1. Introduction

The sum $\sum_{k=1}^{n} a_{k}b_{n+1-k} = a_{1}b_{n} + a_{2}b_{n-1} + ... + a_{n}b_{1}$, where n are any positive integers, denoted by $R(a_{n}, b_{n})$, are called Reverse Sum of a_{n} and b_{n}. Reverse Sum usually appears in Rearrangement Inequality, but not in normal Algebra. Fibonacci Sequence $\{F_{n}\}$ and Lucas Sequence $\{L_{n}\}$ are very similar sequences because they also have recurrence formula, but have $F_{0} = 0$, $F_{1} = 1$ and $L_{0} = 2$, $L_{1} = 0$. Because of that similarity of sequences, we suggest that those sequences can be related as a function of Reverse Sum. In this paper it is shown that $R(F_{n}, L_{n})$ can be written into general form within $\{F_{n}\}$ and some various constants.

2. Preliminaries

These are some important theorems to proof the following main theorem.

Definition 1: The sequence $\{F_{n}\}$ is called Fibonacci Sequence if and only if,

$$F_{n} = F_{n-1} + F_{n-2}, F_{0} = 0, F_{1} = 1$$

where n denote integer such that $n \geq 2$.

Definition 2: Sequence $\{L_{n}\}$ is called Lucas Sequence if and only if,

$$L_{n} = L_{n-1} + L_{n-2}, L_{0} = 2, L_{1} = 1$$

where n denote integer such that $n \geq 2$.

Lemma 1: Consider type IV of recurrence relation $\{a_{n}\}$ like this,

$$a_{n+1} = pa_{n} + qa_{n-1}, n \geq 2, (q \neq 0).$$

Determine α and β. (3) gives $a_{n+1} = (\alpha + \beta)a_{n} - \alpha\beta a_{n-1}$, so let $\alpha + \beta = p$ and $\alpha\beta = -q$. Thus, α, β are the two roots of the quadratic equation $t^{2} - pt - q = 0$, which is called the Characteristic Equation of the given recurrence formula.

(1) $a_{n} = A\alpha^{n} + B\beta^{n}$, if $\alpha \neq \beta$

(2) $a_{n} = (An + B)\alpha^{n}$, if $\alpha = \beta$

where A, B are constants determined by the initial values a_{1} and a_{2}.

Now, We start with considering the following Reverse Sum definition

Definition 3:
\[R(F_n, L_n) = F_1L_n + F_2L_{n-1} + \ldots + F_nL_1 \]

We can observe symmetry of the expression such as \(F_1L_n \) and \(F_nL_1 \). Which needed to be established the following lemma;

Lemma 2: Suppose Fibonacci Sequence \(\{F_n\} \). Then,

\[
F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

Proof: By Definition 1 gives \(\alpha + \beta = 1 \) and \(\alpha \beta = -1 \) respectively. Considering Characteristic Equation by substituting \(p, q \): \(t^2 - t + 1 = 0 \), gives the solution

\[
\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2}.
\]

That mean \(\alpha \neq \beta \), so

\[
F_n = A \left(\frac{1 + \sqrt{5}}{2} \right)^n + B \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

Because \(F_0 = 0 \) and \(F_1 = 1 \), it is easy to get \(A = \frac{1}{\sqrt{5}} \) and \(B = -\frac{1}{\sqrt{5}} \). Therefore, the lemma have been proved. \(\square \)

Lemma 3: Suppose Lucas Sequence \(\{L_n\} \). Then,

\[
L_n = \left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

Proof: Claiming Definition 2 gives \(\alpha + \beta = 1 \) and \(\alpha \beta = -1 \) respectively. By similarity of Lemma 2 gives

\[
L_n = A \left(\frac{1 + \sqrt{5}}{2} \right)^n + B \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

From \(L_0 = 2 \) and \(L_1 = 1 \) yield \(A = B = 1 \). Thus, proving have been occured. \(\square \)

Lemma 4: Suppose that \(\{F_n\} \) and \(\{L_n\} \) be Fibonacci Sequence and Lucas Sequence. Let \(m \) and \(n \) are positive integer including 0. Then,

\[
F_mL_n + F_nL_m = 2F_{m+n}
\]

Proof: Make it easy by assuming \(\Psi_1 = \frac{1 + \sqrt{5}}{2}, \Psi_2 = \frac{1 - \sqrt{5}}{2} \) and \(\eta = \frac{1}{\sqrt{5}} \). Then:

\[
F_mL_n + F_nL_m = (\eta \Psi_1^m - \eta \Psi_2^m)(\Psi_1^n + \Psi_2^n) + (\eta \Psi_1^n - \eta \Psi_2^n)(\Psi_1^m + \Psi_2^m)
= 2\eta \Psi_1^m \Psi_2^n - 2\eta \Psi_1^n \Psi_2^m
= 2(\eta \Psi_1^{m+n} - \eta \Psi_2^{m+n}) = 2F_{m+n} \quad \square
\]

Definition 4: Let \(x \) be a real number. \(\lfloor x \rfloor \) denote *Floor Function* or integer part of \(x \). For example, \(\lfloor 5.08 \rfloor = 5 \) and \(\lfloor 7 \rfloor = 7 \).

Definition 5: Let \(x \) be a real number. Then

\[
\{x\} = x - \lfloor x \rfloor
\]

where \(\{x\} \) denote *Decimal Part* of \(x \).

Definition 6: Let \(a, b \) be integers. \(a \equiv_m b \) meaning \(a - b \) is divisible by \(m \).
3. Main Theorem

By applying all Definitions and Lemma,

Theorem 1: Let \(n \) be positive integer including 0. Then:

\[
R(F_n, L_n) = (n + 2\{\frac{n}{2}\})F_{n+1}
\]

Proof: We separate the value of \(n \) into 2 classes below,

(1) \(n \equiv_2 0 \) implies

\[
R(F_n, L_n) = F_1L_n + \ldots + F_{\frac{n}{2} - 1}L_{\frac{n}{2} + 1} + F_{\frac{n}{2} + 1}L_{\frac{n}{2} - 1} + \ldots + F_nL_1
\]

from there, using Lemma 4 yields

\[
R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \ldots + (F_{\frac{n}{2} - 1}L_{\frac{n}{2} + 1} + F_{\frac{n}{2} + 1}L_{\frac{n}{2} - 1}) = \frac{n}{2}(2F_{n+1}) = nF_{n+1}.
\]

(2) \(n \equiv_2 1 \)

so \(n + 1 \equiv_2 1 + 1 \equiv_2 2 \equiv_2 0 \) gives

\[
R(F_n, L_n) = F_1L_n + \ldots + F_{\frac{n+1}{2} - 1}L_{\frac{n+1}{2} + 1} + \ldots + F_nL_1
\]

likewise (1), \(R(F_n, L_n) = (F_1L_n + F_nL_1) + (F_2L_{n-1} + F_{n-1}L_2) + \ldots + F_{\frac{n+1}{2} - 1}L_{\frac{n+1}{2} + 1} \).

Because \(F_{\frac{n+1}{2} - 1}L_{\frac{n+1}{2} + 1} = \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2} + 1} + \frac{1}{2}F_{\frac{n+1}{2}}L_{\frac{n+1}{2} - 1} = \frac{1}{2}(2F_{n+1}) = F_{n+1} \), so

\[
R(F_n, L_n) = \frac{n}{2}(2F_{n+1}) + F_{n+1} = (n + 1)F_{n+1}.
\]

But you may wonder that where Decimal Part came from.

Because (1) we got \(R(F_n, L_n) = nF_{n+1} = (n + 0)F_{n+1} = (n + 2\{\frac{n}{2}\})F_{n+1} \)

and (2) makes \(R(F_n, L_n) = (n + 1)F_{n+1} = (n + 2\{\frac{n}{2}\})F_{n+1} \)

Then the theorem have been proven. \(\square \)