics. In the following a causal Markov Process is used or derived throughout. Overarching master equations can not exist, physically. The transition probabilities $W_{t_{e}}$ depend on a time quantity $t_{e}$ related to continuum fluctuations of measurement accuracy according to vectorial motion quantities. For $t_{e} \rightarrow 0$ (exact motion quantities) the transition probability $W_{t_{e}}$ degenerates to a $\delta$-function.

Simultaneous details of space and momentum are not possible in the context of quantum mechanics. The Schrödinger Equation for free particles

$$i\hbar\frac{\partial\psi(\vec{x}, t)}{\partial t} = -\frac{\hbar^{2}}{2\mu} \nabla^{2} \psi(\vec{x}, t)$$

(2.1)

can be transformed into a linear homogenous integral equation \[5\] \[6\]

$$\psi(\vec{x}, t) = i \int G(\vec{x}, t; \vec{x}', t') \psi(\vec{x}', t') d\vec{x}'$$.

(2.2)

The Green function

$$G(\vec{x}, t; \vec{x}', t') = \langle \vec{x} \left| \exp\left(-\frac{i}{\hbar}(t - t')H\right) \right| \vec{x}' \rangle$$

(2.3)

is called Feynman kernel, too.

In the case of the diffusion equation

$$\frac{\partial \rho(\vec{x}, t)}{\partial t} = D\nabla^{2} \rho(\vec{x}, t)$$

(2.4)

an equivalent integral equation the Green function understood as transition probability from $(\vec{x}', t')$ to $(\vec{x}, t)$ exists with

$$\rho(\vec{x}, t) = \int_{V'} G(\vec{x}, t; \vec{x}', t') \rho(\vec{x}', t') d\vec{x}'$$

(2.5)

and the Green function
2 Definition of Markov Processes with natural causality

\[ G(\vec{x}, t; \vec{x}', t') = \left( \frac{1}{4\pi D(t-t')} \right)^{\frac{3}{2}} e^{-\frac{(\vec{x}-\vec{x}')^2}{4\pi D(t-t')}}. \]  

(2.6)

Equations based on a "heat-kernel"-structure are not exact in classical physics (like Newtonian mechanics).

In quantum mechanics and quantum field theory, natural causality is not possible due to the uncertainty principle. In the theory of relativity there is the maximum possible Speed, the speed of light. A geometrodynamic system of equations of turbulence found below does not explicitly contain such limit velocities. Velocity fields are unambiguously calculated by an initial field, which, after mapping from the Einstein space to a suitable observer space, yields results compatible with GR. Under different initial conditions higher velocities are possible.
3 Stochastic and deterministic general vector fields

\[
\begin{align*}
&f_{t_{c}}(\vec{x}, t, \vec{E}, \vec{B}) = \int \int_{\vec{E}} W_{t_{c}}(\vec{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}') \cdot f_{t_{c}}(\vec{x} - \Delta \vec{x}, t - \Delta t, \vec{E}', \vec{B}') d\vec{E}' d\vec{B}' \\
&\quad \left\Rightarrow \right. \\
&\quad \frac{\partial \vec{B}}{\partial t} - \vec{\nabla} \times \vec{E} = 0 \\
&\quad \frac{\partial}{\partial t} \left( \frac{B^2}{E^2} \cdot \vec{E} \right) + \vec{\nabla} \times \vec{B} = 0
\end{align*}
\]

Subsequently continuum fluctuations of general 3 dimensional vector fields \(\vec{A}(\vec{x}, t)\) with \(\vec{\nabla} \times \vec{A} \neq 0\) are analysed. They have to be sufficiently often continuously differentiable. Defining the vector fields \(\vec{E}\) and \(\vec{B}\) by

\[
\begin{align*}
&\vec{E} = \frac{\partial \vec{A}}{\partial t} \neq 0 \\
&\vec{B} = \vec{\nabla} \times \vec{A} \neq 0
\end{align*}
\] (3.1)

and owing to the exchangeability of the operators \(\partial / \partial t\) und \(\vec{\nabla} \times\)

\[
\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \vec{E}
\] (3.2)

follows. This is a necessary consequence of the condition of the continuous differentiability of \(\vec{A}(\vec{x}, t)\). This relation is known according to the Maxwell Equations. The for this purpose dual equation is subsequently being looked for. A stochastic continuum process in the frame of an ensemble theory is formulated such that according to a deterministic theory the already known as well as the related dual equation arise with fluctuating quantities \(\vec{E}\) und \(\vec{B}\).
3 Stochastic and deterministic general vector fields

3.1 The Transition: stochastic theory $\leftrightarrow$ deterministic theory

Every space-time-point $(\vec{x}, t)$ a continuously differentiable distribution density $f_{t_c}$ is assigned to the motion quantities $\vec{E}_{t_c} = \partial \vec{A}_{t_c} / \partial t$ and $\vec{B}_{t_c} = \vec{\nabla} \times \vec{A}_{t_c}$ with

$$f_{t_c} = f_{t_c}(\vec{x}, t, \vec{E}, \vec{B}).$$  \hfill (3.3)

In the with $t_c$ or $\epsilon$ indexed functions $f_{t_c}$ it is automatically assumed that the included motion quantities $(\vec{E}, \vec{B})$ are assigned to a $t_c$-measurement accuracy. The indexing of the motion quantities may be omitted in functions appropriately indexed themselves.

After the execution of a $\lim_{t_c \to 0}$-process

$$\lim_{t_c \to 0} f_{t_c}(\vec{x}, t, \vec{E}, \vec{B}) = f(\vec{x}, t, \vec{E}, \vec{B})$$  \hfill (3.4)

$f$ and $(\vec{E}, \vec{B})$ are understood in the sense of an exact measurement process.

The stochastic transport of the fluctuation quantities

$$\left( \vec{E}'_{t_c}(\vec{x} - \Delta \vec{x}, t - t_c), \vec{B}'_{t_c}(\vec{x} - \Delta \vec{x}, t - t_c) \right) \longrightarrow \left( \vec{E}_{t_c}(\vec{x}, t), \vec{B}_{t_c}(\vec{x}, t) \right)$$

happens by the transition probability density $W_{t_c} = W_{t_c}(\vec{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}')$ with

$$\lim_{t_c \to 0} W_{t_c} = \delta(\vec{E}, \vec{B}; \vec{E}', \vec{B}')$$

$$f_{t_c}(\vec{x}, t, \vec{E}, \vec{B}) = \int \int W_{t_c}(\vec{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}') \cdot f_{t_c}(\vec{x} - \Delta \vec{x}, t - t_c, \vec{E}', \vec{B}') d\vec{E}' d\vec{B}'$$

$$\Delta \vec{x} = t_c \cdot \vec{E}' \times \frac{\vec{B}'}{B'^2} \text{ and } \vec{E}' \times \frac{\vec{B}'}{B'^2} = \text{velocity of propagation}.$$  \hfill (3.5)

These equations define stochastic continuum fluctuations of the quantities $\vec{E}$ und $\vec{B}$ in the sense of an ensemble-theory and represent a Markov Process of natural causality. The test-functions of distribution theory obtain by this formulation of a transition probability density $W_{t_c}$ an immediate physical meaning.
$f_{t_e}$ is developed until the 1st order about $(\bar{x}, t) \implies$

\[
f_{t_e}(t - t_e, \bar{x} - \Delta \bar{x}, \vec{E}', \vec{B}') = f'_{t_e} - \frac{\partial f'_{t_e}}{\partial t} \cdot t_e - \Delta \bar{x} \cdot \nabla f'_{t_e} + O(t_e^2)
\]

\[f'_{t_e} = f_{t_e}(\bar{x}, t, \vec{E}', \vec{B}')\]  

und one gets

\[
\int_{\vec{E}} \int_{\vec{B}} W_{t_e} \left[ \frac{\partial f'_{t_e}}{\partial t} + \vec{E}' \times \frac{\vec{B}'}{B'^2} \cdot \nabla f'_{t_e} \right] d\vec{E}' d\vec{B}' + O(t_e^2) = \int_{\vec{E}} \int_{\vec{B}} f'_{t_e} - f_{t_e} \cdot \frac{t_e}{t_e}. \tag{3.7}
\]

By the process $t_e \to 0$ $W_{t_e}$ degenerates to a $\delta$-function:

\[
\lim_{t_e \to 0} W_{t_e} = \delta(\vec{E}, \vec{B}; \vec{E}', \vec{B}') \tag{3.8}
\]

\[\lim_{t_e \to 0} \text{applied leads to}\]

\[
\frac{\partial f}{\partial t} + \vec{E} \times \frac{\vec{B}}{B^2} \cdot \nabla f = \lim_{t_e \to 0} \frac{\int_{\vec{E}} \int_{\vec{B}} W_{t_e} f'_{t_e} d\vec{E}' d\vec{B}' - f_{t_e}}{t_e}. \tag{3.9}
\]

Recovering equation (3.2) after the transition to deterministic consideration the exchange term has to vanish, in this case.

\[
\lim_{t_e \to 0} \int_{\vec{E}} \int_{\vec{B}} f_{t_e} - f_{t_e} = 0. \tag{3.10}
\]

This link is an integral part of the considered stochastic process.

Limiting ourselves to one system of the ensemble the function $f(\bar{x}, t, \vec{E}, \vec{B})$ in the space-time-point $(\bar{x}, t)$ degenerates to a $\delta$—function

\[
f(\bar{x}, t, \vec{E}, \vec{B}) \rightarrow \delta(\vec{E}(\bar{x}, t), \vec{B}(\bar{x}, t); \vec{E}, \vec{B})-\text{function.} \tag{3.11}
\]
From equation (3.9) arises the key-equation
\[
\frac{\partial}{\partial t} \delta + \bar{E}(x,t) \times \frac{\bar{B}(x,t)}{B^2(x,t)} \cdot \nabla \delta = 0.
\] (3.12)

The \( \Xi [\ldots] \)-operator is inserted as follows
\[
\Xi \left[ \int \int_{\bar{B}} \delta(\bar{B}(x,t), \bar{E}(x,t); \bar{B}, \bar{E}) \bar{B} d\bar{B} d\bar{E} \right] = \Xi [\bar{B}(x,t)] = \bar{B}(\vec{x}, t)
\]
\[
\Xi \left[ \int \int_{E} \delta(\bar{B}(x,t), \bar{E}(x,t); \bar{B}, \bar{E}) \bar{E} d\bar{B} d\bar{E} \right] = \Xi [\bar{E}(x,t)] = \bar{E}(\vec{x}, t)
\] (3.13)
or
\[
\Xi \left[ \int \int_{\bar{B}} \delta(\bar{B}(x,t), \bar{E}(x,t); \bar{b}, \bar{E}) \left( \frac{B^2}{E^2} \bar{E} \right) d\bar{B} d\bar{E} \right] = \Xi \left[ \frac{B^2}{E^2} \bar{E}(x,t) \right] = \frac{B^2(\vec{x}, t)}{E^2(\vec{x}, t)} \bar{E}(\vec{x}, t),
\] (3.14)
developing the deterministic equations from the key equation.

### 3.2 The deterministic fluctuation-equations

The key-equation (3.12) represents the interface for the transition of stochastic to deterministic consideration. From the perspective of statistics over the states of movement of the parallelly assumed deterministic processes in the respective point \((\vec{x}, t)\) one is confined to a single system and such to a single state of motion \((\bar{E}(\vec{x}, t), \bar{B}(\vec{x}, t))\).

In this situation the vectors of the motion quantities may be pushed before and behind the differential operators
\[
\bar{E}(x,t) \times \frac{\bar{B}(x,t)}{B^2(x,t)} \cdot \nabla \delta = -\frac{\bar{B}(x,t)}{B^2(x,t)} \times \bar{E}(x,t) \cdot \nabla \delta
\]
\[
= -\frac{\bar{B}(x,t)}{B^2(x,t)} \cdot \nabla \times \bar{E}(x,t) \delta
\]
Further more there is
\[
\frac{\partial}{\partial t} \left( \vec{B}(\vec{x},t) \cdot \vec{B}(\vec{x},t) \right) \frac{\delta}{B^2(\vec{x},t)} - \frac{\vec{B}(\vec{x},t) \cdot \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta)}{B^2(\vec{x},t)} = 0
\]
\[
\Rightarrow \quad \frac{\vec{B}(\vec{x},t) \cdot \vec{B}(\vec{x},t)}{B^2(\vec{x},t)} \cdot \left[ \frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) \right] = 0 \quad \text{(3.15)}
\]
\[
\Rightarrow \quad \frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) = 0.
\]

Now the vector fields of the motion quantities \((\vec{E}(\vec{x},t), \vec{B}(\vec{x},t))\) of the one deterministic system are created about the point \((\vec{x}, t)\) and such the transition to the deterministic equations of the one system has succeeded.

One obtains
\[
\Xi \left[ \int_{\vec{B}} \int_{\vec{E}} \left[ \frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) \right] = 0 \right] d\vec{E} d\vec{B} \right]. \quad \text{(3.16)}
\]

As integration and differentiation are exchangeable \(\Rightarrow\)
\[
\frac{\partial}{\partial t} \Xi [\vec{B}(\vec{x},t)] - \vec{\nabla} \times \Xi [\vec{E}(\vec{x},t)] = 0 \quad \text{(3.17)}
\]
and it results in the 1.st of the dual fluctuation equations
\[
\frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} = 0. \quad \text{(3.18)}
\]

Hereby the stochastic-deterministic connection is established.

Back to the key-equation (3.12)
\[
\frac{\partial}{\partial t} \delta + \vec{E}(\vec{x},t) \times \vec{B}(\vec{x},t) \cdot \vec{\nabla} \delta = 0
\]
one obtains by simple conversion
\[
\frac{\partial}{\partial t} \left( \vec{E}(\vec{x},t) \cdot \vec{E}(\vec{x},t) \delta \right) + \vec{E}(\vec{x},t) \cdot \vec{\nabla} \times \left( \vec{B}(\vec{x},t) \delta \right) = 0
\]
\[
\frac{\partial}{\partial t} \left( \frac{B^2(\vec{x},t)}{E^2(\vec{x},t)} \cdot \vec{E}(\vec{x},t) \delta \right) + \vec{\nabla} \times \left( \vec{B}(\vec{x},t) \delta \right) = 0 \quad \text{(3.19)}
\]
3 Stochastic and deterministic general vector fields

and

\[ \mathcal{E} \left[ \int_{\mathcal{B}} \int_{\mathcal{E}} \left( \frac{\partial}{\partial t} \left( \frac{B^2}{E^2} \cdot \vec{E}(x,t) \delta \right) \right) + \nabla \times (\vec{B}(x,t) \delta) \right] d\vec{E} d\vec{B} = 0 \]  

(3.20)

respectively

\[ \frac{\partial}{\partial t} \mathcal{E} \left[ \frac{B^2}{E^2} \cdot \vec{E} \right] + \nabla \times \mathcal{E} [\vec{B}(x,t)] = 0. \]  

(3.21)

So we have the second of the two dual equations

\[ \frac{\partial}{\partial t} \left( \frac{B^2}{E^2} \cdot \vec{E} \right) + \nabla \times (\vec{B}) = 0. \]  

(3.22)

The result is recapitulated by the following equation system:

\[
\begin{align*}
\frac{\partial}{\partial t} \vec{B} - \nabla \times \vec{E} &= 0 \\
\frac{\partial}{\partial t} \left( \frac{B^2}{E^2} \cdot \vec{E} \right) + \nabla \times \vec{B} &= 0 \\
\vec{E} \times \frac{\vec{B}}{B^2} &= \text{propagation speed}
\end{align*}
\]  

(3.23)

with \(|\vec{E} \times \frac{\vec{B}}{B^2}| \leq |\vec{E}| \cdot |\frac{\vec{B}}{B^2}|\). I.e. \(\frac{E^2}{B^2}\) is not the quadratic propagation speed. Interestingly, this only becomes clear after the involvement of the stochastic ensemble theory.

The equation system (3.23) is in such general terms that the physical significance depends on the interpretation of the starting field \(\vec{A}\), the boundary conditions as well as on the initial conditions. Hereunder, a deformation vector field, the velocity vector field of turbulence motions or the fluctuations of any other continuously differentiable vector field may be understood. These equations possess with boundary- and suitable initial conditions exactly one solution after the theorem of Cauchy-Kowalewskaja [3]. This statement is at first restricted to the calculation of the fields \(\vec{E}\) and \(\vec{B}\). Calculating the field \(\vec{A}\) with the mere knowledge of

\[ \frac{\partial \vec{A}}{\partial t} = \vec{E} \]  

(3.24)
is not possible in all cases. A negative example is the calculation of \( \vec{v} \) with the knowledge of \( \frac{\partial \vec{v}}{\partial t} \) related to turbulent velocity fluctuations, which is a problem in the numerical time integration of the Navier-Stokes equations. Apart from that, the Navier-Stokes equations for turbulence are questionable[14].

### 3.2.1 The vacuum Maxwell Equations

The propagation speed having the constant amount of light velocity one obtains the known equations of vacuum-electrodynamics in the coordinate system of the observer:

\[
\begin{align*}
\frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} &= 0 \\
\frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} + \vec{\nabla} \times \vec{B} &= 0 \quad \text{with} \quad \vec{E} \perp \vec{B} \\
\vec{E} \times \frac{\vec{B}}{B^2} &= \vec{c} = \text{propagation speed of light}.
\end{align*}
\]

So the electrodynamic equations of vacuum are generally derived, too. Usually, they are seen in the above equations with \(-\vec{E}\). It is more than pure supposition, that they describe properties of space-time without a unification of General Relativity and electromagnetic field in vacuum having succeeded, though many physicists not least Einstein [4], Jordan [9] and many others having endeavoured.

There is still the explanation of the associated initial field \( \vec{A} \) it generally happening in the frame of vector potential considerations, without recognizing \( \vec{A} \) as definite physical object. Only by a direct comprehension of the vector potential the electromagnetic field may be explained without means of mechanical quantities.\(^1\)

### 3.3 Surfacelike deformation-fluctuations in 3-dimensional space

Let \( \vec{d} \) be a continuously differentiable deformation vector field defining an area and \( \vec{b} \) und \( \vec{e} \) the derived fields

\[
\vec{e} = \frac{\partial}{\partial t} \vec{d}, \quad \vec{b} = \vec{\nabla} \times \vec{d}
\]

\(^1\)Electrodynamics is introduced in physics via mechanical effects.
with

\[ \mathbf{d}(x, y, t) = \left( d_x(x, y, t), d_y(x, y, t), d_z(x, y, t) \right) \]

\[ \mathbf{e}(x, y, t) = \left( e_x(x, y, t), e_y(x, y, t), e_z(x, y, t) \right) \]

\[ \mathbf{b}(x, y, t) = \left( b_x(x, y, t), b_y(x, y, t), b_z(x, y, t) \right). \]  

Then the deformation is without loss of generality seen as deformation of the \( x - y \)-area. The equations of motion formally equal the equations of 3-dimensional fluctuations

\[ \frac{\partial}{\partial t} \mathbf{b} - \nabla \times \mathbf{e} = 0 \]

\[ \frac{\partial}{\partial t} \left( \frac{b^2}{e^2} \cdot \mathbf{e} \right) + \nabla \times \mathbf{b} = 0 \]  

\[ \mathbf{e} \times \frac{\mathbf{b}}{b^2} = \text{propagation speed}, \]

only, the operator \( \nabla \times \) corresponds to

\[ \nabla \times \mathbf{d} = \begin{pmatrix} \frac{\partial d_z}{\partial y} \\ -\frac{\partial d_z}{\partial x} \\ \frac{\partial d_y}{\partial x} - \frac{\partial d_x}{\partial y} \end{pmatrix} \]  

The solution uniquely succeeds by the initial conditions \( \mathbf{b}(x, y, t_0) \) and \( \mathbf{e}(x, y, t_0) \) according to the theorem of Cauchy-Kowalewskaya [3]. The solution for this area corresponds to a partial solution of a 3-dimensional complete solution. Physical material properties are not explicitly included in these equations. They have to be implicitly considered by initial and boundary conditions. Sole precondition is that the appropriate materials act continuously. It also means that the physical process has to be clarified enabling the corresponding initial and border conditions.
3.4 1-dimensional deformation-fluctuations in 3-dimensional space

Let $\vec{d}$ be a continuously differentiable deformation vector field defining a trajectory and $\vec{b}$ und $\vec{e}$ the derived fields

$$\vec{e} = \frac{\partial}{\partial t} \vec{d}, \quad \vec{b} = \vec{\nabla} \times \vec{d}$$

with

$$\vec{d}(x, t) = (d_x(x, t), d_y(x, t), d_z(x, t))$$
$$\vec{e}(x, t) = (e_x(x, t), e_y(x, t), e_z(x, t))$$
$$\vec{b}(x, t) = (b_x(x, t), b_y(x, t), b_z(x, t)).$$

Then the deformation is without loss of generality seen as deformation of the $x$-coordinate. The equations of motion formally equal the equations of 3-dimensional fluctuations

$$\frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{e} = 0$$
$$\frac{\partial}{\partial t} \left( \frac{b^2}{e^2} \cdot \vec{e} \right) + \vec{\nabla} \times \vec{b} = 0$$
$$\vec{e} \times \frac{\vec{b}}{b^2} = \text{propagation speed},$$

only, the operator $\vec{\nabla} \times$ corresponds to

$$\vec{\nabla} \times \vec{d} = \begin{pmatrix} 0 \\ -\frac{\partial d_z}{\partial x} \\ \frac{\partial d_y}{\partial x} \end{pmatrix}.$$ 

This leads to the component equations

$$\frac{\partial b_y}{\partial t} = -\frac{\partial e_z}{\partial x}$$
$$\frac{\partial b_z}{\partial x} = \frac{\partial e_y}{\partial x}$$

$$\frac{\partial [(b^2/e^2) \cdot e_y]}{\partial t} = -\frac{\partial b_z}{\partial x}$$
$$\frac{\partial [(b^2/e^2) \cdot e_z]}{\partial t} = \frac{\partial b_y}{\partial x}$$

$$\vec{e} \times \frac{\vec{b}}{b^2} = \text{propagation speed}.$$
The x-component remains constant. The solution uniquely results from the initial conditions \(\vec{b}(x, t_0)\) and \(\vec{e}(x, t_0)\) according to the theorem of Cauchy-Kowalewskaya [3]. The solution for this 1-dimensional trajectory corresponds to a partial solution of a 3-dimensional complete solution. Physical material properties are not explicitly included in these equations. They have to be implicitly considered by initial and boundary conditions. Sole precondition is that the appropriate materials act continuously. It also means that the physical process has to be clarified enabling the corresponding initial and boundary conditions.
4 Space-Time-fluctuations in General Relativity

\[ R_{\mu\nu} = 8\pi G_N \left( T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \]

Electrodynamics with its Maxwell Equations is the only field theory of classical physics students of physics are generally faced with in the frame of theoretical physics (at least in Germany). The Maxwell Equations above are shown formally being a limiting case of classical continuum physics. Because of the constant velocity of light they were the reason for setting up the Einsteinian Special Relativity. The adjustment of the electrodynamic field to Space-Time caused many physicists including Albert Einstein to try an identification of these fields with Space-Time fluctuations. Obviously, electromagnetic fluctuations are properties of Space-Time itself, though a prove is missing.

In chapter 3 continuum fluctuations of general vector fields are discussed. Now we consider deformation vector fields \( \vec{d}(\vec{x},t) \) with \( \vec{\nabla} \times \vec{d} \neq 0 \). They are sufficiently often continuously differentiable. Defining \( \vec{e} \) und \( \vec{b} \) by

\[ \vec{e} = \partial \vec{d} / \partial t \neq 0 \]
\[ \vec{b} = \vec{\nabla} \times \vec{d} \neq 0 \] (4.1)

and interchanging the sequence of the operators \( \partial / \partial t \) and \( \vec{\nabla} \times \)

\[ \frac{\partial \vec{b}}{\partial t} = \vec{\nabla} \times \vec{e} \] (4.2)

directly follows. So this equation is a necessary consequence of the continuous differentiability of \( \vec{d}(\vec{x},t) \). The hereto dual equation is found according to chapter 3
with
\[
\frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{e} = 0 \\
\frac{1}{c^2} \frac{\partial}{\partial t} (\frac{b^2}{c^2} \cdot \vec{e}) + \vec{\nabla} \times \vec{b} = 0 \\
\vec{e} \times \frac{\vec{b}}{b^2} = \text{propagation speed}
\] (4.3)

Assuming the constant speed of light the Maxwell Equations of vacuum\(^1\) are obtained:
\[
\frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{e} = 0 \\
\frac{1}{c^2} \frac{\partial}{\partial t} \vec{e} + \vec{\nabla} \times \vec{b} = 0 \\
\vec{e} \times \frac{\vec{b}}{b^2} = \vec{c} = \text{propagation speed of light}
\] (4.4)

4.1 Space-Time of General Relativity and its Riemannian hypersurface

First, the Riemannian hypersurface of Space-Time is considered as deformation of an Euclidian space. For a precise mathematical definition of the Riemannian space [11] is noted.

The Riemannian space is generally defined by a manifold, which consists of a point set, charts or coordinate systems and a symmetrical metric tensor field. Riemannian space and a suitable Euclidian space are one to one linked by the coordinate system. The according mapping is in mathematics not explicitly used as all considerations are abstractly concerned with the connections of the Riemannian space itself not interesting what kind of picture succeeds in the observational coordinate space. The metric tensor arises in the point \(P(\overrightarrow{x}) \in M\) with \(\overrightarrow{x} \in E\) (Euclidian space) by scalar products of the tangential vectors \(\vec{g}_i\).

\[
g_{ij}(P(\overrightarrow{x})) = \vec{g}_i(P(\overrightarrow{x})) \cdot \vec{g}_j(P(\overrightarrow{x}))
\] (4.5)

By free choice of the coordinate system \(g_{ij}(P(\overrightarrow{x}))\) may be determined in one point \((P(\overrightarrow{x})).\) But this does not simultaneously hold for the neighborhood of this point.

\(^1\)The Maxwell Equations are usually presented by \(\vec{e} \rightarrow -\vec{e}\)
The isomorphic mapping from Euclidian space into the Riemannian hypersurface is brought to physical life when interpreted as deformation of the Euclidian space, both spaces, Euclidian and Riemannian space, tangentially merging in one point. Here the deformation vector field \( \vec{d} = \vec{d}(\vec{x}, t) \) vanishes. These time dependent mappings can be interpreted as gravitational waves. The Riemannian hypersurface arises from

\[
\vec{y}(\vec{x}, t) = \vec{d}(\vec{x}, t) + \vec{x} \quad .
\]

The gradient on the deformed field is described by

\[
\text{covariant Tensor Elements} \left( \vec{\nabla} \vec{y} \right) = \left( \partial_i y_j \right)
\]

and detailed

\[
\left( \partial_i y_j \right) = \begin{pmatrix}
\partial_1 y_1 & \partial_1 y_2 & \partial_1 y_3 \\
\partial_2 y_1 & \partial_2 y_2 & \partial_2 y_3 \\
\partial_3 y_1 & \partial_3 y_2 & \partial_3 y_3
\end{pmatrix}
\]
i, j = 1, 2, 3. (4.8)

Defining the spatially tangential vector \( \vec{t}_i \) with

\[
\vec{t}_i = \partial_i \vec{y} = (\partial_i y_1, \partial_i y_2, \partial_i y_3),
\]

one obtains the spatial metric tensor \( t_{ij} = \vec{t}_i \cdot \vec{t}_j \) by

\[
\left( t_{ij} \right) = \left( \partial_i y_j \right) \cdot \left( \partial_i y_j \right)^T
\]

and

\[
t_{ij} = \partial_i y_1 \cdot \partial_j y_1 + \partial_i y_2 \cdot \partial_j y_2 + \partial_i y_3 \cdot \partial_j y_3
\]

as part of the metric tensors of Space-Time

\[
\left( g_{\mu\nu} \right) = \begin{pmatrix}
g_{00} & g_{01} & g_{02} & g_{03} \\
g_{10} & t_{11} & t_{12} & t_{13} \\
g_{20} & t_{21} & t_{22} & t_{23} \\
g_{30} & t_{31} & t_{32} & t_{33}
\end{pmatrix}
\]
\( \mu, \nu = 0, 1, 2, 3 \) . (4.12)
4 Space-Time-fluctuations in General Relativity

The metric-tensor elements $t_{ij}$ of the spatial hypersurface are components of the metric-tensor element set $g_{\mu\nu}$ of Space-Time. The corresponding statement does not hold for the Ricci Curvature Tensor. The Ricci Tensor elements $r_{ij}$ of the Riemannian hypersurface as subspace of Space-Time are not part of the Ricci Tensor element set $R_{\mu\nu}$ of the overall space.

$$
\left( R_{\mu\nu} \right) = \begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{10} & R_{11} & R_{12} & R_{13} \\
R_{20} & R_{21} & R_{22} & R_{23} \\
R_{30} & R_{31} & R_{32} & R_{33}
\end{pmatrix}
\neq
\begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{10} & r_{11} & r_{12} & r_{13} \\
R_{20} & r_{21} & r_{22} & r_{23} \\
R_{30} & r_{31} & r_{32} & r_{33}
\end{pmatrix}
\quad (4.13)
$$

i.e. $r_{ij} \neq R_{ij} \quad i, j = 1, 2, 3$

Initially, it is the plan to express the Ricci Tensor of Space Time by the Ricci Tensor of the spatial hypersurface and its time dependent metric tensor

$$R_{ij} = R_{ij}(r_{ij}, t_{ij}) \quad i, j = 1, 2, 3. \quad (4.14)$$

Formulating the energy momentum tensor of the right side of the Einstein equations

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi \cdot G_N T_{\mu\nu} \quad \mu, \nu = 0, 1, 2, 3$$

by the related deformation fluctuations using its electromagnetic interpretation the unification of gravitational and electromagnetic field is outlined in the following chapter.

Originating from the Einstein equations

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi \cdot G_N T_{\mu\nu} \quad (4.15)$$

one obtains by contraction

$$\text{trace}\left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) = g^{\mu\nu} \left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) = -R = 8\pi \cdot G_N T^\mu_\mu = 8\pi \cdot G_N T \quad (4.16)$$

an alternative form of the Einstein Equations

$$R_{\mu\nu} = 8\pi \cdot G_N \left( T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \quad (4.17)$$
4 Space-Time-fluctuations in General Relativity

4.2 The Ricci Tensor in the origin of a local inertial-system

The Riemannian curvature tensor \( R^{\mu}_{\nu\alpha\beta} \) is described in any coordinate system by the Christoffel symbols

\[
\Gamma^{\mu}_{\nu\alpha} = \left\{ \begin{array}{c} \mu \\ \nu \\ \alpha \end{array} \right\} = \frac{1}{2} g^{\mu\lambda} \left[ \partial_{\nu} g_{\alpha\lambda} + \partial_{\alpha} g_{\lambda\nu} - \partial_{\lambda} g_{\nu\alpha} \right] (4.18)
\]

\[
R^{\mu}_{\nu\alpha\beta} = \frac{\partial \Gamma^{\mu}_{\nu\beta}}{\partial x^\alpha} - \frac{\partial \Gamma^{\mu}_{\nu\alpha}}{\partial x^\beta} + \Gamma^{\mu}_{\rho\alpha} \Gamma^{\rho}_{\nu\beta} - \Gamma^{\mu}_{\rho\beta} \Gamma^{\rho}_{\nu\alpha}. (4.19)
\]

In the origin \( \vec{x}_0 \) of a local inertial system [1] the partial derivatives with respect to coordinates of the metric tensor \( g_{\lambda\nu} \) vanish such that

\[
\Gamma^{\mu}_{\nu\alpha}(\vec{x}_0) = 0 \quad (4.20)
\]

and

\[
R^{\mu}_{\nu\alpha\beta}(\vec{x}_0) = \frac{\partial \Gamma^{\mu}_{\nu\beta}}{\partial x^\alpha} - \frac{\partial \Gamma^{\mu}_{\nu\alpha}}{\partial x^\beta}. (4.21)
\]

In the origin of the coordinate system the metric tensor itself equals the Minkowski tensor.

\[
g_{\mu\nu}(\vec{x}_0) = \eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (4.22)
\]

Written out one obtains

\[
R^{\mu}_{\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \frac{\partial}{\partial x^\alpha} \left[ \partial_{\nu} g_{\beta\lambda} + \partial_{\beta} g_{\lambda\nu} - \partial_{\lambda} g_{\nu\beta} \right] - \frac{1}{2} \eta^{\mu\lambda} \frac{\partial}{\partial x^\beta} \left[ \partial_{\nu} g_{\alpha\lambda} + \partial_{\alpha} g_{\lambda\nu} - \partial_{\lambda} g_{\nu\alpha} \right] (4.23)
\]

\[
R^{\mu}_{\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \left[ \partial_{\alpha} \partial_{\nu} g_{\beta\lambda} + \partial_{\alpha} \partial_{\beta} g_{\lambda\nu} - \partial_{\alpha} \partial_{\lambda} g_{\nu\beta} \right] - \frac{1}{2} \eta^{\mu\lambda} \left[ \partial_{\beta} \partial_{\nu} g_{\alpha\lambda} + \partial_{\beta} \partial_{\alpha} g_{\lambda\nu} - \partial_{\beta} \partial_{\lambda} g_{\nu\alpha} \right] (4.24)
\]
\[ R_{\mu\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \left[ \partial_\alpha \partial_\beta g_{\gamma\lambda} + \partial_\beta \partial_\lambda g_{\nu\alpha} - \partial_\alpha \partial_\lambda g_{\nu\beta} - \partial_\beta \partial_\nu g_{\alpha\lambda} \right] \] (4.25)

\[ R_{\mu\nu}(\vec{x}_0) = \frac{1}{2} \left[ \partial_\mu \partial_\alpha g_{\nu\alpha} + \partial_\nu \partial_\alpha g_{\mu\alpha} - \partial_\alpha \partial_\nu g_{\mu\nu} - \partial_\mu \partial_\nu g_{\alpha\alpha} \right] \] (4.26)

After contraction there is the associated Ricci Tensor

\[ R_{\mu\nu}(\vec{x}_0) = \frac{1}{2} \left[ \partial_\mu \partial_\alpha g_{\nu\alpha} + \partial_\nu \partial_\alpha g_{\mu\alpha} - \Box g_{\mu\nu} - \partial_\mu \partial_\nu g_{\alpha\alpha} \right] \] (4.27)

This result may be obtained by linearization of the Riemannian curvature tensor, too. Choosing point \((\vec{x}_0)\) as the origin of a local inertial system, linearization is not necessary.

### 4.3 The Ricci Tensor of the Einstein Space in dependence of temporal fluctuations of its Riemannian hypersurface

The following relations correspond to [7] Landau Lifschitz volume 2 page 308-309. A time orthogonal coordinate system is always possible. In contrary to [7], we do not equate the velocity of light with 1.

Def: \[ \kappa_{ij} = \frac{\partial g_{ij}}{\partial (\partial \ell)} \] (4.29)

\[ r_{ij} \] means the Ricci Tensor of the Riemannian hypersurface.
$$R_{00} = -\frac{1}{2} \frac{\partial \kappa_i^i}{\partial (ct)} - \frac{1}{4} \kappa_i^i \kappa_j^j$$

$$R_{0i} = \frac{1}{2} \left( \kappa_{ij} - \kappa_{ji} \right)$$

$$R_{ij} = r_{ij} + \frac{1}{2} \frac{\partial \kappa_{ij}}{\partial (ct)} + \frac{1}{4} \left( \kappa_{ij} \kappa_k^k - 2 \kappa_i^k \kappa_j^k \right)$$

(4.30)

$i, j, k$ pass through 1, 2, 3. ";" means partial derivation, here.

Thus the geometry of Space-Time may be opened up from geometrodynamics of space. Gravitational waves existing the energy momentum tensor $T_{\mu \nu} \neq 0$ is given in the considered Space-Time area even if there is no matter. ^2

^2 in contrary to Penrose [10] page 467 “The energy-momentum tensor in empty space is zero."
5 Unification of Maxwell Field and gravitational field

Figure 5.1: Maybe, Einstein would have had fun at this theory

5.1 Gravitational waves corresponding to electromagnetic Fluctuations

The deformation fluctuations of space and its as electromagnetic fluctuations noticed phenomena are subsequently faced to each other in a limited volume area as fourier developments. The considerations are performed based on treatments of natural vibrations of the electromagnetic field in vacuum in accordance to [7]. The usual electric field $\vec{E}$ is replaced by $-\vec{E}$, without loss of generality. An explicit dependency of the viewed overall volume in the canonical variables and such in the resulting energy density and the electromagnetic fields is avoided by modified normalisation of the canonical variables, in contrast to [7]. In pure field theories energy densities and accelerations should occur as primary quantities not energies and forces. The energy in one point $(\vec{x}, t)$ is always zero but not the energy density. Analogically, the same is true for the relation of acceleration and force.
5 Unification of Maxwell Field and gravitational field

Deformation fluctuations

From
\[ \ddot{\vec{d}} = \text{deformation vectorfield} \]
\[ \frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{c} = 0 \]
\[ \frac{1}{c^2} \vec{c} + \vec{\nabla} \times \vec{b} = 0 \]

and
\[ \vec{c} = \partial \vec{d} / \partial t \neq 0 \]
\[ \vec{b} = \vec{\nabla} \times \vec{d} \neq 0 \]

one obtains
\[ \frac{1}{c^2} \frac{\partial^2 \vec{d}}{\partial t^2} = \Delta \vec{d} \]

Electromagnetic fluctuations

\[ \vec{A} = \text{vector potential} \]
\[ \frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} = 0 \]
\[ \frac{1}{c^2} \vec{E} + \vec{\nabla} \times \vec{B} = 0 \]

and
\[ \vec{E} = \partial \vec{A} / \partial t \neq 0 \]
\[ \vec{B} = \vec{\nabla} \times \vec{A} \neq 0 \]

one obtains
\[ \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = \Delta \vec{A} \]

Deformation field and according vector potential field are formally described by
\[ \vec{d} = \sum_k \vec{d}_k = \sum_k \vec{a}_k e^{ikr} + \vec{a}^*_k e^{-ikr} \]
\[ \vec{A} = \sum_k \vec{A}_k = \sum_k \vec{A}_k e^{ikr} + \vec{A}^*_k e^{-ikr} \]

and it follows
\[ \ddot{\vec{d}}_k + c^2 k^2 \vec{d}_k = 0 \]
\[ \ddot{\vec{A}}_k + c^2 k^2 \vec{A}_k = 0 \]

with
\[ \vec{c} = \dot{\vec{d}} = \sum_k \dot{\vec{a}}_k = \sum_k \left( \dot{\vec{a}}_k e^{ikr} + \dot{\vec{a}}^*_k e^{-ikr} \right) \]
\[ \vec{E} = \dot{\vec{A}} = \sum_k \dot{\vec{A}}_k = \sum_k \left( \dot{\vec{A}}_k e^{ikr} + \dot{\vec{A}}^*_k e^{-ikr} \right) \]

and
\[ \vec{b} = -i \sum_k \vec{k} \times \left( \vec{a}_k e^{ikr} + \vec{a}^*_k e^{-ikr} \right) \]
\[ \vec{B} = -i \sum_k \vec{k} \times \left( \vec{A}_k e^{ikr} + \vec{A}^*_k e^{-ikr} \right) \]
\[ k_1 = \frac{2\pi n_x}{L_x}, \quad k_2 = \frac{2\pi n_y}{L_y}, \quad k_3 = \frac{2\pi n_z}{L_z}; \]
\[ \vec{k} = (k_1, k_2, k_3) \]
\[ a_{k_i} \sim e^{-i\omega_{k_i} t}, \quad \omega_{k_i} = ck_i \]
\[ A_{k_i} \sim e^{-i\omega_{k_i} t}, \quad \omega_{k_i} = ck_i \]

The wave vectors are calculated in a sufficiently great volume \( V = L_x \cdot L_y \cdot L_z \).
\[ \mathcal{E} = \frac{1}{8\pi} \int_{V_0} (E^2 / c^2 + B^2) dV \]

means the energy of the field in volume \( V_0 \).

The energy density of the field is
\[ \mathcal{E} = \frac{1}{8\pi} \sum_k (E_k^2 / c^2 + B_k^2) \]
deflection fluctuations

Now, the following vectorial quantities (canonical variables) are defined:

\[
\tilde{q}_k = \sqrt{\frac{1}{4\pi c}}(\tilde{a}_k + \tilde{a}_k^*)
\]

\[
\tilde{p}_k = -i\omega_k \sqrt{\frac{1}{4\pi c}}(\tilde{a}_k - \tilde{a}_k^*) = \dot{\tilde{q}}_k
\]

\[
\tilde{q}_{k_j} \sim \cos(\omega_{k_j}t), \quad \tilde{p}_{k_j} \sim \sin(\omega_{k_j}t)
\]

Obviously, they are real and resolved according to complex quantities they give

\[
\tilde{a}_{k_j} = \frac{i}{k_j} \sqrt{\pi} (\tilde{p}_{k_j} - i\omega_{k_j} \tilde{q}_{k_j})
\]

\[
\tilde{a}_{k_j}^* = \frac{-i}{k_j} \sqrt{\pi} (\tilde{p}_{k_j} + i\omega_{k_j} \tilde{q}_{k_j})
\]

Thus one obtains as expansion by characteristic vibrations (in concise presentation):

\[
d = \sqrt{\frac{4\pi}{\omega}} \sum_k \frac{1}{k} \left( ck\tilde{q}_k \cos(k \cdot r) - \tilde{p}_k \sin(k \cdot r) \right)
\]

\[
\dot{e} = \sqrt{\frac{4\pi}{\omega}} \sum_k c \left( ck\tilde{q}_k \sin(k \cdot r) + \tilde{p}_k \cos(k \cdot r) \right)
\]

\[
b = -\sqrt{\frac{4\pi}{\omega}} \sum_k \frac{k}{k_j} \times |ck\tilde{q}_k \sin(k \cdot r) + \tilde{p}_k \cos(k \cdot r)|
\]

respectively noted for the single modes:

\[
\tilde{a}_{k_j} = \sqrt{\frac{4\pi}{\omega}} \frac{k_j}{k_j} \left( ck_j\tilde{q}_{k_j} \cos(k_j \cdot r) - \tilde{p}_{k_j} \sin(k_j \cdot r) \right)
\]

\[
\tilde{e}_{k_j} = \sqrt{\frac{4\pi}{\omega}} \frac{k_j}{k_j} \left( ck_j\tilde{q}_{k_j} \sin(k_j \cdot r) + \tilde{p}_{k_j} \cos(k_j \cdot r) \right)
\]

\[
b_{k_j} = -\sqrt{\frac{4\pi}{\omega}} \frac{k_j}{k_j} \times |ck_j\tilde{q}_{k_j} \sin(k_j \cdot r) + \tilde{p}_{k_j} \cos(k_j \cdot r)|
\]

with

\[
\mathbf{e} = \sum_k \mathbf{e}_k = \frac{1}{2} \sum_k (E_{k_j}^2/c^2 + B_{k_j}^2)
\]

They may formally considered as running waves moving discrete quantities of harmonic oscillators with the Hamilton Functions

\[
H = \sum_k H_k = \sum_k \frac{1}{2}(p_k^2 + \omega_k^2 q_k^2), \quad H = \sum_k H_k = \sum_k \frac{1}{2}(p_k^2 + \omega_k^2 q_k^2)
\]

(5.1)

and the oscillator equations

\[
\ddot{q}_k + \omega_k^2 \dot{q}_k = 0, \quad \ddot{Q}_k + \omega_k^2 Q_k = 0
\]

(5.2)
5 Unification of Maxwell Field and gravitational field

\[ H = \sum_k H_k \quad H_k = \frac{1}{2}(p_k^2 + \omega_k^2 q_k^2), \quad \mathcal{H} = \sum_k \mathcal{H}_k \quad \mathcal{H}_k = \frac{1}{2}(P_k^2 + \omega_k^2 Q_k^2) \]

(5.3)

5.2 The energy-momentum-tensor of the electromagnetic field

The energy-momentum density tensor for the electromagnetic field (generally called Energy momentum tensor) in covariant components [13] is written with the chosen signature \((-1, 1, 1, 1)\)

\[ T_{\mu\nu} = \frac{1}{4\pi} \left( F^\alpha_{\mu} F_{\alpha\nu} - \frac{1}{4} g_{\mu\nu} F^\alpha_{\beta} F^{\alpha\beta} \right) \]

(5.4)

It is symmetric: \( T_{\mu\nu} = T_{\nu\mu}. \)

One obtains the Faraday-tensor of the electromagnetic field from

\[ F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \quad \mu, \nu = 0, 1, 2, 3 \]

(5.5)

and detailed (they are chosen respectively the form of the above Maxwell Equations)

\[ \begin{align*}
F_{0i} &= \partial_0 A_i - \partial_i A_0 = E_i/c, \quad i = 1, 2, 3 \\
F_{10} &= \partial_1 A_0 - \partial_0 A_1 = -E_i/c, \quad i = 1, 2, 3 \\
F_{12} &= \partial_1 A_2 - \partial_2 A_1 = B_3 \\
F_{13} &= \partial_1 A_3 - \partial_3 A_1 = -B_2 \\
F_{23} &= \partial_2 A_3 - \partial_3 A_2 = B_1
\end{align*} \]

(5.6)

\[ \Rightarrow F_{\mu\nu} = -F_{\nu\mu} \]

\[ \partial_\rho F_{\mu\nu} + \partial_\mu F_{\nu\rho} + \partial_\nu F_{\rho\mu} = 0 \]

and in greater detail
5 Unification of Maxwell Field and gravitational field

\[ \begin{align*}
\partial_1 F_{23} + \partial_3 F_{12} + \partial_2 F_{31} &= 0 \\
\partial_2 F_{30} + \partial_0 F_{23} + \partial_3 F_{02} &= 0 \\
\partial_3 F_{01} + \partial_1 F_{30} + \partial_0 F_{13} &= 0 \\
\partial_0 F_{12} + \partial_2 F_{01} + \partial_1 F_{20} &= 0 
\end{align*} \]

The indices correspond to $0 \rightarrow ct$, $1 \rightarrow x$, $2 \rightarrow y$, $3 \rightarrow z$ complying with the following electrodynamical equations of vacuum$^1$

\[ \begin{align*}
\text{div} \vec{B} &= 0 \\
\frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} &= 0.
\end{align*} \]

The expressions of the covariant and contravariant Faraday-tensors considering the minkowski tensor

\[ \eta_{\mu\nu} = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \quad (5.7) \]

lead to

\[ \begin{align*}
F_{\mu\nu} &= \begin{pmatrix}
0 & E_1/c & E_2/c & E_3/c \\
-E_1/c & 0 & B_3 & -B_2 \\
-E_2/c & -B_3 & 0 & B_1 \\
-E_3/c & B_2 & -B_1 & 0
\end{pmatrix} \quad F^{\mu\nu} &= \begin{pmatrix}
0 & -E_1/c & -E_2/c & -E_3/c \\
E_1/c & 0 & B_3 & -B_2 \\
E_2/c & -B_3 & 0 & B_1 \\
E_3/c & B_2 & -B_1 & 0
\end{pmatrix} \\
F^{\alpha}_{\nu} &= \begin{pmatrix}
0 & -E_1/c & -E_2/c & -E_3/c \\
-E_1/c & 0 & B_3 & -B_2 \\
-E_2/c & -B_3 & 0 & B_1 \\
-E_3/c & B_2 & -B_1 & 0
\end{pmatrix}.
\end{align*} \quad (5.8) \]

Thus the covariant components of the electromagnetic energy momentum tensor are written

$^1$the polarity reversal $\vec{E} \rightarrow -\vec{E}$ recognised
The trace of the electromagnetic energy momentum tensors vanishes

\[ T = 0 \] (5.11)

and the Einstein Equations simplify to

\[ R_{ij} = 8\pi \cdot G_N T_{ij}. \] (5.12)

For further considerations the following eigenwave is chosen:

\[ E_2 = E_3 = B_1 = B_3 = 0, \quad E_1 \neq 0, \quad B_2 \neq 0. \] (5.13)

\[ \Rightarrow \]

\[ T_{00} = \frac{1}{8\pi} \left( \frac{E_1^2}{c^2} + B_2^2 \right), \quad T_{01} = T_{02} = 0, \quad T_{03} = \frac{1}{4\pi} \left( \frac{E_1}{c} \times \vec{B}_2 \right) \] (5.14)

\[ T_{ik} = 0 \quad \text{für } i \neq k \quad i, k = 1, 2, 3 \] (5.15)

\[ T_{11} = -\frac{1}{8\pi} \left( \frac{E_1^2}{c^2} - B_2^2 \right), \quad T_{22} = \frac{1}{8\pi} \left( \frac{E_1^2}{c^2} - B_2^2 \right) \] (5.16)

\[ T_{33} = \frac{1}{8\pi} \left( \frac{E_1^2}{c^2} + B_2^2 \right) \] (5.17)
5.3 The quantitative relation of electromagnetic and gravitational waves

The quantitative connection is achieved via the Einstein Equations

\[ R_{\mu\nu} = 8\pi G_N T_{\mu\nu} \]

The description of a natural oscillation takes place using deformation interpretation by

\[
\tilde{d}_{k_i} = \sqrt{4\pi} \frac{1}{k_i} \left( c k_i \tilde{q}_{ki} \cos(k_i \cdot \tilde{r}) - \tilde{p}_{ki} \sin(k_i \cdot \tilde{r}) \right)
\]

\[
\tilde{e}_{k_i} = \sqrt{4\pi} c \left( c k_i \tilde{q}_{ki} \sin(k_i \cdot \tilde{r}) + \tilde{p}_{ki} \cos(k_i \cdot \tilde{r}) \right)
\]

\[
\tilde{b}_{k_i} = -\sqrt{4\pi} \frac{1}{k_i} \tilde{k}_i \times \left[ c k_i \tilde{q}_{ki} \sin(k_i \cdot \tilde{r}) + \tilde{p}_{ki} \cos(k_i \cdot \tilde{r}) \right],
\]

and using the electromagnetic field interpretation by

\[
\tilde{A}_{k_i} = \sqrt{4\pi} \frac{1}{k_i} \left( c k_i \tilde{Q}_{ki} \cos(k_i \cdot \tilde{r}) - \tilde{P}_{ki} \sin(k_i \cdot \tilde{r}) \right)
\]

\[
\tilde{E}_{k_i} = \sqrt{4\pi} c \left( c k_i \tilde{Q}_{ki} \sin(k_i \cdot \tilde{r}) + \tilde{P}_{ki} \cos(k_i \cdot \tilde{r}) \right)
\]

\[
\tilde{B}_{k_i} = -\sqrt{4\pi} \frac{1}{k_i} \tilde{k}_i \times \left[ c k_i \tilde{Q}_{ki} \sin(k_i \cdot \tilde{r}) + \tilde{P}_{ki} \cos(k_i \cdot \tilde{r}) \right],
\]

with their corresponding energy density and energy in a volume surrounding the coordinate origin \((\vec{x}_0)\).

\[
\mathcal{E}_{k_i} = \frac{1}{2} \left( \frac{E_{k_i}^2}{c^2} + B_{k_i}^2 \right) \quad \text{Energiedichte}
\]

\[
\mathcal{E}_\kappa = \frac{1}{2} \int_{V_0} \left( \frac{E_{k_i}^2}{c^2} + B_{k_i}^2 \right) dV \quad \text{Energie}
\]

The metric tensor of an elementary wave with \(\tilde{q}_{\vec{k}} \parallel \tilde{e}_x, \tilde{p}_{\vec{k}} \parallel \tilde{e}_y\) and \(\tilde{k} \parallel \tilde{e}_z, \tilde{k} \times \tilde{q}_{\vec{k}} \parallel \tilde{e}_y\) is given by the tangential vectors:

\[
\tilde{t}_i = \partial_i \tilde{y} = (\partial_i y_1, \partial_i y_2, \partial_i y_3), \quad \tilde{y} = \tilde{d} + \tilde{x}
\]
\[ \vec{t}_z = \partial_z \vec{y} = (\partial_z d_x, 0, 1). \]

With \( \vec{k} \cdot \vec{r} = k \cdot z = \omega_k / c \cdot z \) one obtains

\[ \vec{t}_z = \left( -\sqrt{4\pi\omega_k} q_k \sin(\omega_k / c \cdot z), -\sqrt{4\pi} p_k \cos(\omega_k / c \cdot z), 1 \right). \] (5.21)

As searched spatial metric tensor element remains

\[ t_{zz} = 4\pi \left( \omega_k^2 q_k^2 \sin^2(\omega_k / c \cdot z) + p_k^2 \cos^2(\omega_k / c \cdot z) \right) + 1 \] (5.22)

with

\[ q_k = u_k \cos(\omega_k t), \quad p_k = v_k \sin(\omega_k t). \] (5.23)

The purpose is the evaluation of the equation

\[ R_{zz} = 8\pi \cdot G_N T_{zz}. \] (5.24)

It is appropriate to note, that

\[ T_{zz} = \frac{1}{8\pi} \left( \frac{E_x^2}{c^2} + B_y^2 \right) = \mathcal{E}_k \] (5.25)

Starting from the Riemannian curvature tensor

\[ R_{\sigma \nu \alpha \beta} = \partial_{\alpha} \Gamma_{\nu \beta}^{\sigma} - \partial_{\beta} \Gamma_{\nu \alpha}^{\sigma} + \Gamma_{\rho \alpha}^{\sigma} \Gamma_{\nu \beta}^{\rho} - \Gamma_{\rho \beta}^{\sigma} \Gamma_{\nu \alpha}^{\rho}. \] (5.26)

with

\[ \Gamma_{\nu \alpha}^{\mu} = \frac{1}{2} g^{\mu \lambda} \left[ \partial_{\nu} g_{\lambda \alpha} + \partial_{\lambda} g_{\nu \alpha} - \partial_{\alpha} g_{\nu \lambda} \right] \] (5.27)

leads by contraction to the Ricci tensor

\[ R_{\mu \nu} = R_{\sigma \mu \nu} = \partial_{\nu} \Gamma_{\mu \sigma}^{\sigma} - \partial_{\sigma} \Gamma_{\mu \nu}^{\sigma} + \Gamma_{\rho \sigma}^{\sigma} \Gamma_{\mu \nu}^{\rho} - \Gamma_{\rho \nu}^{\sigma} \Gamma_{\mu \sigma}^{\rho}. \] (5.28)

The metric tensor after the deformation by the above elementary wave is used in the time orthogonal coordinate system

\[ \eta_{\mu \nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \] (5.29)
5 Unification of Maxwell Field and gravitational field

\[
\mathbf{g}_{\mu\nu}(\mathbf{x}_0) = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & t_{zz}
\end{pmatrix}
\]

\[
\mathbf{g}^{\mu\nu}(\mathbf{x}_0) = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & t_{zz}
\end{pmatrix}
\]

(5.30)

\[
\mathbf{g}_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}, \quad \mathbf{g}^{\mu\nu} \approx \eta^{\mu\nu} - h^{\mu\nu}
\]

(5.31)

The Ricci tensor is typically written in a linear and non-linear proportion with respect to the Christoffel symbols stripped down.

\[
R_{\mu\nu}^{(1)}(\mathbf{x}_0) = \partial_{\nu} \Gamma_{\sigma}^{\mu} - \partial_{\sigma} \Gamma_{\mu\nu}^{\sigma}, \quad R_{\mu\nu}^{(2)}(\mathbf{x}_0) = \Gamma_{\rho\sigma}^{\rho} \Gamma_{\mu\nu}^{\sigma} - \Gamma_{\rho\sigma}^{\sigma} \Gamma_{\mu\nu}^{\rho}
\]

(5.32)

Detailed examination of the Christoffel symbols

\[
\Gamma_{\mu\sigma}^{\rho} = \frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_{\sigma} g_{\mu\nu} + \frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_{\mu} g_{\nu\rho} - \frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_{\rho} g_{\mu\nu}
\]

(5.33)

\[
\frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_{\sigma} g_{z\rho} = \frac{1}{2} g^{00} \partial_{0} g_{z0} + \frac{1}{2} g^{zz} \partial_z g_{zz}
\]

\[
\frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_z g_{\rho\sigma} = \frac{1}{2} g^{00} \partial_{0} g_{z0} + \frac{1}{2} g^{zz} \partial_z g_{zz}
\]

(5.34)

\[
\frac{1}{2} \sum_{\sigma} \sum_{\rho} g^{\sigma\rho} \partial_{\rho} g_{zz} = \frac{1}{2} g^{00} \partial_{0} g_{z0} + \frac{1}{2} g^{zz} \partial_z g_{zz}
\]

(5.35)

\[
\partial_z \Gamma_{zz}^{\sigma} = \frac{1}{2} \partial_z g^{zz} \partial_{\sigma} g_{zz}
\]

\[
\partial_{\sigma} \Gamma_{zz}^{\sigma} = \frac{1}{2} \partial_{\sigma} g^{00} [\partial_{\sigma} g_{z0} + \partial_z g_{\sigma0} - \partial_{\sigma} g_{zz}] + \frac{1}{2} \partial_z g^{zz} [\partial_z g_{zz} + \partial_z g_{zz} - \partial_{z} g_{zz}]
\]

(5.36)

\[
= + \frac{1}{2} \partial_{0} g_{zz} + \frac{1}{2} \partial_z g^{zz} \partial_{z} g_{zz}
\]
lead for the linear part to

\[ R_{zz}^{(1)}(x_0) = \partial_z \Gamma_{z\sigma}^\sigma - \partial_\sigma \Gamma_{zz}^\sigma = -\frac{1}{2} \partial_0^2 g_{zz}. \] (5.37)

The nonlinear part is determined for the considered elementary wave by

\[ R_{zz}^{(2)}(x_0) = \Gamma_{\rho z}^\sigma \Gamma_{z\rho}^\sigma - \Gamma_{\rho}^\sigma \Gamma_{\rho z}^\sigma \] (5.38)

with

\[ \Gamma_{\rho z}^\sigma = \frac{1}{2} g^{\sigma \rho} \left[ \partial_\rho g_{z\sigma} + \partial_z g_{\rho\sigma} - \partial_\sigma g_{\rho z} \right] \] (5.39)

\[ \Gamma_{z\rho}^\sigma = \frac{1}{2} g_{\rho \rho} \left[ \partial_z g_{\sigma \rho} + \partial_\rho g_{z\sigma} - \partial_\sigma g_{\rho z} \right] \] (5.40)

Considering the assumed elementary wave the single partial differentiaions \( \partial_0, \partial_z \) of the metric tensor vanish in the space-time point \((0, 0, 0, 0)\).

Thus one gets

\[ R_{zz}(x_0) = R_{zz}^{(1)}(x_0) = -\frac{1}{2} \partial_0^2 g_{zz}(x_0). \] (5.41)

Now using

\[ R_{zz} = 8\pi \cdot G_N T_{zz}. \]

and concerning

\[ \partial_0 = \frac{1}{ic} \partial_t \]

the amplitude of the elementary gravitational wave (electromagnetic wave) gives the quantitative deformation of space by an electrodynamic elementary wave. Such the importance of the Einstein-Equations for microphysics is proved.

\[ d_k = \frac{2}{\omega_k^2} \sqrt{\pi \gamma \mathcal{E}_k}. \] (5.42)

with the constant of gravitation \( \gamma = 6.67 \cdot 10^{-11} m^3 kg^{-1}s^{-2} \) and \( \mathcal{E}_k \) as energy density. In these considerations the light velocity \( c \) does not occur explicitly.

Setting \( \mathcal{E}_k = 1 W sec/m^3 \) and using \( \omega_k^2 = (2\pi \cdot \nu)^2 \) with \( \nu = 50 \) this results in \( d_k = 2.933 \cdot 10^{-10} m \). In comparison, the measured atomic radius of \( H^1 \) is given by \( \approx 2.5 \cdot 10^{-11} m \). Obviously, that effect has to be considered in practice.

As Spin 1 is assigned to photons the same has to be assumed for
the graviton. (A photon of giant wavelength from an other perspective, if it is existent.)
The Einstein Equations maybe achieve much more than describing cosmological processes!
6 The Photon within classical physics

6.1 Introduction

For quantum electrodynamics, photon and electron are central observation objects. But for both quantum particles there are no clear descriptions of their size and structure, including their states of motion. The uncertainty relation of quantum theory does not allow the simultaneous exact positioning of momentum and location.

However, they are at the centre of any discussion of quantum electrodynamics (in particular their interactions). Also the quantization of the electromagnetic field, which should produce photons, appears unsatisfactory. In the textbook of Landau-Lifschitz Volume IV [7], for example, the derivation of the quantization of the electromagnetic field results in inconsistencies, which are explained by remarks like “... we meet with one of the divergences which are due to the fact that the present theory is not logically complete and consistent“. And Albert Einstein expressed it particularly drastically shortly before his death: “Jeder Hinz und Kunz meint heute, er habe verstanden, was ein Photon ist, aber sie irren sich.”

On the whole, attempts are made to represent photons by spherical waves or even plane waves, which leads to contradictions. But photons propagate 1-dimensional, as it is not known in classical physics for elastic wave propagation in a 3-dimensional medium. In the following the photon turns out to be a “particle“, which is defined in a point and due to the initial conditions of a 1-dimensional wave equation, unambiguously determines its detailed motion in space and time. The derivation avoids hypotheses and is based on a physics with natural causality.
6.2 Stochastic Fluctuation movements with prescribed Velocity Direction

The following considerations comply with a special case of chapter 3.

Subsequently, continuum fluctuation vector fields of deformation \( \vec{d}(z,t) \perp \vec{i}_z \) are assumed orthogonal to the z-direction of propagation without loss of generality

\[
\vec{i}_z \partial / \partial z \times \vec{d} \neq 0. \tag{6.1}
\]

The vector fields \( \vec{e} \) and \( \vec{b} \) defined by

\[
\vec{e} = \partial \vec{d} / \partial t \neq 0 \quad \vec{b} = \vec{i}_z \partial / \partial z \times \vec{d} \neq 0, \quad \vec{i}_z = \text{unit vector in } z\text{-direction} \tag{6.2}
\]

are expected to be continuously differentiable, sufficiently often. According to interchangeability of the operators \( \partial / \partial t \) und \( \vec{i}_z \partial / \partial z \times \)

\[
\frac{\partial \vec{b}}{\partial t} = \vec{i}_z \partial / \partial z \times \vec{e} \tag{6.3}
\]

immediately. The dual equation for this is searched as follows:

In an analogous approach to the derivation of continuum fluctuation equations of general 3-dimensional vector fields an stochastic ensemble theory is formulated leading over to the deterministic theory and resulting in a pair of dual deterministic equations for the fluctuation quantities \( \vec{e} \) und \( \vec{b} \).

A continuously differentiable distribution density

\[
f_{t_\epsilon} = f_{t_\epsilon}(z,t,\vec{e},\vec{b}) \tag{6.4}
\]

of the motion quantities \( \vec{e}_{t_\epsilon} = \partial \vec{d}_{t_\epsilon} / \partial t, \quad \vec{b}_{t_\epsilon} = \vec{i}_z \partial / \partial z \times \vec{d}_{t_\epsilon} \) with \( \vec{d}_{t_\epsilon} \perp \vec{i}_z \) as well as \( \vec{e}_{t_\epsilon} \perp \vec{i}_z \) and \( \vec{b}_{t_\epsilon} \perp \vec{i}_z \) is allocated every-space-time point \((z,t)\). For the with \( t_\epsilon \) or \( \epsilon \)

indexed functions is automatically assumed, that the incorporated motion quantities \((\vec{e}, \vec{b})\) are assigned to a \( t_\epsilon \) measurement accuracy. That is the indexing of the motion quantities may be omitted if the functions themselves are indexed.

Only after execution of the limiting process
\[ f_t(\mathbf{z}, t, \mathbf{e}, \mathbf{b}) = f(\mathbf{z}, t, \mathbf{e}, \mathbf{b}) \]  
\[ \lim_{t\epsilon \rightarrow 0} f_t(\mathbf{z}, t, \mathbf{e}, \mathbf{b}) = f(\mathbf{z}, t, \mathbf{e}, \mathbf{b}) \]  

(6.5)

f and (\mathbf{e}, \mathbf{b}) are understood in the sense of an exact measuring process.

The stochastic transport of the fluctuation quantities

\[ \left( \mathbf{e}'_t(z - \Delta z, t - t_e) \mathbf{b}'_t(z - \Delta z, t - t_e) \right) \rightarrow \left( \mathbf{e}_t(z, t), \mathbf{b}_t(z, t) \right) \]

takes place by the transition probability density

\[ W_t = W_t(z, t, \mathbf{e}, \mathbf{b}, \mathbf{e}', \mathbf{b}') \]

with

\[ \lim_{t\epsilon \rightarrow 0} W_t = \delta(\mathbf{e}, \mathbf{b}; \mathbf{e}', \mathbf{b}') \]

\[ f_t(z, t, \mathbf{e}, \mathbf{b}) = \int \int W_t(z, t, \mathbf{e}, \mathbf{b}, \mathbf{e}', \mathbf{b}') \cdot f_t(z - \Delta z, t - t_e, \mathbf{e}', \mathbf{b}') \, d\mathbf{e}' \, d\mathbf{b}' \]

\[ \Delta z = t_e \cdot \mathbf{e}' \times \frac{\mathbf{b}'}{b'^2} \cdot \mathbf{i}_z \text{ und } \mathbf{e}' \times \frac{\mathbf{b}'}{b'^2} \cdot \mathbf{i}_z = \text{Ausbreitungsgeschwindigkeit} \]

(6.6)

These equations define stochastic transport continuum fluctuations of the quantities \( \mathbf{e}' \) and \( \mathbf{b} \) in the sense of an ensemble theory and represent a Markov process with natural causality.

\( f_t \) is developed until the first order about \( (z, t) \Rightarrow \)

\[ f_t(z - \Delta z, t - t_e, \mathbf{e}', \mathbf{b}') = f_t - \frac{\partial f_t}{\partial t} \cdot t_e - \Delta z \cdot \frac{\partial}{\partial z} f_t + O(t_e^2) \]  

(6.7)

and one gets

\[ \int \int W_t \left[ \frac{\partial f_t}{\partial t} + \mathbf{e}' \times \frac{\mathbf{b}'}{b'^2} \cdot \mathbf{i}_z \frac{\partial}{\partial z} f_t \right] \, d\mathbf{e}' \, d\mathbf{b}' + O(t_e^2) = \frac{\int \int W_t f_t \, d\mathbf{e}' \, d\mathbf{b}' - f_t}{t_e}. \]  

(6.8)

Executing the limiting process \( t_e \rightarrow 0 \) \( W_t \) degenerates to a \( \delta \)-function:
6 The Photon within classical physics

\[
\lim_{t' \to 0} W_{t'} = \delta(\vec{e}, \vec{b}; \vec{e}', \vec{b}')
\]  

(6.9)

and

\[
\frac{\partial f}{\partial t} + \vec{e} \times \frac{\hat{\vec{b}}}{b^2} \cdot \hat{\vec{i}}_z \frac{\partial}{\partial z} f = \lim_{t' \to 0} \frac{\int_{\omega} \int_{\omega'} W_{t'} f'_{t'} d\vec{e}' d\vec{b}' - f_{t'}}{t_c} .
\]  

(6.10)

Rediscovering equation (6.3) the exchange term

\[
\lim_{t' \to 0} \frac{\int_{\omega} \int_{\omega'} W_{t'} f'_{t'} d\vec{e}' d\vec{b}' - f_{t'}}{t_c} = 0.
\]  

(6.11)

has to vanish after the transition to the deterministic consideration. This link is part of the viewed stochastic process.

Limiting ourselves to one system of the ensemble the function \( f(\vec{z}, t, \vec{e}, \vec{b}) \) degenerates in the space-time point \( (\vec{z}, t) \) to

\[
f(\vec{z}, t, \vec{e}, \vec{b}) \longrightarrow \delta(\vec{e}(\vec{z}, t), \vec{b}(\vec{z}, t); \vec{e}', \vec{b}')\)-function
\]  

(6.12)

so that the key equation

\[
\frac{\partial}{\partial t} \delta + \vec{e}(\vec{z}, t) \times \frac{\hat{\vec{b}}(\vec{z}, t)}{b^2(\vec{z}, t)} \cdot \hat{\vec{i}}_z \frac{\partial}{\partial z} \delta = 0
\]  

(6.13)

develops from equation (6.10).

6.3 The deterministic Fluctuation Equations for fluctuations with prescribed Velocity Direction

Equation (6.13) shows the interface for the transition from stochastic to deterministic consideration. From the view of the ensemble theory one is limited to the motion quantities \( (\vec{e}(\vec{z}, t), \vec{b}(\vec{z}, t)) \) of one deterministic system at the space-time-point \( (\vec{z}, t) \). In this situation the vectorial motion quantities may be shifted before and behind the differential operators They are seen as constant vectors.
\[
\mathbf{e}_{(z,t)} \times \frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \cdot \mathbf{i}_z \frac{\partial}{\partial z} \delta = -\frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \times \mathbf{e}_{(z,t)} \cdot \mathbf{i}_z \frac{\partial}{\partial z} \delta \\
= -\frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \cdot \mathbf{i}_z \frac{\partial}{\partial z} \times \mathbf{e}_{(z,t)} \delta.
\]

It applies

\[
\frac{\partial}{\partial t} \left( \frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \cdot \mathbf{b}_{(z,t)} \right) - \frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \cdot \mathbf{i}_z \frac{\partial}{\partial z} \times (\mathbf{e}_{(z,t)} \delta) = 0
\]

\[
\Rightarrow \frac{\mathbf{b}_{(z,t)}}{b^2_{(z,t)}} \cdot \left[ \frac{\partial}{\partial t} (\mathbf{b}_{(z,t)} \delta) - \mathbf{i}_z \frac{\partial}{\partial z} \times (\mathbf{e}_{(z,t)} \delta) \right] = 0
\]

\[
\Rightarrow \frac{\partial}{\partial t} (\mathbf{b}_{(z,t)} \delta) - \mathbf{i}_z \frac{\partial}{\partial z} \times (\mathbf{e}_{(z,t)} \delta) = 0 \quad (6.14)
\]

Using the following relations

\[
\Xi \left[ \int_{\mathbf{b}} \int_{\mathbf{e}} \delta(\mathbf{b}_{(z,t)}, \mathbf{e}_{(z,t)}; \mathbf{b}, \mathbf{e}) b d\mathbf{b} d\mathbf{e} \right] = \Xi [\mathbf{b}_{(z,t)}] = \mathbf{b}(z, t)
\]

\[
\Xi \left[ \int_{\mathbf{E}} \int_{\mathbf{b}} \delta(\mathbf{b}_{(z,t)}, \mathbf{e}_{(z,t)}; \mathbf{b}, \mathbf{e}) \mathbf{e} d\mathbf{b} d\mathbf{e} \right] = \Xi [\mathbf{e}_{(z,t)}] = \mathbf{e}(z, t)
\]

or

\[
\Xi \left[ \int_{\mathbf{e}} \int_{\mathbf{b}} \delta(\mathbf{b}_{(z,t)}, \mathbf{e}_{(z,t)}; \mathbf{b}, \mathbf{e}) \left( \frac{b^2}{e^2} \mathbf{e} \right) d\mathbf{b} d\mathbf{e} \right] = \Xi \left[ \frac{b^2}{e^2} \mathbf{e}_{(z,t)} \right] = \frac{b^2(z, t)}{e^2(z, t)} \mathbf{e}(z, t) \quad (6.15)
\]

the existing environments of the movement sizes \((\mathbf{e}_{(z,t)}, \mathbf{b}_{(z,t)})\) of the individual deterministic systems around the point \((z, t)\) are generated. This executes the transition to the deterministic system of equations:

\[
\Xi \left[ \int_{\mathbf{b}} \int_{\mathbf{e}} \left[ \frac{\partial}{\partial t} (\mathbf{b} \delta) - \mathbf{i}_z \frac{\partial}{\partial z} \times (\mathbf{e} \delta) = 0 \right] d\mathbf{e} d\mathbf{b} \right].
\]

Integration and differentiation being exchangeable \(\Rightarrow\)
The Photon within classical physics

\[
\frac{\partial}{\partial t} \Xi[\vec{b}(z,t)] - i\frac{\partial}{\partial z} \times \Xi[\vec{e}(z,t)] = 0. \tag{6.18}
\]

So we have the first of the dual deterministic fluctuation equations

\[
\frac{\partial}{\partial t} \vec{b} - i\frac{\partial}{\partial z} \times \vec{e} = 0. \tag{6.19}
\]

Back to the key equation (6.13)

\[
\frac{\partial}{\partial t} \delta + \vec{e}(z,t) \times \frac{\vec{b}(z,t)}{b^2(z,t)} \cdot i\frac{\partial}{\partial z} \delta = 0
\]

one gets by simple transformations

\[
\frac{\partial}{\partial t} \vec{e}(z,t) \cdot \frac{\vec{e}(z,t)}{c^2(z,t)} \delta + \vec{e}(z,t) \cdot i\frac{\partial}{\partial z} \times \left( \frac{\vec{b}(z,t)}{b^2(z,t)} \delta \right) = 0 \tag{6.20}
\]

or rather

\[
\Xi \left[ \int \int \left[ \frac{\partial}{\partial t} \left( \frac{b^2(z,t)}{c^2(z,t)} \cdot \vec{e}(z,t) \delta \right) + i\frac{\partial}{\partial z} \times (\vec{b}(z,t) \delta) = 0 \right] d\vec{e} d\vec{b} \right] \tag{6.21}
\]

In sum the deterministic theory is represented by the following equation system:

\[
\frac{\partial}{\partial t} \Xi \left[ \frac{b^2(z,t)}{c^2(z,t)} \cdot \vec{e}(z,t) \right] + i\frac{\partial}{\partial z} \times \Xi[\vec{b}(z,t)] = 0 \tag{6.22}
\]

a second, a dual equation

\[
\frac{\partial}{\partial t} \left( \frac{b^2}{c^2} \cdot \vec{e} \right) + i\frac{\partial}{\partial z} \times \vec{b} = 0. \tag{6.23}
\]
6.4 An Equation for a Photon or a Graviton from a classical viewpoint

If the deformation fluctuations are identified as space-time fluctuations, the constant propagation velocity \( c \) must be assumed. This results in the set of equations

\[
\frac{\partial}{\partial t} \vec{b} - i z \frac{\partial}{\partial z} \times \vec{e} = 0
\]
\[
\frac{1}{c^2} \frac{\partial}{\partial t} \vec{e} + i z \frac{\partial}{\partial z} \times \vec{b} = 0
\]

\( c \) = propagation speed

for the determined coordinate direction \( z \). Obviously, one gets these equations at once making disappear the differentiation by coordinates in the equations (4.4), beeing perpendicular to the direction of propagation. It is, however, usefull to describe the related deformation process, in detail.

\[
\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \tilde{d}(z,t) = \frac{\partial^2}{\partial z^2} \tilde{d}(z,t)
\]

may be understood as equation for gravitons or photons. From this results the above-mentioned elementary solution.
The Photon within classical physics

\[ \tilde{d}_{k_i} = \sqrt{4\pi} \frac{1}{k_i} \left( c k_i \tilde{q}_{k_i} \cos(k_1 \cdot z) - \tilde{p}_{k_i} \sin(k_1 \cdot z) \right) \]
\[ \tilde{e}_{k_i} = \sqrt{4\pi} c \left( c k_i \tilde{q}_{k_i} \sin(k_1 \cdot z) + \tilde{p}_{k_i} \cos(k_1 \cdot z) \right) \]
\[ \tilde{b}_{k_i} = -\sqrt{4\pi} \frac{1}{k_i} k_i \tilde{r}_z \times \left[ c k_i \tilde{q}_{k_i} \sin(k_1 \cdot z) + \tilde{p}_{k_i} \cos(k_1 \cdot z) \right] \]
\[ \tilde{q}_{k_i} \sim \cos(\omega_{k_i} t) \quad \tilde{p}_{k_i} \sim \sin(\omega_{k_i} t). \]  

(6.27)

Graviton and Photon are different interpretations of one and the same object. This always applies on the assumption that a graviton exists at all, which is far from being self-evident. But it is conceivable that photons have a low energetic limit to their existence. They spiral in one direction through space.

6.4.1 The quantization process within classical Physics

This process is activated by a deformation thrust that fulfils the appropriate initial conditions

\[ \tilde{d}_{k_i,0} = \tilde{d}_{k_i}(z_0, t_0) \perp \tilde{r}_z \]
\[ \tilde{b}_{k_i,0} = \tilde{b}_{k_i}(z_0, t_0) = \tilde{r}_z \frac{\partial}{\partial z} \tilde{d}_{k_i}(z_0, t_0) \]  
\[ \tilde{e}_{k_i,0} = \tilde{e}_{k_i}(z_0, t_0) = \frac{\partial \tilde{d}_{k_i}(z_0, t_0)}{\partial t} \]  

(6.28)

for the equations (6.25). These initial conditions define the photon in one point with all known properties of the quantum object photon. This process then presents the quantization of the electromagnetic field in more detail. This formal description is of course lacking the explanation of how such a detailed process can come about.  

\[ ^1 \text{If the electromagnetic field in a vacuum is directly properties of space-time, this also applies to the photon. It has properties of deformation that are unimaginable in known elastic matter. The mathematical described propagation is 1-dimensional. The photon at point } (x_0, t_0) \text{ is represented by the initial conditions} \]
\[ \tilde{b}_{k_i}(z_0, t_0) \quad \text{and} \quad \tilde{e}_{k_i}(z_0, t_0) \]

for the equation set

\[ ^1 \text{In any case, these are questions that lie beyond the possibilities of quantum mechanics and quantum field theory.} \]
6 The Photon within classical physics

\[
\begin{align*}
\frac{\partial}{\partial t} \vec{b} - i_z \frac{\partial}{\partial z} \times \vec{e} &= 0 \\
\frac{1}{c^2} \frac{\partial}{\partial t} \vec{e} + i_z \frac{\partial}{\partial z} \times \vec{b} &= 0 \\
c &= \text{propagation speed}
\end{align*}
\]

The deformation vector spirals like a helix with the experimentally determined frequency \(\nu\) of the photon. The fluctuations possess the energy

\[E_{\text{Photon}} = \hbar \cdot \omega\]  

(6.29)

where the motion quantities \(i_z \frac{\partial}{\partial z} \times \vec{d}\) and \(\frac{\partial \vec{d}}{\partial t}\) propagate in the \(z\)-direction (without loss of generality) at the speed of light according to the above system of equations.

If the existence of a photon can be assumed at a space-time point, its momentum is also automatically known at this point! The next question would be: What generates the disturbances \(\vec{e}\) and \(\vec{b}\) or what creates spatial deformations? Deformation fluctuations of space are now explained by electromagnetic fluctuations.
7 Summary

Until today, electromagnetism is not directly understood. It is described with de-tours via mechanical effects, and appears to physicists after more than a century of successful handling as a matter of course. With the unification described, electromagnetism is directly attributed to basic concepts of physics, space and time. The commonly discussed gauge transformations are defined by the observation space or the coordinate space. The vector potential attains an absolute meaning.

The explanation of the photon is connected with a more detailed description of the quantization of electromagnetic fields. These are deformation impulses that 1-dimensional spread in space. Such deformation impulses cannot be realized in elastic bodies. Space proves to be a reality that can still hold some “surprises”, perhaps the explanation of what matter means. A more precise analysis of the electron could lead to corresponding advances.
Bibliography

[10] Penrose Roger: The Road to Reality Jonathan Cape 2004