Non-existence of odd n-perfect numbers

Kouji Takaki

April 25th, 2020
Abstract
Let \(n \) be an integer greater than 1 and let \(b \) be an odd \(n \)-multiperfect number. Let the prime factors of \(b \) which are different from each other be odd primes \(p_1, p_2, \ldots, p_r \) and let the exponent of \(p_k \) be an integer \(q_k \). If the product of the series of the prime factors is an integer \(a \),

\[
a = \prod_{k=1}^{r} (p_k^{q_k} + p_k^{q_k-1} + \cdots + 1)
\]

\[
b = \prod_{k=1}^{r} p_k^{q_k}
\]

If \(b \) is a \(n \)-multiperfect number,

\[
a = nb
\]

holds. By a research of this paper, let \(a_k \) be an integer and \(b_k \) be an odd integer and if

\[
a_k = a/(p_k^{q_k} + \cdots + 1)
\]

\[
b_k = b/p_k^{q_k}
\]

holds, when \(r \geq 3 \), by a proof which uses the primes and the greatest common divisor (GCD) contained in \(a_k/b_k \), the following inequality was obtained.

\[
b^{r-2} \leq n
\]

\[
n < (3/2)^r
\]

By these inequalities, we have obtained a conclusion that there are no odd \(n \)-perfect numbers when \(n > 1 \).

Contents

Introduction 2
Proof 2
Acknowledgement 6
References 6
1. Introduction

A multiperfect number is a natural number whose divisor sum is an integral multiple of the original number. A multiperfect number is simply called a perfect number. For example, the sum of the divisors of 120 is

\[1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 + 120 = 360\]

which is three times 120, so 120 is a 3-multiperfect number. (Quoted from Wikipedia)

In this paper, we prove that there are no odd n-multiperfect numbers when \(n > 1\).

2. Proof

Let \(n\) be an integer greater than 1 and let \(b\) be an odd \(n\)-multiperfect number. Let the prime factors of \(b\) which are different from each other be odd primes \(p_1, p_2, \ldots, p_r\) and let the exponent of \(p_k\) be an integer \(q_k\). If the product of the series of the prime factors is an integer \(a\),

\[a = \prod_{k=1}^{r} (p_k^{q_k} + p_k^{q_k-1} + \cdots + 1) \quad \text{①}\]

\[b = \prod_{k=1}^{r} p_k^{q_k} \quad \text{②}\]

If \(b\) is a \(n\)-multiperfect number, \(a = nb\) \quad \text{③}\n
holds.

Let \(a_k\) be an integer and \(b_k\) be an odd integer,

\[a_k = a/(p_k^{q_k} + \cdots + 1)\]

\[b_k = b/p_k^{q_k}\]

From the expression ③,

\[a_k(p_k^{q_k} + \cdots + 1) = nb_k p_k^{q_k} \quad \text{④}\]

When \(r = 1\),

\[p_1^{q_1} + \cdots + 1 = np_1^{q_1}\]

Since \(1 \equiv 0 \pmod{p_1}\) holds, when \(r = 1\), odd \(n\)-multiperfect numbers do not exist.
When \(r \geq 2 \),

From the equation ④,
\[a_k(p_k^{q_k+1} - 1) = nb_k p_k^{q_k}(p_k - 1) \]
\[a_k p_k - nb_k(p_k - 1) = a_k / p_k^{q_k} \]

Since the left side is an integer, let \(c_k \) be an integer,
\[c_k = a_k / p_k^{q_k} = a_k p_k - nb_k(p_k - 1) \] ... ⑤
holds.

\[c_k p_k^{q_k+1} - nb_k(p_k - 1) = c_k \]
\[nb_k(p_k - 1) = c_k(p_k^{q_k+1} - 1) \]
\[nb_k = c_k(p_k^{q_k} + \cdots + 1) \] ... ⑥

When \(p_k > 1 \),
\[p_k^{q_k} - 1 < p_k^{q_k} \]
\[(p_k^{q_k} - 1)/(p_k - 1) < p_k^{q_k}/(p_k - 1) \]
\[p_k^{q_k-1} + \cdots + 1 < p_k^{q_k}/(p_k - 1) \]

Because \(p_k \) is an odd prime and \(p_k \geq 3 \) holds,
\[p_k^{q_k-1} + \cdots + 1 < p_k^{q_k}/2 \]

From the equation ⑤ and the equation ⑥,
\[nb_k - a_k = c_k(p_k^{q_k} + \cdots + 1) - c_k p_k^{q_k} = c_k(p_k^{q_k-1} + \cdots + 1) \]
\[nb_k - a_k < c_k p_k^{q_k}/2 = a_k/2 \]
\[a_k/b_k > 2n/3 \] ... ⑦

When \(r = 2 \),
\[a_1 = p_2^{q_2} + \cdots + 1 \]
\[b_1 = p_2^{q_2} \]
\[a_1/b_1 = (p_2^{q_2} + \cdots + 1)/p_2^{q_2} = (p_2^{q_2+1} - 1)/(p_2^{q_2}(p_2 - 1)) < p_2/(p_2 - 1) \]

If \(p_1 < p_2 \), since \(p_2 \geq 5 \) holds,
\[a_1/b_1 < 5/4 \]
This inequality contradicts the inequality ⑦ when \(n > 1 \). Therefore, there are no odd \(n \)-multiperfect numbers when \(r = 2 \).
When \(r \geq 3 \),
From the equation ①,

\[
a_k/b_k = n p_k^{q_k} / (p_k^{q_k} + \cdots + 1) \quad \cdots \quad ⑧
\]

When \(n \) is divided by \(p_k^{q_k} + \cdots + 1 \), let \(n' \) be an integer,

\[
n' = n p_k^{q_k} / (p_k^{q_k} + \cdots + 1)
\]

\(a_k = n'b_k \)

hold. The equation ⑧ is an equation for obtaining \(n' \)-multiperfect numbers. When \(n \) is divisible by \(p_k^{q_k} + \cdots + 1 \) with respect to a plurality of \(q_k \) with the same \(p_k \), \(n \) is divided by the number of one of the \(q_k \). By repeating this operation, it is possible to prevent \(n \) from being divisible by \(p_k^{q_k} + \cdots + 1 \) for all \(k \).

A case where \(n \) cannot be divided by \(p_k^{q_k} + \cdots + 1 \) for all \(k \) is considered. At this time, the right side is not an integer. \(p_k^{q_k} + \cdots + 1 \) is the product of the prime factors \(p_1 \) to \(p_r \) excluding \(p_k \) and the divisor of \(n \). Let \(C_k \) be the greatest common divisor (GCD) of the denominators on both sides. When the denominator on both sides are divided by \(C_k \), if \(nC_k \) becomes a multiple of the denominator on the left side, let \(m_k \) be an integer,

\[
nC_k = m_k(p_k^{q_k} + \cdots + 1)
\]

this equation is assumed to be hold, the value of the left side of the equation ⑧ is \(m_k p_k^{q_k} / C_k \). If this value is assumed to be an integer, \(m_k \) is a multiple of \(C_k \) since \(p_k \) does not exist as the prime factor of \(C_k \). However, this contradicts the condition that \(n \) is not divided by \(p_k^{q_k} + \cdots + 1 \). Therefore, when \(C_k \) is transposed from the denominator on the left side to the right side, the right side does not become an integer.

Let \(P_k \) be an odd integer and \(P_k = b_k/C_k \) holds. When \(b_k > C_k \), if the denominator on the left side is a multiple of \(P_k \), it becomes a contradiction since the left side is an integer and the right side is not. Therefore, when the left side is reduced, at least one of the prime factors \(p_s \) of \(P_k \) remains in the denominator. At this time, it becomes inconsistent since the prime number \(p_s \) does not exist in the denominator on the right side. Thereby, \(b_k = C_k \) must be established since the equation ⑧ does not hold when \(b_k > C_k \).
When \(b_k = c_k \), let \(d_k \) be a positive integer,

\[
p_k^{q_k} + \cdots + 1 = d_k b_k
\]

\[
a_k = np_k^{q_k} / d_k = c_k p_k^{q_k}
\]

\[
c_k = n / d_k
\]

\(d_k \) must be a divisor of \(n \) since \(c_k \) is an integer.

When \(c_k = n / d_k \) holds, since \(c_k \leq n \) is established,

\[
a_k = c_k p_k^{q_k} \leq np_k^{q_k}
\]

Since this inequality holds for all \(k \),

\[
\prod_{k=1}^{r} a_k \leq \prod_{k=1}^{r} (np_k^{q_k})
\]

\[
a^{r-1} \leq n^r b
\]

From the expression (3),

\[
(nb)^{r-1} \leq n^r b
\]

\[
b^{r-2} \leq n \ldots (9)
\]

From the inequality (7),

\[
\prod_{k=1}^{r} (a_k / b_k) > (2n/3)^r
\]

\[
(a/b)^{r-1} > (2n/3)^r
\]

\[
n^{r-1} > (2n/3)^r
\]

\[
n < (3/2)^r
\]

From the inequality (9),

\[
b < (3/2)^{r/(r-2)}
\]

This inequality does not hold since the right side is a monotonically decreasing function in the range of \(r > 2 \) and the maximum value is \(27/8 \) when \(r \geq 3 \). Therefore, there are no odd \(n \)-miperfect numbers when \(r \geq 3 \). From the above, there are no odd \(n \)-miperfect numbers when \(n > 1 \).
3. Acknowledgement

For the proof about the existence of odd perfect number, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

4. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015
The Free Encyclopedia Wikipedia
Kouji Takaki "Proof that there are no odd perfect numbers". 2020