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Abstract

The Geometrization of Quantum Mechanics proposed in this work is based on
the postulate that the quantum probability density can curve the classical space-
time. It is shown that the gravitational field produced by smearing a point-mass
Mo at r = 0 throughout all of space (in an spherically symmetric fashion) can be
interpreted as the gravitational field generated by a self-gravitating anisotropic fluid
droplet of mass density 4πMor

2ϕ∗(r)ϕ(r) and which is sourced by the probability
cloud (associated with a spinless point-particle of mass Mo) permeating a 3-spatial
domain region D3 =

∫
4πr2dr at any time t. Classically one may smear the point

mass in any way we wish leading to arbitrary density configurations ρ(r). However,
Quantum Mechanically this is not the case because the radial mass configuration
M(r) must obey a key third order nonlinear differential equation (nonlinear exten-
sion of the Klein-Gordon equation) displayed in this work and which is the static
spherically symmetric relativistic analog of the Newton-Schrödinger equation. We
conclude by extending our proposal to the Lagrange-Finsler and Hamilton-Cartan
geometry of (co) tangent spaces and involving the relativistic version of Bohm’s
Quantum Potential. By further postulating that the quasi-probability Wigner dis-
tribution W (x, p) curves phase spaces, and by encompassing the Finsler-like geome-
try of the cotangent-bundle with phase space quantum mechanics, one can naturally
incorporate the noncommutative and non-local Moyal star product (there are also
non-associative star products as well). Phase space is the arena where to imple-
ment the space-time-matter unification program. It is our belief this is the right
platform where the quantization of spacetime and the quantization in spacetime
will coalesce.
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1 Introduction : On Geometry, Quantum Mechanics

and Bohm’s Potential

The Newton-Schrödinger equation has had a long history since the 1950’s [1], [3]. It is the
name given to the system coupling the Schrödinger equation to the Poisson equation. In
the case of a single particle, this coupling is effected as follows: for the potential energy
term in the Schrödinger equation take the gravitational potential energy determined by the
Poisson equation from a matter density proportional to the probability density obtained
from the wave-function. For a single particle of mass m the coupled system of equations
leads to the nonlinear and nonlocal Newton-Schrödinger integro-differential equation

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r, t) Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t)

(1.1)
In [4] we found exact solutions to the stationary spherically symmetric Newton-
Schrödinger equation in terms of integrals involving generalized Gaussians. The energy
eigenvalues were also obtained in terms of these integrals which agree with the numerical
results in the literature.

The authors [2] have shown that the Schrödinger-Newton equation for spherically
symmetric gravitational fields can be derived in a WKB-like expansion from the Einstein-
Klein-Gordon, and Einstein-Dirac-Cartan system. As emphasized by these authors, the
central question is whether this is the right way to represent the gravitational field of
quantum systems. Reading the classical fields as one-particle probability amplitudes Ψ,
it amounts to assuming the validity of the semi-classical Einstein equations

Rµν −
1

2
gµνR = 8πG < Ψ|T̂µν |Ψ > (1.2)

where the left hand side is treated classically, but in the right hand side one is taking
the expectation value of the stress energy operator in the state |Ψ >. However it has
been argued by several authors that this approach is incorrect because the collapse of
the wave function in the measurement process leads to a discontinuity such that the
local energy conservation law ∇µ < Ψ|T̂µν |Ψ > = 0 is violated. For this reason we
shall follow a different approach than the one indicated by eq-(1.2) and that is based on
the geometrization process of Quantum Mechanics (which is not the same as geometric
quantization).

An early geometric approach was based on the connection between Bohm’s quantum
potential and the scalar curvature in Weyl geometry. It was noticed long ago by [5]
that the relativistic version of Bohm’s potential Q is proportional to the Weyl scalar
curvature RW in flat spacetime backgrounds when the Weyl’s gauge field of dilatations
is Aµ ∼ ∂µln(φ∗φ), with φ(x) being a complex scalar field. In other words, when the
scalar field is Weyl-covariantly constant DWeyl

µ φ = 0. Because Aµ is pure gauge (total
derivative) the Weyl’s field strength Fµν = ∂µAν − ∂νAµ = 0, which implies that the rate
of the ticking of clocks (in flat spacetime) will be independent of their paths taken from
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point A to B. Consequently, atomic clocks arriving on the earth via different trajectories
will tick at the same rate (same spectral lines). In this fashion one can avoid Einstein’s
criticism of Weyl’s geometry.

Based on the findings by [5], that the Weyl scalar curvature RW ∼ Q, when Aµ ∼
∂µln(φ∗φ), one can interpret m(1+γ( h̄

m
)2RW ) = m+Q(xµ) (with γ a numerical coefficient)

as an effective mass function meff (x
µ) so that the relativistic Hamilton Jacobi equation,

with signature (+,−,−,−) and c = 1, becomes

(∂µS)2 = (m+Q)2 = m2 + 2mQ + Q2 (1.3)

The relativistic version of the Bohm potential for a scalar field is [5], [6]

Q =
h̄2

2m

2(
√
φ∗(~r, t)φ(~r, t))√
φ∗(~r, t)φ(~r, t)

(1.4)

To leading order in Q the above Hamilton-Jacobi equation (1.3) gives

(∂µS)2 = m2 + h̄2
2(
√
φ∗(~r, t)φ(~r, t))√
φ∗(~r, t)φ(~r, t)

(1.5)

The four-current is

Jµ = i ( φ∗(~r, t) ∂µφ(~r, t) − φ(~r, t) ∂µφ
∗(~r, t) ) (1.6)

and obeys the conservation law (continuity equation)

∂µJ
µ = 0 (1.7)

related to the conservation of a Noether charge
∫
JµdΣµ that is given by the flux of

the current Jµ through a spatial 3-surface Σµ. The charge counts the number of scalar
particles minus the number of anti-particles flowing through the 3-spatial surface. In QFT
(relativistic QM) the scalar field φ is no longer a wave function, hence it is not related to
a one-particle probability amplitude as such but to many-particles (second-quantization).

Writing the complex scalar field in the polar form

φ ≡ ||φ(~r, t)|| eiS(~r,t)/h̄ =
√
φ∗(~r, t)φ(~r, t) eiS(~r,t)/h̄ (1.8)

allows to solve for S = − ih̄
2
ln( φ

φ∗
). After a lengthy but straightforward algebra the eqs-

(1.5, 1.6, 1.7) lead to the Klein-Gordon equation 1

(h̄2 2 + m2) φ(~r, t) = 0, (h̄2 2 + m2) φ∗(~r, t) = 0 (1.9)

If one includes the Q2 terms above in eq-(1.3) one will end up with a more complicated
equation than the Klein-Gordon equation involving quartic derivatives. A stringy defor-
mation of the Weyl Heisenberg algebra [x, p] = i(h̄+α′p2), with inverse string tension α′,

1Using a different signature (−,+,+,+) requires changing the signs in the right hand side of (1.5)
and it leads to the Klein-Goldon equation with a sign change in the m2 term
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and leading to a minimal-length uncertainty relation, can be represented via the operators
X = x and P = p(1+ α′

3
p2). Replacing these redefined operators X,P into a Hamiltonian

H = P 2

2m
+V (X), and using the correspondence p→ −ih̄ d

dx
, yields a modified Schrödinger

equation with higher derivatives encoding the minimal length and with bounded states
in the continuum. See [31] and references therein for details.

A conformally covariant equation2 equation in curved backgrounds in 4D with a
curvature scalar coupling, can also be obtained via Bohm’s quantum potential [5], [6]

(h̄2 gµνDµDν + m2 +
RW

6
) φ(~r, t) = (h̄2 gµν∇µ∇ν + m2 +

R

6
) φ(~r, t) = 0 (1.10)

where Dµ = ∇µ+Aµ is the Weyl covariant derivative and RW is the Weyl scalar curvature.
The “conformal” mass m parameter is posited to scale under Weyl scalings with a Weyl
weight of −1. The weight of gµν and RW is −2, while the weight of φ is −1. Due to
key factor of κ = 1

6
(that varies with the spacetime dimension as κd = d−2

4(d−1)
) in the

Weyl scalar curvature RW , the field Aµ decouples entirely from the left hand side of the
equation leading to the right hand side expressed solely in terms of the Riemannian scalar
curvature R and covariant derivatives ∇µ based on the Christoffel connection.

A Weyl-gauge invariant proof of the spin-statistics theorem, and solving the Quantum
nonlocality enigma by Weyl’s Conformal Geometry can be found in more recent work by
[?]. The coupling to the Electromagnetic field via the prescription pµ → pµ − eAµ leads
to a modified Klein-Gordon equation by simply replacing 2 with (∂µ− ieAµ)(∂µ− ieAµ).

The deep question of whether or not Bohmian mechanics can be be made relativistic
was studied in [7]. In relativistic space-time, Bohmian theories can be formulated by
introducing a privileged foliation of space-time. The introduction of such a foliation -
as extra absolute space-time structure - would seem to imply a clear violation of Lorentz
invariance, and thus a conflict with fundamental relativity. The authors [7] considered the
possibility that, instead of positing it as extra structure, the required foliation could be
covariantly determined by the wave function. This allowed for the formulation of Bohmian
theories that seem to qualify as fundamentally Lorentz invariant. They concluded with
some discussion of whether or not they might also qualify as fundamentally relativistic.

In [9] we found that in certain physical scenarios Bohm’s quantum potential coincided
with the gravitational potential energy and that a notion of Classical/Quantum Duality
existed in the Quantum Hamilton Jacobi equation casting further light into the deep
interplay between gravity and quantum mechanics. Related to the connection between
Bohm’s quantum potential and the gravitational potential energy is the nonlinear and
novel Bohm-Poisson-Schrödinger equation proposed by us in [?]

∇2Q = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (1.11)

The physical motivation behind (1.11) is that the laws of Physics should themselves
determine the distribution density ρ of matter. It has solutions leading to repulsive grav-
itational behavior because eq-(1.11) is invariant under the transformations G→ −G; ρ→

2The homogeneous differential equation is also conformally invariant
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−ρ. The Bohm-Poisson equation was extended to the relativistic regime in [10]. Two
specific solutions to the Relativistic Bohm-Poisson equation (associated to a real scalar
field) were provided encoding the repulsive nature of dark energy. One solution leads to
an exact cancellation of the cosmological constant, but an expanding decelerating cosmos;
while the other solution leads to an exponential accelerated cosmos consistent with a de
Sitter phase, and whose extremely small cosmological constant is Λ = 3

R2
H

, consistent with

current observations.
A different quantum potential than Bohm’s was proposed by [11] based on the Quan-

tum Equivalence postulate of Quantum Mechanics under D-dimensional Mobius trans-
formations. In one-dimension, their quantum potential Q was given in terms of the
Schwarzian derivative of the action with respect to x by Q = h̄2

4m
{S, x}. The Schwarzian

derivative is defined by {S, x} = (S ′′′/S ′) − 3
2
(S ′′/S ′)2. The Schwarzian derivative is

Mobius invariant {γ(S), x} = {S, x}, where the Mobius transformation is defined as
γ(S) = aS+b

cS+d
, ad− bc = 1. In one-dimension the continuity equation in the stationary case

is d
dx

[(ρ(x)/m)(dS/dx)] = 0 ⇒ ρ(dS/dx) = constant. Inserting
√
ρ ∼ (dS/dx)−

1
2 into

Q = h̄2

4m
{S, x} yields the expression for Bohm’s quantum potential after some straightfor-

ward algebra [11].
Schwarzian Quantum Mechanics has recently been a very active topic of research in

connection to the Sachdev-Ye-Kitaev (SYK) model [12]. Another very relevant topics of
current research related to the emergence of gravity are holographic quantum complex-
ity, entanglement entropy, information geometry, quantum computation and information
theory, black holes, Cayley graphs, · · ·, see [13] and the references therein. The close re-
lation between gravity and quantum mechanics has been analyzed by Susskind [14]. Our
main goal, if possible, is to geometrize quantum mechanics. The emergence of quantum
mechanics from the fractal geometry of spacetime has been advanced long ago by Nottale
[15].

This completes a brief overview on the interplay of Weyl geometry, Quantum Mechan-
ics and the Bohm potential. In the next sections we shall present other novel approaches
to the Geometrization process of Quantum Mechanics and leave the perennial quest of
the quantization of spacetime versus quantization in spacetime, and the superposition of
spacetimes for another occassion.

2 The Geometrization of Quantum Mechanics

In this section we shall postulate that the quantum probability density can curve the
classical spacetime. For simplicity, we focus on spherically symmetric static gravitational
backgrounds. Let us start with the Schwarzschild-like static spherically symmetric metric

(ds)2 = − (1− 2GM(r)

r
)(dt)2 + (1− 2GM(r)

r
)−1(dr)2 + r2(dΩ2)2 (2.1)

based on a mass function M(r). The metric (2.1) is not a solution of the vacuum field
equations but instead is a solution to the Einstein field equations with sources Gµ

ν =
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8πGT µν . The stress energy tensor is given by

T µν ≡ diag (−ρ(r), pr(r), pθ(r), pϕ(r)) (2.2)

and the Einstein field equations are

Rtt −
1

2
gtt R = − 8πG gtt ρ (2.3a)

Rrr −
1

2
grr R = 8πG grr p(r), . . . (2.3b)

where

ρ(r) = − pr(r) =
1

4πr2

dM(r)

dr
, pθ(r) = pϕ(r) = − 1

8πr

d2M(r)

dr2
(2.4)

The conservation law ∇µT
µ
ν = 0, after laborious algebra gives

pθ = pφ = − ρ − r

2

dρ

dr
(2.5)

which is consistent with (2.4).
In the case of a point mass located at r = 0, the mass function is M(r) = MoΘ(r),

where the antisymmetric Heaviside step function Θ(r) is 1 for r > 0; −1 for r < 0, and
0 at r = 0 since an antisymmetric function must vanish at the origin r = 0. The value
of Θ(0) = 0 is consistent with the arithmetic mean between {1,−1}. The derivative is
dΘ(r)
dr

= 2δ(r) so that in the case when M(r) = MoΘ(r), we have

ρ(r) = − pr(r) =
1

4πr2

dM(r)

dr
=

2Mo

4πr2
δ(r)

pθ(r) = pϕ(r) = − 1

8πr

d2M(r)

dr2
=

2Mo

8πr2
δ(r), rδ′(r) = −δ(r) (2.6)

Taking the trace of the Einstein field equations yields the scalar curvature R in terms of
the trace of the stress energy tensor T = −ρ+ pr + pθ + pφ

−R = 8πG T = − 8πG
2Mo

4πr2
δ(r) ⇒ R =

4GMo

r2
δ(r) (2.7)

Because Θ(r) can be represented by |r|
r

, when M(r) = Mo
|r|
r

the metric (2.1) becomes
in this special case

(ds)2 = − (1− 2GM(r)

r
)(dt)2 + (1− 2GM(r)

r
)−1(dr)2 + r2(dΩ2)2 =

− (1− 2GMo|r|
r2

)(dt)2 + (1− 2GMo|r|
r2

)−1(dr)2 + r2(dΩ2)2 (2.8)

Note the key presence of the absolute value |r| in eq-(2.8) compared to the standard
Hilbert-Schwarzschild metric. Because the metric (2.8) is explicitly invariant under r →
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−r it is automatically extended to regions where r < 0. Rigorously speaking r is given
by ±

√
x2 + y2 + z2 so one must also take into consideration the negative branch of r.

Because the derivative of the function |r| is Θ(r), and the latter function has a
discontinuity at r = 0, the second derivatives of the metric components gtt, grr will
generate a key delta function δ(r). Consequently the metric (2.8) is no longer Ricci flat,
and the scalar curvature R is no longer vanishing as it occurs with the textbook Hilbert-
Schwarzschild metric. The non-vanishing expression for R is given by eq-(2.7) in terms
of the delta function. One should add that if one wishes to retain a full mathematical
rigour, one would be required to recur to Colombeau’s distributional calculus to deal with
point-mass source distributions in General Relativity rather than using the Dirac delta
function.

In [16] we proceeded to evaluate the Euclideanized Einstein-Hilbert action when the
scalar curvature was R = 4GMo

r2 δ(r). The Euclideanized action is

SE =
1

16πG

∫ ∞
0

R 4πr2 dr
∫ β

0
dt (2.9)

where the Euclidean temporal interval is bounded by the inverse of the Hawking tem-
perature β = 1

kBTH
= 8πGMo. Inserting the expression for R = 4GMo

r2 δ(r), and taking

into account
∫∞

0 δ(r)dr = 1
2

∫∞
−∞ δ(r)dr = 1

2
, due to the symmetry of the delta function

δ(−r) = δ(r), we showed [16] that the Euclideanized action (2.9)

SE = 4πGM2
o =

1

4

4π(2GMo)
2

G
=

Area

4L2
P

(2.10)

is precisely the black-hole entropy associated with a horizon radius of rH = 2GMo. This
construction where the Euclideanized action matches the black hole entropy can be gen-
eralized to other dimensions. These findings suggest that the true source of the black hole
entropy is its mass, and that there is a correspondence between the “atoms” of matter
and the “atoms” of spacetime consistent with the notion of space-time-matter unification.
Furthermore, it was shown also in [16] that one can always perform an active diffeomor-
phism r → f(r) (not to be confused with a passive diffeomorphism which is tantamount
of a coordinate transformation) of the Hilbert-Schwarzschild solution which physically
displaces the location of the horizon towards the singularity and which was relevant to
the firewall controversy.

In the case of a point mass, there is a spacelike singularity at r = 0. If the point mass
is smeared throughout all of space, the singularity at the origin can be removed when the
limr→0(M(r)

r
) is finite. Namely if M(r) scales as rγ with γ ≥ 1 as r goes to zero.

For example, if one chooses the density ρ(r) = 3
4πl3

e−r
3/l3 , the mass enclosed in a

spherical region whose radius ranges from 0 ≤ r′ ≤ r is

M(r) = Mo

∫ r

0
4πr′2

3

4πl3
e−r

′3/l3 dr′ = Mo ( 1 − e−r
3/l3 ) (2.11)

and one recovers the Dymnikova metric [17] devoid of a singularity at the origin. In
the vecinity of r = 0 one has M(r)/r ∼ r2 leading to a metric with a de Sitter-like
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core. If one chooses Gaussian density distributions the mass function M(r) is given by
an incomplete-gamma function leading also to a de Sitter-like core near the origin [18].

Einstein, Infeld and Hoffmann [19] showed in 1938 that if elementary particles (point-
masses) are treated as singularities in spacetime, it is unnecessary to postulate the
geodesic motion of point test masses as part of General Relativity. For instance, the
electron may be treated as such a singularity; i.e as a microscopic black-hole. Next we
shall show how the smearing process of a point-mass can be attained via a probability
cloud corresponding to the quantum probability density Ψ∗(xµ)Ψ(xµ), with Ψ(xµ) obeying
the Klein-Gordon equation, and associated to a spinless scalar particle of mass Mo. To
smear the point mass of an spinning electron is more complicated due to its spin. For
instance, one would have to modify the Kerr metric by smearing the singularity at r = 0,
as well as the ring singularity at r = a. The smearing process will no longer be spherically
symmetric but rotationally symmetric with respect to the z-axis. Instead of the Klein-
Gordon equation one must use the Dirac equation for the Dirac spinor ΨD(xµ) and for
mass density MoΨ̄DΨD.

To proceed we shall follow very closely the construction of relativistic wave-functions
by [20] (not to be confused with second-quantized fields in Quantum Field Theory) .
If a one-particle wave function can be denoted by Ψ(xµ), it is natural to introduce the
spacetime scalar product

< Ψ|Ψ > =
∫
d4x Ψ∗(xµ) Ψ(xµ) (2.12)

and to normalize Ψ such that

1 =
∫
d4x Ψ∗(xµ) Ψ(xµ) (2.13)

The quantity
dP(4) = Ψ(xµ)∗ Ψ(xµ) d4x (2.14)

is naturally interpreted as probability that the particle will be found in the (infinitesimal)
spacetime 4-volume d4x.

If eq-(2.14) is the fundamental 4-probability, then

Ψ∗(3)(x
µ) Ψ(3)(x

µ) =
Ψ∗(xµ) Ψ(xµ)

Nt

, Nt =
∫
d3x Ψ∗(xµ) Ψ(xµ) (2.15)

can be interpreted as the conditional 3-probability such that

dP(3) = Ψ(3)(x
µ)∗ Ψ(3)(x

µ) d3x (2.16)

is the probability that the particle will be found in the (infinitesimal) 3-volume d3x, in
the case one knows that the particle is detected at time t. Since Ψ(xµ) is normalized to
unity one can infer that Nt is also the marginal probability that the particle will be found
at time t over the whole 3-dimensional region Σt =

∫
d3x.

Having briefly introduced the relativistic wave function proposal by [20] let us focus
now in the case where Ψ can be decomposed (factorized) as
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Ψ(xµ) = ϕ(~x) ξ(t) (2.17)

so that the 3-probability density

Ψ∗(3)(~x) Ψ(3)(~x) =
ϕ∗(~x) ϕ(~x)∫
d3x ϕ∗(~x) ϕ(~x)

(2.18)

is independent on t and is automatically normalized to unity

1 =
∫
d3x Ψ∗(3)(~x) Ψ(3)(~x) (2.18)

In the spherically symmetric case Ψ(xµ) = ϕ(r)ξ(t), the overall normalization condi-
tion

1 =
∫
d4x Ψ∗(r, t) Ψ(r, t) =

∫ ∞
0

ϕ∗(r) ϕ(r) 4πr2 dr
∫ ∞

0
ξ∗(t) ξ(t) dt (2.19)

leads to

N =
∫ ∞

0
ϕ∗(r) ϕ(r) 4πr2 dr,

1

N
=

∫ ∞
0

ξ∗(t) ξ(t) dt (2.20)

We have taken the temporal domain’s range from t = 0 to t =∞. One could have taken
it instead to range from t = −∞ (infinite past) to t = ∞ (infinite future) . But for now
we concentrate in the former case. Given the mass M(r) enclosed in the spherical region
0 ≤ r′ ≤ r

M [ϕ(r)] = M(r) = Mo

∫ r

0
ϕ∗(r′) ϕ(r′) 4πr′2 dr′ (2.21)

the D’ Alambertian is given by

2 ≡ 1√
|g|
∂µ(

√
|g| gµν ∂ν), h̄ = c = 1 (2.22)

and the analog of the Klein-Gordon-like equation is

( 2 − Mo
2 ) Ψ(xµ) = 0 (2.23)

where, once again, Ψ(xµ) must not be confused with the second-quantized scalar field
Φ(xµ). Given the metric (2.1), the KG-like equation becomes

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ξ(t) ∂rϕ(r)

)
−

1

r2
∂t

(
r2 (1− 2GM(r)

r
)−1 ϕ(r) ∂tξ(t)

)
− M2

o ϕ(r) ξ(t) = 0 (2.24)
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Upon choosing ξ(t) = e−ωt/2, eq-(2.24) leads to the integro-differential equation

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ∂rϕ(r)

)
−

ω2

4r2

(
r2 (1− 2GM(r)

r
)−1 ϕ(r)

)
− M2

o ϕ(r) = 0 (2.25)

where the mass function M [ϕ(r)] = M(r) is defined in terms of ϕ(r) by the integral
(2.21).

Some brief remarks are in order. Choosing ξ(t) = e−iωt/2 does not provide a normal-
izable wave-function, for this reason we discard it. Because ξ(t) = e−ωt/2 vanishes in the
t → ∞ limit, the probability to detect the particle in an infinite 3-dim spatial slice of
the 4-dim spacetime at time t = ∞ is zero. Compare this picture with the black hole
evaporation time via Hawking radiation that is proportional to the (mass)3, and that
is astronomically large for solar mass size black holes. It is interesting that the double-
scaling limit ω → 0; t → ∞;ωt = finite does yield a nonzero probability at t = ∞. The
zero energy ω = 0 limit reminds us of the role that soft particles have in the proposals
for the resolution to the black hole information paradox involving the Bondi-Matzner-
van der Burg-Sachs algebra of super-translations and super-rotations at null infinity and
Weinberg soft-hair theorems.

When ϕ(r) is real-valued ϕ∗(r) = ϕ(r), the above integro-differential equation (2.25)
can be converted into a nonlinear differential equation involving the mass function M(r),
after expressing ϕ(r) in terms of M(r) via eq-(2.21), as follows

dM(r)

dr
= M ′(r) = 4πMor

2 ϕ∗(r) ϕ(r) = 4πMor
2 ϕ(r)2 ⇒ ϕ(r) = (

M ′(r)

4πMor2
)1/2

(2.26)
In this fashion, after writing ϕ(r) in terms of M ′(r), one ends up with a complicated third
order nonlinear differential equation for the mass function M(r)

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ∂r (

M ′(r)

4πMor2
)1/2

)
−

ω2

4r2

(
r2 (1− 2GM(r)

r
)−1 (

M ′(r)

4πMor2
)1/2

)
− M2

o (
M ′(r)

4πMor2
)1/2 = 0 (2.27)

Thus eq-(2.27) is the static spherically symmetric relativistic analog of the Newton-
Schrödinger equation. Suffice to say is that to find non-trivial solutions to eq-(2.27)
is very difficult.

In essence what eqs-(2.1, 2.25, 2.27) encapsulate is that the gravitational field produced
by smearing a point mass Mo at r = 0 throughout all of space (in an spherically symmet-
ric fashion) can be interpreted as the gravitational field generated by a self-gravitating
anisotropic fluid droplet of mass density 4πMor

2ϕ∗(r)ϕ(r) and which is sourced by the
probability cloud (associated with a spinless point-particle of mass Mo) permeating a
3-spatial domain region D3 =

∫∞
0 4πr2dr at any time t. Classically one may smear the
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point mass in any way we wish leading to arbitrary density configurations ρ(r). However,
Quantum Mechanically this is not the case because the radial mass configuration M(r)
must obey the third order nonlinear differential eq-(2.27).

If the solutions ϕ(r) to eq-(2.25) are not normalized to unity, from the conditions (2.20)
one can always perform the following scaling by an energy-dependent factor N = N(ω)
as follows

ϕ→ ϕ√
N
, ξ(t)→

√
Nξ(t), Mo →Mo, M(r)→ M(r)

N
, G→ GN, GM(r)→ GM(r)

(2.28)
and leading to properly normalized solutions of eq-(2.25). The scalings (2.28) will ensure
that the metric (2.1) remains invariant as well as the D’Alambertian operator. The
scaling of G is consistent with the scaling behavior of G = G(k2) in the Asymptotic
Safety program of Quantum Gravity [21], [22]. If N > 1, then at lower energies (smaller

mass M(r) → M(r)
N

) there is a higher value of G → GN . And vice versa in case that
N < 1.

To finalize this section we must remark that the Renormalization-Group (RG) improve-
ment of the Schwarzschild black hole metric leading also to a resolution of the singularity
at r = 0 is not the same as the smearing of a point mass Mo into a continuum mass
distribution M(r). The renormalization-group improved Schwarzschild black-hole metric
[22] is given by

(ds)2 = − (1− 2G(r)Mo

r
)(dt)2 + (1− 2G(r)Mo

r
)−1(dr)2 + r2(dΩ2)2 (2.29)

and is based on the Renormalization group flow of the Newtonian coupling G[k2(r)] after
introducing a cutoff identification procedure k ↔ r that relates energy scales to length
scales, for example, like k ∼ 1

d(r)
, where d(r) is a proper radial distance [22].

The metric (2.29) is not a solution of the vacuum field equations but instead is a
solution to the modified Einstein equationsGµ

ν = 8πG(r)T µν where the running Newtonian
coupling G(r), and an effective stress energy tensor

T µν ≡ diag (−ρ(r), pr(r), pθ(r), pϕ(r)) (2.30)

appear in the right hand side. The components of T µν associated to the modified Einstein
equations Gµ

ν = 8πG(r)T µν are respectively given by

ρ = − pr =
Mo

4πr2G(r)

dG(r)

dr
, pθ = pϕ = − Mo

8πrG(r)

d2G(r)

dr2
(2.31)

The energy-momentum tensor is in this case an effective stress energy tensor resulting
from vacuum polarizations effects of the quantum gravitational field [24] (like a quantum-
gravitational self-energy). As explained by [23], the quantum system is self-sustaining: a
small variation of the Newton’s constant triggers a ripple effect, consisting of successive
back-reactions of the semi-classical background spacetime which, in turn, provokes further
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variations of the Newton’s coupling and so forth. For recent findings pertaining Asymp-
totic Safety, Black-Hole Cosmology and the Universe as a Gravitating Vacuum State see
[25]. In all of these works [23], [22], [25] there are no singularities at r = 0, nor at t = 0
as a result of the RG-improvement procedures based on Asymptotic Safety.

3 Geometrization of Quantum Mechanics via Finsler

Geometry

3.1 Lagrange-Finsler Geometry and the Relativistic Quantum
Potential

In the attempts to apply Finsler geometry to construct an extension of general relativity,
the question about a suitable generalization of the Einstein equations is still under debate.
Since Finsler geometry is based on a scalar function on the tangent bundle, the field
equation which determines this function should also be a scalar equation. In the literature
two such equations have been suggested: the one by Rutz and the one by Pfeifer and
Wohlfarth (which was independently also found by Chen and Shen in the context of
positive definite Finsler geometry).

Given a Finsler-Lagrange function

F 2 = L(x, ẋ) = gij(x, ẋ)ẋiẋj, F =
√
gij(x, ẋ)ẋiẋj; ẋi =

dxi

dτ
(3.1)

the L-metric is defined as the vertical Hessian

Lgij =
1

2
∂ẋi∂ẋjL(x, ẋ), F 2(x, ẋ) = L(x, ẋ) (3.2)

The geodesic spray coefficients Gi : ẍi +Gi = 0, obtained from an Euler-Lagrange varia-

tional equation of the length measure of curves l =
∫ b
a

√
|L(x, ẋ|dτ , are given by

Gi =
1

4
Lgij ( ẋk ∂k ∂ẋj L − ∂xj L ) (3.3)

which define the coefficients N i
j = ∂ẋjG

i of the canonical Cartan non-linear connection

N i
jk ≡ ∂ẋk N

i
j = ∂ẋk ∂ẋj G

i (3.4)

and permits the splitting of the tangent bundle into a vertical sub-bundle and a horizontal
sub-bundle. The local adapted basis are denoted by the elongated horizontal derivatives
δi = ∂i −N j

i ∂̇j, and the fiber vertical derivatives are denoted by ∂̇j ≡ ∂
∂ẋj

= ∂ẋj .
The so called Chern-Rund linear connection D on the tangent bundle TM is given by

(δ)Γijk =
1

2
Lgih (δk

Lghj + δj
Lghk − δh

Lgjk) (3.5)
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which allows to define the horizontal covariant derivative as follows

∇jVi = δjVi − (δ)Γkij Vk = ∂jVj − Nk
j ∂ẋk Vi − (δ)Γkij Vk (3.6)

The curvature of the non-linear connection is

[δj, δk] = Ri
jk∂̇i = (δjN

i
k − δkN i

j) ∂̇i (3.7)

The Finsler Ricci tensor is Ri
j = Ri

jkẋ
k, and the non-homogenized Finsler Ricci scalar R

is given by its trace R = Ri
i = Ri

ikẋ
k.

The difference between the derivative of the non-linear connection coefficients N i
j

and the Chern-Rund connection coefficients defines the Landsberg tensor

P i
jk(x, ẋ) ≡ (δ)Γijk − N i

jk, ẋj P i
jk = 0 (3.8)

The authors [26] proceed to construct an action for Finsler gravity on a compact
domain D+ of the positive projective tangent bundle PTM+ with 0-homogeneous objects
by introducing the 0-homogenized Ricci scalar Ro = R

L
. The action is based on the

Vainberg-Tonti Lagrangian and given by

S =
∫
D+

Ro dV
+
o =

∫
D+

R

L3
|det Lg| iC(dx0 ∧ dx1 · · · ∧ dẋ0 ∧ · · · ∧ dẋ3) (3.9)

iC(· · ·) is the volume 7-form of D+ ⊂ PTM+ obtained by a contraction of a volume
8-form.

This construction allows a mathematically rigorous formulation of the Finsler gravity
action as well as a technically precise derivation of the Euler-Lagrange equations from
the action. The critical points of the Finsler gravity action formulated on subsets of the
positive projective tangent bundle PTM+ are obtained via variational methods and yield
the vacuum field equation (fundamental result of [26])

1

2
Lgij ∂ẋi∂ẋj R −

3

L
R − Lgij (∇jPi − PiPj + ∂ẋi(∇Pi)) = 0 (3.10)

with Pj = P i
ij, and ∇ = ẋkDδk = ẋk∇k.

In the metric limit L(x; ẋ) = gij(x)ẋiẋj they reduce to known constructions from
the ordinary metric (Riemannian) geometry: the curvature essentially becomes the Rie-
mann curvature tensor, Ri

jk(x; ẋ) = Ri
jkl(x)ẋl; the generalized Christoffel symbols become

the usual Christoffel symbols; and the non-linear connection now is a linear connection
N i
j(x; ẋ) = Γijk(x)ẋk. The Cartan linear covariant derivative in horizontal directions be-

comes the Levi-Civita covariant derivative while it becomes trivial in vertical directions.
After denoting ẋµ ≡ dxµ

dτ
, we shall choose for the Finsler function the following one

F = (1 +
Q(x)

m
)
√
gµν(x, ẋ) ẋµ ẋν ; L(x, ẋ) = F 2 = (1 +

Q(x)

m
)2 gµν(x, ẋ) ẋµ ẋν

(3.11)
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where

Q =
h̄2

2m

2(
√

Ψ∗(xµ)Ψ(xµ))√
Ψ∗(xµ)Ψ(xµ)

(3.12)

is the relativistic analog of the Bohm’s quantum potential with units of mass. Note that
our choice for the above Lagrange-Finsler function (3.11) differs from the one in [8].

In the simplest scenario when the background metric does not depend on the velocities
gµν(x, ẋ) = gµν(x), the Finsler metric

Lgµν(x) = ( 1 +
2Q(x)

m
+ (

Q(x)

m
)2 ) gµν(x) (3.14)

is a just a Q(x)-dependent conformal scaling of the background metric gµν(x). Given a
flat background metric gµν(x) = ηµν , to leading order in Q one has

Lgµν ∼ ηµν +
2Q

m
ηµν = ηµν + hµν (3.15)

Hence, the linearized perturbation hµν of the flat metric ηµν is provided by the relativistic

version of Bohm’s potential hµν = 2Q(x)
m

ηµν . In the weak field approximation and slow
moving bodies, the h00 component of the perturbation can be interpreted as twice an
effective Newtonian potential 2Veff ∼ 2Q

m
, which is consistent with the formulation of

the Bohm-Poisson equation (1.11), and the results in [9] showing how the Newtonian
gravitational potential energy coincides with the Bohm’s potential in certain scenarios.

Given a standard matter action of the form (for a (−,+,+,+) signature) with the
inclusion of the quantum potential Q

Sm = −
∫

dτ [ m
√
gµν(xσ) ẋµ ẋν − Q(xµ) ] (3.16)

the Euler-Lagrange equations are given in terms of the Levi-Civita torsionless connection
Γµαβ[gµν ] as follows

m
(
ẍµ + Γµαβ[gµν ] ẋ

α ẋβ
)

= − ∂Q

∂xµ
(3.17)

The term in the right hand side is the “quantum force” acting on the particle. The
solutions xµ = xµ(τ) to eqs-(3.17) correspond to the Bohmian trajectories. If one had

instead a Lagrangian of the form Lm = (m+Q)
√
gµν(xσ)ẋµẋν based on an effective mass

meff (x) = m + Q(x), the Euler-Lagrange equations would have been more complicated.
Consequently, after invoking the notion of wave-particle duality, the wave equation associ-
ated with the latter Euler-Lagrange equations will be much more complicated as indicated
earlier in section 1 when we discussed the modifications of the Klein-Gordon equation.

In general when gµν(x, ẋ) depends on the position and velocities and the expression
(3.2) for the Finsler metric Lgµν is a much more complicated expression. The key result
is that the single fundamental equation (3.10) for the Finsler-Lagrange function L(x, ẋ)
furnishes the sought-after differential equation involving the coupling between the metric
gµν(x, ẋ) and the quantum probability density Ψ∗(x)Ψ(x). This is a direct result of the
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introduction of an effective mass function meff = m + Q, where Q(xµ) (3.12) is the
relativistic version of Bohm’s quantum potential. Whereas in the work of [5], the mass
function was given in terms of the Weyl scalar curvature meff = m(1 + γ( h̄

m
)2RWeyl).

To sum up, the findings in section 2 and 3.1 implement the gist of our geometrization
program of Quantum Mechanics. We must note that now eq-(3.10) replaces the role of
the Klein-Gordon equation of the previous section yielding another differential equation
involving a coupling between gµν (geometry) and Ψ (matter).

.

3.2 Finsler-like Gravity in the Cotangent Bundle and Phase
Space Quantum Mechanics

In section 2 we postulated that the quantum probability density curved spacetime. In this
section we postulate that the Weyl-Wigner-Groenewold-Moyal quasi-probability distribu-
tion W (x, p) curves phase space. The literature on the geometry of Lagrange-Finsler,
Hamilton-Cartan spaces and higher order (jet bundles) generalizations is ample, see [?],
[28], and references therein. Let us begin with the Sasaki-Finsler metric of the cotan-
gent space of a d-dim manifold T ∗Md, and which is given by the following metric in
block diagonal form

(dσ)2 = gij(x
k, pa) dx

id xj + hab(xk, pc) δpa δpb =

gij(x
k, pa) dx

id xj + hab(x
k, pc) δp

a δpb (3.18)

The range of the base manifold indices is i, j, k = 0, 1, 2, 3, .....d− 1; whereas the range of
the fiber indices is a, b, c = 0, 1, 2, 3, .....d − 1. The standard coordinate basis frame has
been replaced by the following anholonomic non-coordinate basis frame comprised of the
following elongated and ordinary derivatives, respectively,

δi = δ/δxi = ∂xi + Nia ∂
a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =

∂

∂pa
(3.19)

The signature is chosen to be Lorentzian (−,+,+,+, · · · ,+) for both gij and hab. It
is important to emphasize that one does not have a theory with two times because the
energy coordinate is not time. One should note the key position of the indices that allows
us to distinguish between derivatives with respect to xi and those with respect to pa. The
dual basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dx
j, δpa = dpa − Na

j dx
j (3.20)

where the N -coefficients define a nonlinear connection, N–connection structure.
A gravity-matter action is S = Sgrav + Smatter, with

Sgrav =
1

2κ

∫
d4x d4p

√
| det gAB|

(
gij R(ij) + hab S

(ab)
)
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Smatter =
∫
d4x d4p

√
| det gAB| Lm[gij, hab, Nia,Φ,Ψ] (3.21)

The determinant factorizes det(gAB) = det(gij)det(hab) in an anhololomic basis adapted
to the nonlinear connection (the metric assumes the block diagonal form (1)). κ
is the gravitational coupling constant. If the phase space action action (21) is di-
mensionless, after reintroducing the physical constants that were set to unity, gives
κ = 8π → (8πG/c4)(Mpc)

4.
After a very laborious procedure the authors [29] have shown that variation of the

action (3.21)
δS
δgij

= 0,
δS
δhab

= 0,
δS
δNia

= 0, (3.21)

leads to the following field equations

R(ij)(x, p) −
1

2
gij(x, p) (R+S) + Rk(ia C

ka
j) = κ Tij = −κ 2√

| det gAB|

δ(
√
| det gAB|Lm)

gij

(3.22)

S(ab)(x, p) −
1

2
hab(x, p) (R+ S) = κ Tab = − κ 2√

| det gAB|

δ(
√
| det gAB|Lm)

hab
(3.23)

gik ∂aHj
kj − gkl ∂aH i

kl = κ T ia = − κ 2√
| det gAB|

δ(
√
| det gAB|Lm)

Nia

(3.24)

where

H i
jk =

1

2
gin (δkgnj + δjgnk − δngjk) (3.25)

Cab
c = − 1

2
hcd

(
∂bhad + ∂ahbd − ∂dhab

)
(3.26)

Ri
kjh = δhH

i
kj − δjH

i
kh + H l

kj H
i
lh − H l

kh H
i
lj − Cia

k Rjha (3.27)

Sabcd = ∂c Cab
d − ∂b Cac

d + Ceb
d Cac

e − Cec
d Cab

e ; (3.28)

Rija =
δNja

δxi
− δNia

δxj
(3.29)

The above field equations are supplemented by the additional equations δS
δΨ

= 0, δS
δΦ

= 0
associated to the fermionic Ψ(x, p) (Dirac spinors) and scalar fields Φ(x, p) living in the
cotangent bundle. For a recent study of these equations within the context of Born’s
reciprocal relativity theory, curved phase space, Finsler geometry and the cosmological
constant see [30].

Having outlined the essential elements of gravity in the cotangent bundle (phase space)
we turn attention to phase space Quantum Mechanics. The key concept in phase space
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Quantum Mechanics is the Wigner quasi-probability distribution [32] that was introduced
by Wigner in 1932 to study quantum corrections to classical statistical mechanics. The
goal was to link the wave-function that appears in Schrödinger’s equation to a probability
distribution in phase space. Moyal [32] had derived it independently, and allows one to
study the classical limit, offering a comparison of the classical and quantum dynamics in
phase space. It has been shown that the Wigner quasi-probability distribution function
can be regarded as an h̄-deformation of another phase space distribution function that
describes an ensemble of de Broglie-Bohm causal trajectories [34].

The Wigner distribution W (x, p) of a pure state is defined as

W (q, p) =
1

πh̄

∫ +∞

−∞
dy e

2ipy
h̄ Ψ∗(x+ y) Ψ(x− y) (3.30)

In the general case, which includes mixed states, it is the Wigner transform of the density
matrix ρ̂

W (x, p) =
1

πh̄

∫ ∞
−∞
〈x+ y|ρ̂|x− y〉e−2ipy/h̄ dy, (3.31)

This construction can be generalized to other dimensions. Despite that the Wigner func-
tion of quantum state typically takes some negative values (it is a quasi-probability dis-
tribution), however, the integral

∫
dp W (q, p) is positive definite.

The Moyal evolution equation for the Wigner function is

∂W (x, p, t)

∂t
= −{{W (x, p, t) , H(x, p)}} , (3.32)

H(x, p) is the Hamiltonian and {{, }} is the Moyal bracket given by W ∗ H − H ∗W ,
and where ∗ is the noncommutative Moyal star product of functions in phase space. In
the classical limit h̄ → 0, the Moyal bracket reduces to the Poisson bracket, while this
evolution equation reduces to the Liouville equation of classical statistical mechanics.

A relativistic generalization of the Wigner distribution can be found in [33] and ref-
erences therein. The idea now is to write an ansatz for gij(x, p);hab(x, p), Nia(x, p) in
terms of the relativistic Wigner distribution W (x, p), in the same vein that in section 2
we wrote down the metric (2.1) in terms of a mass function M(r), and which in turn, was
given in terms of an integral of the probability density M(r) = Mo

∫ r
0 ϕ
∗ϕ4πr′2dr′. Having

done so we can proceed to evaluate the left hand side of eqs-(3.22-3.24) and then read-off
the components of TAB in the right-hand-side in terms of W (q, p) and its derivatives.
Finally, the Moyal evolution equation (3.32) associated with the relativistic Hamiltonian
H(x, p) = gµν(x, p)p

µpν yields the differential equation involving the coupling between the
metric (geometry of phase space) gµν(x, p) and W (x, p) (matter). Because the Moyal star
product has infinite derivatives, the Moyal evolution equation will be nonlocal.

The relevance of this road map based on the postulate that quasi-probability distri-
bution W (x, p) curves phase spaces, and encompassing the Finsler-like geometry of the
cotangent-bundle with phase space quantum mechanics, is that it naturally incorporates
the noncommutative and non-local Moyal star product (there are also non-associative star
products as well). Because different foliations of phase space leads to different spacetimes,
the superposition of different spacetimes could be realized by assembling those different
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foliations into an ensemble. Each observer will see a different spacetime. For example,
the tangent at a point in momentum space provides a spacetime. The tangent at another
point in momentum space provides another spacetime. Phase space is the arena where to
implement space-time-matter unification as advocated in [30]. It is our belief this is the
right platform where the quantization of spacetime and the quantization in spacetime
will coalesce.
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