GENERAL FORMULA OF FIBONACCI SEQUENCE AND LUCAS SEQUENCE'S REVERSE SUM

C. TUNGCHOTIROJ

ABSTRACT. The sum $\sum_{k=1}^{n} a_k b_{n+1-k} = a_1 b_n + a_2 b_{n-1} + ... + a_n b_1$, where *n* are any positive integers, denoted by $R(a_n, b_n)$, are called *Reverse Sum* of a_n and b_n . Reverse Sum usually appears in Rearrangement Inequality, but not in normal Algebra. Fibonacci Sequence $\{F_n\}$ and Lucas Sequence $\{L_n\}$ are very similar sequences because they also have recurrence formula, but have $F_0 = 0$, $F_1 = 1$ and $L_0 = 2$, $L_1 = 0$. Because of that similarity of sequences, we suggest that those sequences can be related as a function of Reverse Sum. In this paper it is shown that $R(F_n, L_n)$ can be written into general form within $\{F_n\}$ and some various constants.

Contents

1.	Introduction	1
2.	Preliminaries	2
3.	Road to the Main Theorem	3
4.	Main Theorem	4

1. INTRODUCTION

Consider real finite sequences $\{a_i\}_{i=1}^n : a_1, a_2, a_3, ..., a_n$ and $\{b_i\}_{i=1}^n : b_1, b_2, b_3, ..., b_n$. We will get their *Reverse Sum* value as,

$$R(a_n, b_n) = a_1 b_n + a_2 b_{n-1} + \dots + a_{n-1} b_2 + a_n b_1$$

Clearly illustrating by, for example, $R(a_3, b_3) = a_1b_3 + a_2b_2 + a_3b_1$ and $R(a_6, b_6) = a_1b_6 + a_2b_5 + a_3b_4 + a_4b_3 + a_5b_2 + a_6b_1$. We can see that, for natural number $1 \le u \ne v \le n$, if there were have a_ub_v , there will also have a_vb_u too, except for case of odd numbers n yield only one term of a_kb_k . Next section, we will take a look for Fibonacci Sequence and Lucas Sequence, also theorems and lemmas for proving our main theorem.

Date: Saturday 4th July, 2020.

Key words and phrases. Fibonacci Sequence, Lucas Sequence, Reverse Sum.

C. TUNGCHOTIROJ

2. Preliminaries

These are some important theorems to proof the main theorem in section 3.

Definition 2.1 (Fibonacci Sequence). The sequence $\{F_n\}$ is called *Fibonacci Sequence* if and only if,

$$F_n = F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$

where n denote integer such that $n \geq 2$.

Definition 2.2 (Lucas Sequence). Sequence $\{L_n\}$ is called *Lucas Sequence* if and only if,

$$L_n = L_{n-1} + L_{n-2}, L_0 = 2, L_1 = 1$$

where n denote integer such that $n \geq 2$.

Theorem 2.1 (Recursive Sequence Type IV). Consider type IV of recurrence relation $\{a_n\}$,

$$a_{n+1} = pa_n + qa_{n-1}, n \ge 2, (q \ne 0).$$

Determine α and β . (3) gives $a_{n+1} = (\alpha + \beta)a_n - \alpha\beta a_{n-1}$, so let $\alpha + \beta = p$ and $\alpha\beta = -q$. Thus, α, β are the two roots of the quadratic equation $t^2 - pt - q = 0$, which is called the *Characteristic Equation* of the given recurrence formula.

(1) $a_n = A\alpha^n + B\beta^n$, if $\alpha \neq \beta$

(2) $a_n = (An + B)\alpha^n$, if $\alpha = \beta$

where A, B are constants determined by the initial values a_1 and a_2 .

Definition 2.3 (Reverse Sum of Fibonacci Sequence and Lucas Sequence). The following equation below shown their Reverse Sum of 2 sequences that we are considering,

$$R(F_n, L_n) = F_1 L_n + F_2 L_{n-1} + \dots + F_n L_1$$

We can observe symmetry of the expression such as F_1L_n and F_nL_1 . Which needed to be established the following lemma.

GENERAL FORMULA OF FIBONACCI SEQUENCE AND LUCAS SEQUENCE'S REVERSE SUM 3

3. Road to the Main Theorem

Lemma 3.1. Suppose Fibonacci Sequence $\{F_n\}$. Then,

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Proof. By Definition 1 gives $\alpha + \beta = 1$ and $\alpha\beta = -1$ respectively. Considering Characteristic Equation by substituting p, q: $t^2 - t + 1 = 0$, gives the solution

$$\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2}.$$

That mean $\alpha \neq \beta$, so

$$F_n = A(\frac{1+\sqrt{5}}{2})^n + B(\frac{1-\sqrt{5}}{2})^n.$$

Because $F_0 = 0$ and $F_1 = 1$, it is easy to get $A = \frac{1}{\sqrt{5}}$ and $B = -\frac{1}{\sqrt{5}}$. Therefore, the lemma have been proved.

Lemma 3.2. Suppose Lucas Sequence $\{L_n\}$. Then,

$$L_n = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$$

Proof. Claiming Definition 2 gives $\alpha + \beta = 1$ and $\alpha\beta = -1$ respectively. By similarity of Lemma 2 gives,

$$L_n = A(\frac{1+\sqrt{5}}{2})^n + B(\frac{1-\sqrt{5}}{2})^n.$$

From $L_0 = 2$ and $L_1 = 1$ yield A = B = 1. Thus, proving have been occurred.

Lemma 3.3. Suppose that $\{F_n\}$ and $\{L_n\}$ be Fibonacci Sequence and Lucas Sequence. Let m and n are positive integer including 0. Then,

$$F_m L_n + F_n L_m = 2F_{m+n}$$

Proof. By assuming $\Psi_1 = \frac{1+\sqrt{5}}{2}$, $\Psi_2 = \frac{1-\sqrt{5}}{2}$ and $\eta = \frac{1}{\sqrt{5}}$. Then: $F_m L_n + F_n L_m = (\eta \Psi_1^m - \eta \Psi_2^m)(\Psi_1^n + \Psi_2^n) + (\eta \Psi_1^n - \eta \Psi_2^n)(\Psi_1^m + \Psi_2^m)$ $= 2\eta \Psi_1^m \Psi_2^n - 2\eta \Psi_1^m \Psi_2^n$ $= 2(\eta \Psi_1^{m+n} - \eta \Psi_2^{m+n}) = 2F_{m+n}$

Definition 3.1 (Floor Function). Let x be a real number. $\lfloor x \rfloor$ denote Floor Function or integer part of x. For example, $\lfloor 5.08 \rfloor = 5$ and $\lfloor 7 \rfloor = 7$.

Theorem 3.1. Let x be a real number. Then

$$\{x\} = x - \lfloor x \rfloor$$

where $\{x\}$ denote *Decimal Part* of x.

Definition 3.2 (Congruence of Integers). Let a, b be integers. $a \equiv_m b$ meaning a - b is divisible by m.

C. TUNGCHOTIROJ

4. Main Theorem

By applying all definitions, theorems, and lemma;

Theorem 4.1. Let n be positive integer including 0. Then:

$$R(F_n, L_n) = (n + 2\{\frac{n}{2}\})F_{n+1}$$

Proof. We separate the value of n into 2 classes below,

(1) $n \equiv_2 0$ implies

$$R(F_n, L_n) = F_1 L_n + \dots + F_{\frac{n}{2}-1} L_{\frac{n}{2}+1} + F_{\frac{n}{2}+1} L_{\frac{n}{2}-1} + \dots + F_n L_1$$

from there, using Lemma 4 yields $R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \dots + (F_{\frac{n}{2}-1}L_{\frac{n}{2}+1} + F_{\frac{n}{2}+1}L_{\frac{n}{2}-1}) = \frac{n}{2}(2F_{n+1}) = nF_{n+1}.$ (2) $n \equiv_2 1$

so
$$n+1 \equiv_2 1+1 \equiv_2 2 \equiv_2 0$$
 gives

$$R(F_n, L_n) = F_1 L_n + \ldots + F_{\frac{n+1}{2}} L_{\frac{n+1}{2}} + \ldots + F_n L_1$$

likewise (1), $R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \dots + F_{\frac{n+1}{2}}L_{\frac{n+1}{2}}$. Because

$$F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} = \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} + \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} = \frac{1}{2}(2F_{n+1}) = F_{n+1}$$

then, $R(F_n, L_n) = \frac{n}{2}(2F_{n+1}) + F_{n+1} = (n+1)F_{n+1}$. But you may wonder that where Decimal Part came from.

But you may wonder that where Decimal Part came : Because (1) we got,

$$R(F_n, L_n) = nF_{n+1} = (n+0)F_{n+1} = (n+2\{\frac{n}{2}\})F_{n+1}$$

and (2) also gives

$$R(F_n, L_n) = (n+1)F_{n+1} = (n+2\{\frac{n}{2}\})F_{n+1}$$

Therefore, the theorem have been proven.

4