GENERAL FORMULA OF FIBONACCI SEQUENCE AND LUCAS SEQUENCE'S REVERSE SUM

CHAIYAPAT TUNGCHOTIROJ

1. INTRODUCTION

The sum $\sum_{k=1}^{n} a_k b_{n+1-k} = a_1 b_n + a_2 b_{n-1} + ... + a_n b_1$, where *n* are any positive integers, denoted by $R(a_n, b_n)$, are called *Reverse Sum* of a_n and b_n . Reverse Sum usually appears in Rearrangement Inequality, but not in normal Algebra. Fibonacci Sequence $\{F_n\}$ and Lucas Sequence $\{L_n\}$ are very similar sequences because they also have recurrence formula, but have $F_0 = 0$, $F_1 = 1$ and $L_0 = 2$, $L_1 = 0$. Because of that similarity of sequences, we suggest that those sequences can be related as a function of Reverse Sum. In this paper it is shown that $R(F_n, L_n)$ can be written into general form within $\{F_n\}$ and some various constants.

2. Preliminaries

These are some important theorems to proof the following main theorem. Definition 1: The sequence $\{F_n\}$ is called *Fibonacci Sequence* if and only if,

$$F_n = F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$

where n denote integer such that $n \ge 2$. **Definition 2:** Sequence $\{L_n\}$ is called *Lucas Sequence* if and only if,

$$L_n = L_{n-1} + L_{n-2}, L_0 = 2, L_1 = 1$$

where n denote integer such that $n \geq 2$.

Lemma 1: Consider type IV of recurrence relation $\{a_n\}$ like this,

$$a_{n+1} = pa_n + qa_{n-1}, n \ge 2, (q \ne 0)$$

Determine α and β . (3) gives $a_{n+1} = (\alpha + \beta)a_n - \alpha\beta a_{n-1}$, so let $\alpha + \beta = p$ and $\alpha\beta = -q$. Thus, α, β are the two roots of the quadratic equation $t^2 - pt - q = 0$, which is called the *Characteristic Equation* of the given recurrence formula.

(1) $a_n = A\alpha^n + B\beta^n$, if $\alpha \neq \beta$ (2) $a_n = (An + B)\alpha^n$, if $\alpha = \beta$

where A, B are constants determined by the initial values a_1 and a_2 . Now, We start with considering the following Reverse Sum definition **Definition 3:**

$$R(F_n, L_n) = F_1 L_n + F_2 L_{n-1} + \dots + F_n L_1$$

We can observe symmetry of the expression such as F_1L_n and F_nL_1 . Which needed to be established the following lemma;

Lemma 2: Suppose Fibonacci Sequence $\{F_n\}$. Then,

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Proof: By Definition 1 gives $\alpha + \beta = 1$ and $\alpha\beta = -1$ respectively. Considering Characteristic Equation by substituting $p, q: t^2 - t + 1 = 0$, gives the solution

$$\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2}.$$

That mean $\alpha \neq \beta$, so

$$F_n = A(\frac{1+\sqrt{5}}{2})^n + B(\frac{1-\sqrt{5}}{2})^n.$$

Because $F_0 = 0$ and $F_1 = 1$, it is easy to get $A = \frac{1}{\sqrt{5}}$ and $B = -\frac{1}{\sqrt{5}}$. Therefore, the lemma have been proved. \Box

Lemma 3: Suppose Lucas Sequence $\{L_n\}$. Then,

$$L_n = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$$

Proof: Claiming Definition 2 gives $\alpha + \beta = 1$ and $\alpha\beta = -1$ respectively. By similarity of Lemma 2 gives

$$L_n = A(\frac{1+\sqrt{5}}{2})^n + B(\frac{1-\sqrt{5}}{2})^n.$$

From $L_0 = 2$ and $L_1 = 1$ yield A = B = 1. Thus, proving have been occured. **Lemma 4:** Suppose that $\{F_n\}$ and $\{L_n\}$ be Fibonacci Sequence and Lucas Sequence. Let m and n are positive integer including 0. Then,

$$F_m L_n + F_n L_m = 2F_{m+m}$$

Proof: Make it easy by assuming $\Psi_1 = \frac{1+\sqrt{5}}{2}$, $\Psi_2 = \frac{1-\sqrt{5}}{2}$ and $\eta = \frac{1}{\sqrt{5}}$. Then:

$$F_m L_n + F_n L_m = (\eta \Psi_1^m - \eta \Psi_2^m) (\Psi_1^n + \Psi_2^n) + (\eta \Psi_1^n - \eta \Psi_2^n) (\Psi_1^m + \Psi_2^m)$$

= $2\eta \Psi_1^m \Psi_2^n - 2\eta \Psi_1^m \Psi_2^n$
= $2(\eta \Psi_1^{m+n} - \eta \Psi_2^{m+n}) = 2F_{m+n}$

Definition 4: Let x be a real number. $\lfloor x \rfloor$ denote *Floor Function* or integer part of x. For example, $\lfloor 5.08 \rfloor = 5$ and $\lfloor 7 \rfloor = 7$. **Definition 5:** Let x be a real number. Then

Definition 5: Let x be a real number. Then

$$\{x\} = x - \lfloor x \rfloor$$

where $\{x\}$ denote *Decimal Part* of x.

Definition 6: Let a, b be integers. $a \equiv_m b$ meaning a - b is divisible by m.

GENERAL FORMULA OF FIBONACCI SEQUENCE AND LUCAS SEQUENCE'S REVERSE SUM

3. MAIN THEOREM

By applying all Definitions and Lemma,

Theorem 1: Let n be positive integer including 0. Then:

$$R(F_n, L_n) = (n + 2\{\frac{n}{2}\})F_{n+1}$$

Proof: We separate the value of n into 2 classes below,

(1) $n \equiv_2 0$ implies

$$R(F_n, L_n) = F_1 L_n + \dots + F_{\frac{n}{2}-1} L_{\frac{n}{2}+1} + F_{\frac{n}{2}+1} L_{\frac{n}{2}-1} + \dots + F_n L_1$$

from there, using Lemma 4 yields $R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \dots + (F_{\frac{n}{2}-1}L_{\frac{n}{2}+1} + F_{\frac{n}{2}+1}L_{\frac{n}{2}-1}) = \frac{n}{2}(2F_{n+1}) = nF_{n+1}.$ (2) $n \equiv_2 1$

so
$$n + 1 \equiv_2 1 + 1 \equiv_2 2 \equiv_2 0$$
 gives

$$R(F_n, L_n) = F_1 L_n + \dots + F_{\frac{n+1}{2}} L_{\frac{n+1}{2}} + \dots + F_n L_1$$
(1)
$$R(F_n, L_n) = (F_1 L_n + F_1 L_n) + (F_1 L_n + F_n L_n$$

likewise (1),
$$R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \dots + F_{\frac{n+1}{2}}L_{\frac{n+1}{2}}$$
.
Because $F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} = \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} + \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2}} = \frac{1}{2}(2F_{n+1}) = F_{n+1}$, so
 $R(F_n, L_n) = \frac{n}{2}(2F_{n+1}) + F_{n+1} = (n+1)F_{n+1}$.

But you may wonder that where Decimal Part came from. Because (1) we got $R(F_n, L_n) = nF_{n+1} = (n+0)F_{n+1} = (n+2\{\frac{n}{2}\})F_{n+1}$ and (2) makes $R(F_n, L_n) = (n+1)F_{n+1} = (n+2\{\frac{n}{2}\})F_{n+1}$ Then the theorem have been proven. \Box