GENERAL FORMULA OF FIBONACCI SEQUENCE AND LUCAS SEQUENCE'S REVERSE SUM

CHAIYAPAT TUNGCHOTIROJ

1. Introduction

The sum $\sum_{k=1}^{n} a_{k} b_{n+1-k}=a_{1} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1}$, where n are any positive integers, denoted by $R\left(a_{n}, b_{n}\right)$, are called Reverse Sum of a_{n} and b_{n}. Reverse Sum usually appears in Rearrangement Inequality, but not in normal Algebra. Fibonacci Sequence $\left\{F_{n}\right\}$ and Lucas Sequence $\left\{L_{n}\right\}$ are very similar sequences because they also have recurrence formula, but have $F_{0}=0, F_{1}=1$ and $L_{0}=2, L_{1}=0$. Because of that similarity of sequences, we suggest that those sequences can be related as a function of Reverse Sum. In this paper it is shown that $R\left(F_{n}, L_{n}\right)$ can be written into general form within $\left\{F_{n}\right\}$ and some various constants.

2. Preliminaries

These are some important theorems to proof the following main theorem.
Definition 1: The sequence $\left\{F_{n}\right\}$ is called Fibonacci Sequence if and only if,

$$
F_{n}=F_{n-1}+F_{n-2}, F_{0}=0, F_{1}=1
$$

where n denote integer such that $n \geq 2$.
Definition 2: Sequence $\left\{L_{n}\right\}$ is called Lucas Sequence if and only if,

$$
L_{n}=L_{n-1}+L_{n-2}, L_{0}=2, L_{1}=1
$$

where n denote integer such that $n \geq 2$.
Lemma 1: Consider type IV of recurrence relation $\left\{a_{n}\right\}$ like this,

$$
a_{n+1}=p a_{n}+q a_{n-1}, n \geq 2,(q \neq 0) .
$$

Determine α and β. (3) gives $a_{n+1}=(\alpha+\beta) a_{n}-\alpha \beta a_{n-1}$, so let $\alpha+\beta=p$ and $\alpha \beta=-q$. Thus, α, β are the two roots of the quadratic equation $t^{2}-p t-q=0$, which is called the Characteristic Equation of the given recurrence formula.
(1) $a_{n}=A \alpha^{n}+B \beta^{n}$, if $\alpha \neq \beta$
(2) $a_{n}=(A n+B) \alpha^{n}$, if $\alpha=\beta$
where A, B are constants determined by the initial values a_{1} and a_{2}. Now, We start with considering the following Reverse Sum definition Definition 3:

$$
R\left(F_{n}, L_{n}\right)=F_{1} L_{n}+F_{2} L_{n-1}+\ldots+F_{n} L_{1}
$$

We can observe symmetry of the expression such as $F_{1} L_{n}$ and $F_{n} L_{1}$. Which needed to be established the following lemma;
Lemma 2: Suppose Fibonacci Sequence $\left\{F_{n}\right\}$. Then,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Proof: By Definition 1 gives $\alpha+\beta=1$ and $\alpha \beta=-1$ respectively. Considering Characteristic Equation by substituting $p, q: t^{2}-t+1=0$, gives the solution

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} .
$$

That mean $\alpha \neq \beta$, so

$$
F_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

Because $F_{0}=0$ and $F_{1}=1$, it is easy to get $A=\frac{1}{\sqrt{5}}$ and $B=-\frac{1}{\sqrt{5}}$. Therefore, the lemma have been proved.
Lemma 3: Suppose Lucas Sequence $\left\{L_{n}\right\}$. Then,

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Proof: Claiming Definition 2 gives $\alpha+\beta=1$ and $\alpha \beta=-1$ respectively. By similarity of Lemma 2 gives

$$
L_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

From $L_{0}=2$ and $L_{1}=1$ yield $A=B=1$. Thus, proving have been occured.
Lemma 4: Suppose that $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ be Fibonacci Sequence and Lucas Sequence. Let m and n are positive integer including 0 . Then,

$$
F_{m} L_{n}+F_{n} L_{m}=2 F_{m+n}
$$

Proof: Make it easy by assuming $\Psi_{1}=\frac{1+\sqrt{5}}{2}, \Psi_{2}=\frac{1-\sqrt{5}}{2}$ and $\eta=\frac{1}{\sqrt{5}}$. Then:

$$
\begin{aligned}
F_{m} L_{n}+F_{n} L_{m} & =\left(\eta \Psi_{1}^{m}-\eta \Psi_{2}^{m}\right)\left(\Psi_{1}^{n}+\Psi_{2}^{n}\right)+\left(\eta \Psi_{1}^{n}-\eta \Psi_{2}^{n}\right)\left(\Psi_{1}^{m}+\Psi_{2}^{m}\right) \\
& =2 \eta \Psi_{1}^{m} \Psi_{2}^{n}-2 \eta \Psi_{1}^{m} \Psi_{2}^{n} \\
& =2\left(\eta \Psi_{1}^{m+n}-\eta \Psi_{2}^{m+n}\right)=2 F_{m+n} \quad \square
\end{aligned}
$$

Definition 4: Let x be a real number. $\lfloor x\rfloor$ denote Floor Function or integer part of x. For example, $\lfloor 5.08\rfloor=5$ and $\lfloor 7\rfloor=7$.
Definition 5: Let x be a real number. Then

$$
\{x\}=x-\lfloor x\rfloor
$$

where $\{x\}$ denote Decimal Part of x.
Definition 6: Let a, b be integers. $a \equiv_{m} b$ meaning $a-b$ is divisible by m.

3. Main Theorem

By applying all Definitions and Lemma,
Theorem 1: Let n be positive integer including 0 . Then:

$$
R\left(F_{n}, L_{n}\right)=\left(n+2\left\{\frac{n}{2}\right\}\right) F_{n+1}
$$

Proof: We separate the value of n into 2 classes below,
(1) $n \equiv_{2} 0$ implies

$$
R\left(F_{n}, L_{n}\right)=F_{1} L_{n}+\ldots+F_{\frac{n}{2}-1} L_{\frac{n}{2}+1}+F_{\frac{n}{2}+1} L_{\frac{n}{2}-1}+\ldots+F_{n} L_{1}
$$

from there, using Lemma 4 yields $R\left(F_{n}, L_{n}\right)=\left(F_{1} L_{n}+F_{n} L_{1}\right)+\left(F_{2} L_{n-1}+\right.$ $\left.F_{n-1} L_{2}\right)+\ldots+\left(F_{\frac{n}{2}-1} L_{\frac{n}{2}+1}+F_{\frac{n}{2}+1} L_{\frac{n}{2}-1}\right)=\frac{n}{2}\left(2 F_{n+1}\right)=n F_{n+1}$.
(2) $n \equiv_{2} 1$
so $n+1 \equiv_{2} 1+1 \equiv_{2} 2 \equiv_{2} 0$ gives

$$
R\left(F_{n}, L_{n}\right)=F_{1} L_{n}+\ldots+F_{\frac{n+1}{2}} L_{\frac{n+1}{2}}+\ldots+F_{n} L_{1}
$$

likewise (1), $R\left(F_{n}, L_{n}\right)=\left(F_{1} L_{n}+F_{n} L_{1}\right)+\left(F_{2} L_{n-1}+F_{n-1} L_{2}\right)+\ldots+F_{\frac{n+1}{2}} L_{\frac{n+1}{2}}$.
Because $F_{\frac{n+1}{2}} L_{\frac{n+1}{2}}=\frac{1}{2} F_{\frac{n+1}{2}} L_{\frac{n+1}{2}}+\frac{1}{2} F_{\frac{n+1}{2}} L_{\frac{n+1}{2}}=\frac{1}{2}\left(2 F_{n+1}\right)=F_{n+1}$, so $R\left(F_{n}, L_{n}\right)=\frac{n}{2}\left(2 F_{n+1}\right)+\stackrel{F}{n+1}^{=}(n+1)^{2} F_{n+1}$.
But you may wonder that where Decimal Part came from.
Because (1) we got $R\left(F_{n}, L_{n}\right)=n F_{n+1}=(n+0) F_{n+1}=\left(n+2\left\{\frac{n}{2}\right\}\right) F_{n+1}$
and (2) makes $R\left(F_{n}, L_{n}\right)=(n+1) F_{n+1}=\left(n+2\left\{\frac{n}{2}\right\}\right) F_{n+1}$
Then the theorem have been proven.

