There are no quasiperfect numbers

Kouji Takaki

April 24th, 2020
Abstract

Let \(b \) be a quasiperfect number. Let the prime factors of \(b \) which are different from each other be primes \(p_1, p_2, \ldots, p_r \) and let the exponent of \(p_k \) be a positive integer \(q_k \). If the product of the series of the prime factors is an odd integer \(a \),

\[
a = \prod_{k=1}^{r} (p_k^{q_k} + p_k^{q_k-1} + \cdots + 1)
\]

\[
b = \prod_{k=1}^{r} p_k^{q_k}
\]

If \(b \) is a quasiperfect number,

\[
a = 2b + 1
\]

holds. By a research of this paper, let \(a_k \) be an odd integer, \(b_k \) be an integer and \(c_k \) be an even integer and the following equations are assumed to hold.

\[
a_k = a / (p_k^{q_k} + \cdots + 1)
\]

\[
b_k = b / p_k^{q_k}
\]

\[
a_k = c_k p_k + 1
\]

When \(r \geq 2 \), By a proof which uses the product of \(a_k / b_k \), in order for \(b \) to be a quasiperfect number the following expression must be satisfied when \(r \geq 2 \).

\[
b = 1/2
\]

We have obtained a conclusion that there are no quasiperfect numbers since this expression does not hold.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Proof</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>
1. Introduction
In mathematics, a quasiperfect number is a natural number \(n \) for which the sum of all its divisors (the divisor function \(\sigma(n) \)) is equal to \(2n + 1 \). (Quoted from Wikipedia)

In this paper, we prove that there are no quasiperfect numbers.

2. Proof
Let \(b \) be a quasiperfect number. Let the prime factors of \(b \) which are different from each other be primes \(p_1,p_2,\ldots,p_r \) and let the exponent of \(p_k \) be a positive integer \(q_k \).

If the product of the series of the prime factors is an odd integer \(a \),
\[
a = \prod_{k=1}^{r} (p_k^{q_k} + p_k^{q_k-1} + \cdots + 1) \quad \ldots \quad ①
\]
\[
b = \prod_{k=1}^{r} p_k^{q_k} \quad \ldots \quad ②
\]

If \(b \) is a quasiperfect number,
\[
a = 2b + 1 \quad \ldots \quad ③
\]
holds.

Let \(a_k \) be an odd integer and \(b_k \) be an integer,
\[
a_k = \frac{a}{(p_k^{q_k} + \cdots + 1)}
\]
\[
b_k = \frac{b}{p_k^{q_k}}
\]
\(p_k^{q_k} + \cdots + 1 \) is odd since \(a \) and \(a_k \) are odd integers. Thereby, \(q_k \) is an even integer for all \(k \).

From the equation ③,
\[
a_k(p_k^{q_k} + \cdots + 1) = 2b_k p_k^{q_k} + 1 \quad \ldots \quad ④
\]

1. When \(r = 1 \)
\[
p_1^{q_1} + \cdots + 1 = 2p_1^{q_1} + 1
\]
\[
p_1^{q_1-1} + \cdots + 1 = 2p_1^{q_1-1}
\]
\(1 \equiv 0 \pmod{p_1} \)

It becomes inconsistent. Therefore, quasiperfect numbers do not exist when \(r = 1 \).
II. When \(r \geq 2 \)
\[
p_k q^k + \cdots + 1 = (p_k q^k + 1)/(p_k - 1) < p_k q^k + 1/\left(p_k - 1\right)
\]

When \(p_k = 2 \),
\[
p_k q^k + \cdots + 1 < p_k q^k + 1
\]
\[
a_k(p_k q^k + \cdots + 1) < a_k p_k q^k + 1
\]
From the equation (4),
\[
2b_k p_k q^k + 1 < a_k p_k q^k + 1
\]
\[
a_k/b_k > 2/p_k
\]

When \(p_k \geq 3 \),
\[
p_k q^k + \cdots + 1 < p_k q^k + 1/2
\]
In the same way,
\[
a_k/b_k > 4/p_k
\]

If \(p_1 \geq 2 \),
\[
\prod_{k=1}^{r} \left(a_k/b_k\right) > (2/p_1) \prod_{k=2}^{r} \left(4/p_k\right)
\]
\[
(a/b)^{r-1} > 2^{2r-1} / \prod_{k=1}^{r} p_k
\]
\[
\prod_{k=1}^{r} p_k > 2^{2r-1}/(a/b)^{r-1} \quad \text{... (5)}
\]

Let \(c_k \) be an even integer. From the equation (4),
\[
a_k = c_k p_k + 1
\]

From the inequality (5),
\[
\prod_{k=1}^{r} a_k > \prod_{k=1}^{r} c_k p_k > 2^{2r-1} \prod_{k=1}^{r} c_k / (a/b)^{r-1}
\]
\[
a^{r-1} > 2\prod_{k=1}^{r} c_k \times 4^{r-1}/(a/b)^{r-1} \quad \text{... (6)}
\]
\[
(a^2/(4b))^{r-1} > 2\prod_{k=1}^{r} c_k
\]
\[(2b + 1)^2 / (4b)r^{-1} > 2 \prod_{k=1}^{r} c_k\]

\[(2\sqrt{2} \times b)^2 / (4b) > (2 \prod_{k=1}^{r} c_k)^{1/(r-1)}\]

\[a > 2b > (2 \prod_{k=1}^{r} c_k)^{1/(r-1)}\]

\[a^{r-1} > 2 \prod_{k=1}^{r} c_k\]

From the inequality 6, a set A and a set B each having \(a\) as an element are defined under the following conditions.

\[A: a^{r-1} > 2 \prod_{k=1}^{r} c_k \times 4^{r-1}/(a/b)^{r-1}\]

\[B: a^{r-1} > 2 \prod_{k=1}^{r} c_k\]

Since \(A \Rightarrow B\), \(A \subseteq B\) holds. On the other hand \(A \supseteq B\) holds because \(B \land \neg A = \varnothing\) must be hold. Therefore, \(A = B\) must be satisfied.

\[4^{r-1}/(a/b)^{r-1} = 1\]

\[a/b = 4\]

\[2b + 1 = 4b\]

\[b = 1/2\]

This expression does not hold obviously when \(r \geq 2\). Therefore, quasiperfect numbers do not exist when \(r \geq 2\). From the above I and II, there are no quasiperfect numbers.

3. Acknowledgement

We would like to thank the family members who sustained the research environment and the mathematicians who reviewed these studies in conducting this study.
4. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
Fumio Sairaiji · Kenichi Shimizu "A story that prime is playing" Kodansha, 2015
The Free Encyclopedia Wikipedia
Kouji Takaki "Proof that there are no odd perfect numbers". 2020
Kouji Takaki "Non-existence of odd n-multiperfect numbers". 2020