Trigonometry with nested radicals

We will see what we can do with these functions
$\sqrt{2_{1}-\sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n}}}}}=2 \sin \left(\frac{90^{\circ}(2 a+1)}{2^{n}}\right)$
$\sqrt{2_{1}+\sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n}}}}}=2 \cos \left(\frac{90^{\circ}(2 a+1)}{2^{n}}\right)$
where
$n=1,2 \Rightarrow a=0$
$n \geq 2 \Rightarrow 0 \leq a \leq 2^{n-2}-1$

If n, a are known then the signs $S_{k}= \pm 1$ are given by relation
$S_{k}=(-1)^{\operatorname{round}\left(a / 2^{n-k}\right)}, k=2,3, \ldots, n-1$
If every $\operatorname{sign} S_{k}$ is replaced with the d_{k} digit according to the
$d_{k}=\left(1-S_{k}\right) / 2 \quad(+=0,-=1)$
relation, then the binary representation of a number
$b=\left(d_{2} d_{3} \ldots d_{n-1}\right)_{(2)}$
which is closely associated with the a number will be formed:

- The binary representations of the a, b numbers always have the same number of digits.
- The numbers a, b are linked to one another one-by-one, regardless of the value of n.

The following table shows the characteristic matching pattern in the area of the four-digit binary numbers (8-15). There are two ways of transferring groups of numbers, both cross-sectional and parallel. For example, if $a=11$ then $b=14$ (and vice versa).

Example

In practice, calculation of the S_{k} sign is very easy and can be done without the help of a computer.
For example, if $n=6$ and $a=12$ then we will have the following equation of signs:
$\sqrt{2_{1}-\sqrt{2_{2} \pm \sqrt{2_{3} \pm \sqrt{2_{4} \pm \sqrt{2_{5} \pm \sqrt{2_{6}}}}}}}=2 \sin \left(\frac{90^{\circ}(2 \cdot 12+1)}{2^{6}}\right)$
In order to determine the unknown signs, we first divide the a with the numbers $2^{n-2}, 2^{n-3}, \ldots, 2$ in this order, and we mark under each fraction the quotient rounded to the nearest integer. If this is an even number then you write under the fraction + , otherwise you put - . Thus, the following table is formed.

12			
16	8	4	2
1	2	3	6
-	+	-	+

So the solution is

$$
\sqrt{2_{1}-\sqrt{2_{2}-\sqrt{2_{3}+\sqrt{2_{4}-\sqrt{2_{5}+\sqrt{2_{6}}}}}}}=2 \sin \left(\frac{90^{\circ} \cdot 25}{64}\right)
$$

As shown in the previous matching table, it will be $b=1010_{(2)}=10_{(10)}$.

Algorithm for constructing a radical function

With the following algorithm you can construct a radical step-by-step function by inserting the signs S that follow the 2_{2} term. After each insertion you can see how the values of n, a and angle $\omega=90^{\circ} \mathrm{C} / 2^{n}$ are modeled, where
$c=2 a+1=2^{0} \pm 2^{1} \pm 2^{2} \pm \ldots \pm 2^{n-2}$

The auxiliary parameter t is dependent on s and takes values 0 and 1 .

Generalization

We will now extend the radical function so that we can include more general trigonometric terms in it. The following results are not fully proven, so caution is needed!
$\sqrt{2_{1}-\sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n} \pm 2 f(r)}}}}=2 \sin \omega$
$\sqrt{2_{1}+\sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n} \pm 2 f(r)}}}}=2 \cos \omega$
where
$f(r)=\sin r,-90^{\circ} \leq r \leq 90^{\circ}$ or
$f(r)=\cos r, \quad 0^{\circ} \leq r \leq 180^{\circ}$
$r \in \mathbb{R}$
and
$\omega=\frac{45^{\circ}(2 a+1)+(-1)^{a}\left(45^{\circ}-r\right)}{2^{n}}$ if $f(r)=\sin r$
$\omega=\frac{45^{\circ}(2 a+1)-(-1)^{a}\left(45^{\circ}-r\right)}{2^{n}}$ if $f(r)=\cos r$
where
$n \geq 2,0 \leq a \leq 2^{n-1}-1$
for which the signs S_{k} are computed by the relation
$S_{k}=(-1)^{\operatorname{round}\left(a / 2^{n-k}\right)}, k=1,2, \ldots, n-1$

Note that these signs are not dependent on $f(r)$.

Equations of special form

$x=\sqrt{2_{1} \pm \sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n} \pm x}}}}$

In this equation, x is unknown and all the signs S_{t} for $t=0,1,2, \ldots, n-1$ are known, with $n \geq 1$. We first find the value of an integer a through the following algorithm

Then,
if $S_{0}=+1$ the solution will be in the form $x=2 \cos r$
if $S_{0}=-1$ the solution will be in the form $x=2 \sin r$
where
$r=\frac{45^{\circ}\left(2 a+1-(-1)^{a} S_{0}\right)}{2^{n}-(-1)^{a} S_{0}}$

If the equation is
$2 \sin r=\sqrt{2_{1}-\sqrt{2_{2} \pm \sqrt{2_{3} \pm \ldots \pm \sqrt{2_{n} \pm 2 \sin r}}}}$
where r, n are known and the signs unknown, then we first determine the integer a that verifies equality
$r=\frac{45^{\circ}\left(2 a+1+(-1)^{a}\right)}{2^{n}+(-1)^{a}}, 0 \leq a \leq 2^{n-1}-1$
so the signs S_{t} are taken through the relationship
$S_{t}=(-1)^{\operatorname{round}\left(a / 2^{n-t}\right)}, t=1,2, \ldots, n-1$
The same procedure is followed to solve the above equation if in it we replace $\sin r$ with $\cos r$, except that a is determined by the relation
$r=\frac{45^{\circ}\left(2 a+1-(-1)^{a}\right)}{2^{n}-(-1)^{a}}, 0 \leq a \leq 2^{n-1}-1$
If we have a solution, then we can have infinite of them. For example, let's look at equality
$2 \sin \left(\frac{630^{\circ}}{2^{4}+1}\right)=\sqrt{2_{1}-\sqrt{2_{2}-\sqrt{\left.2_{3}+\sqrt{2_{4}-2 \sin \left(\frac{630^{\circ}}{2^{4}+1}\right.}\right)}}}$

The $-+-=101_{(2)}=5$ motif following 2_{2} corresponds to $a=6$. If we insert any number of positive signs between the terms 2_{2} and 2_{n-2}, the value of b will not change (because $00 \ldots 00101_{(2)}=$ $101_{(2)}=5=$ fixed), so the same will apply to the a value. That is, it will be
$2 \sin \left(\frac{630^{\circ}}{2^{n}+1}\right)=\sqrt{2_{1}-\sqrt{2_{2}+\ldots+\sqrt{2_{n-2}-\sqrt{2_{n-1}+\sqrt{2_{n}-2 \sin \left(\frac{630^{\circ}}{2^{n}+1}\right)}}}}}$

