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Emergence of Lagrangian Field Theory from Self-Organized Criticality 

Ervin Goldfain 

Abstract 

Self-organized criticality (SOC) is a universal mechanism for self-sustained critical behavior in large-scale 

systems evolving outside equilibrium. Our report explores a tentative link between SOC and Lagrangian 

field theory, with the long-term goal of bridging the gap between complex dynamics and the non-

perturbative behavior of quantum fields. 
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complexity theory. 

 

1. Key concepts of Self-Organized Criticality 

The study of equilibrium critical phenomena reveals that, near a second-order phase 

transition, the scaling behavior of physical observables follows the so-called finite-size 

scaling (FSS) ansatz. By analogy, the probability distribution defining the FSS ansatz in 

SOC takes the form [1, 5-6, 9-10, 13]   

 ( , )P s L  ~ ( )s

c

ss
s

−
  for 1, 1s L    (1a) 

 ( )cs L  ~ SD
L  for 1L     (1b) 

in which cs  is the cutoff in the avalanche-size and where s  and SD  are called the 

avalanche-size exponent and the avalanche dimension, respectively. Quite generally, (1) 
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shows that, for a system of finite extent and large avalanches, the avalanche-size 

probability behaves as a power-law weighted by a cutoff function. By analogy with 

equilibrium critical phenomena, the couple of exponents s  and SD  determine the 

universality class of the SOC model. 

To enable all moments of (1) to exist, the cutoff function must decay sufficiently fast. One 

obtains the following representation of the cutoff function upon power expanding it 

around zero [5],    

 ( )x  ~ 
21

(0) '(0) "(0) ..., 1
2

0, 1

x x x

x


 + +  + 

 → 

  (2) 

The avalanche-size probability must be normalized to unity and its average be diverging 

along with L→ , which leads to the following constraints     

 
1

( ; ) 1
s

P s L


=

=              for L   , (3) 

 
1

( ; )
s

s sP s L


=

= →  for L→   (4) 

Under the assumption that (0) 0  , the behavior of (1) for an infinite system size may be 

approximated as  

 lim ( ; )
L

P s L
→

 ~ (0)ss
−
   (5) 

Furthermore, to comply with (3) and (4), the avalanche-size exponent must fall in the 

range 
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 1 2s    (6) 

One may transition from the framework of equilibrium critical phenomena to SOC under 

the plausible assumption that the correlation length   displays the same behavior as the 

avalanche-size, i.e.,  

 s =  ;    cs L=   (7) 

2. From SOC to the minimal fractal manifold (MFM) 

Refs. [11-12, 14, 19-22] have discussed at length the physical significance of the minimal 

fractal manifold (MFM), a spacetime continuum characterized by arbitrarily small and 

scale-dependent deviations from four dimensions ( 4 1D = −  ). The MFM reflects an 

evolving setting that starts far-from-equilibrium and gradually reaches the equilibrium 

conditions mandated by field theory in the limit of four-dimensional spacetime ( 0 = ). 

There are well-motivated reasons to believe that dimensional fluctuations driven by   are 

asymptotically compatible with the internal structure and dynamics of the Standard 

Model of particle physics [11-12, 14, 19-22]. 

Based on these premises, as well as on (7), we introduce the hypothesis that the 

dimensional deviation   and the avalanche-size s =  are interchangeable concepts via   

 14 1D s −= − =    (8) 

This hypothesis is consistent with the philosophy of conformal field theory, as the four-

dimensional limit 0, ( 4)D = =  naturally matches the asymptotic approach to the far-

infrared regime of massless fields 1 1( 0 )m s − −= = →  .  
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Furthermore, since   is conjectured to flow with the energy scale, it likely reaches its 

uppermost observable value close to the formation of the cosmic microwave background 

(CMB) [16]. The maximal dimensional deviation is therefore set to  

 

 5

max 10c  −=   ;  c    (9) 

which turns (1) into 

 ( , )cP   ~ ( )s c 
   , 1    (10a) 

 ( )c   ~ SD , 1     (10b) 

where   is the dimensionless Renormalization Group scale. 

It can be shown that, in general, the FSS ansatz (1) or (10) can be characterized through a 

set of critical exponents   defined through [2, 9] 

 ( ) ( , )
c

f

c cP d





   



=    (11) 

or, 

  
log ( , )

( )
log

c
c

c

P d
f


  






=


  (12) 

The real numbers   represent the so-called Lipschitz-Hölder (LH) exponents and the 

multifractal spectrum ( )f   quantifies their continuous distribution in the range 
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min max[ , ]   . As the two next sections show, the multifractal spectrum plays a crucial 

role in bridging the gap between SOC and Lagrangian field theory.   

3. Key concepts of multifractal analysis 

Since multifractals and SOC are closely related, we now take a brief detour to delve into 

the topic of multifractal analysis.  

From a mathematical standpoint, multifractal analysis is a theory of self-similar 

measures [2]. A measure is defined as function that assigns a number to certain subsets 

of a given set: the number is said to represent the measure of the set. The basic properties 

of  measures are extensions of the geometrical concepts of length, area and volume, so 

that - for example - the measure of the union of two disjoint sets is the sum of the 

measures of the two sets, and the measure of the empty set is zero. Roughly speaking, a 

self-similar measure is a measure whose geometrical attributes stay unchanged upon 

arbitrary scaling operations.   

Following [2-3] in detail, let a set   supporting a measure be covered with a collection of 

boxes of size 4 1D = −  . The number of boxes needed to cover the set is defined 

through the scaling   

 ( )N   ~ HD −   (13) 

in which HD  is the Hausdorff dimension of the set, which is adequate for characterization 

of mono-fractals. In general, the quantitative description of multifractal measures 

requires replacing HD  with a continuous LH exponent   according to 
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   ~   ,    min max0 ,       (14) 

The number of boxes of size   having the LH exponent   is given by 

 ( )N   ~ ( )f  −   (15) 

where the distribution of LH exponents follows the multifractal spectrum ( )f  . The 

meaning of (15) is that there are infinitely many subsets of boxes having the LH exponent 

  in the limit 0 → .  

By analogy with equilibrium statistical mechanics and Quantum Field Theory, 

multifractal analysis is based on a partition function defined as 

 
( )

1

( ) , R

N

q

q i

i

Z q



 
=

=    (16) 

By (14), the measures assigned to boxes 1,2,..., ( )i N =  is i

i

 = . Assuming that the 

number of boxes for which i d     +  is ( )N d    , the contribution of the subset of 

boxes  with [ , ]i d    +  to the partition function is ( )( )qN d

     and thus  

 ( ) ( ) ( )q

qZ N d

   =    (17) 

By (15) and (17), we obtain   

 ( )( ) q f

qZ d   −=    (18) 
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In the limit of four-dimensional spacetime 0 ( 4)D → = , the prevailing contribution to 

the integral (18) arises from those values of the exponent   that minimize the sum 

( )fq −  [2]. Such minimum exists if      

  ( ) 0fq 



− =


  (19) 

which implies two conditions, namely  

 ( ),fq 



=


  ( )q =    (20) 

and 

 
2

2
( ) 0, ( )f q  




 =


  (21) 

Introducing the definition  

 ( ) ( ) ( ( ))q q q f q  = −   (22) 

it can be shown that 

 1( ) [ ( ) ]q q K
q

 


= +


  (23) 

in which 1K  represents a constant independent of q , that is,  1 0
K

q


=


. By (20), relation 

(22) can be presented as 
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 2[ ( ) ]( )
( ) ( ( ))

( ( ))

q Kq
q f q

q f q


 



 +
= +


  (24) 

where 2K  is a constant independent of the multifractal spectrum, that is, 2 0K f  = . 

Equations (22) (or (24)) and (23) give a parametric representation of the spectrum ( )f 

in terms of q . Taken together, (22) and (23) act as a Legendre transform from the 

variables q and   to the variables   and f . 

The Legendre transform is frequently used in various areas of theoretical physics 

including classical mechanics, statistical mechanics and thermodynamics, as well as 

Quantum Field Theory (QFT) [15].  Next section sets up the connection between (24), on 

the one hand, and the Legendre transform of Lagrangian field theory, on the other.    

4. From Multifractals to Lagrangian dynamics 

Starting from (24), it can be shown that classical statistical mechanics offers a 

straightforward analog of multifractal analysis. With reference to Tab. 1, the temperature 

( )T , internal energy ( )U , entropy ( )S and free energy ( )F  are respectively echoed in 

multifractal theory by 1, , ( )q f − and ( )q q  [2, 9]. Considering this analogy, the 

thermodynamic equation 

 ( , ) ( , )F T V U S V T S= −  (25) 

turns into a replica of the Legendre transform (24), where V stands for volume and  

 
V

U
dU TdS pdV T

S

 
 
 


= −  =


 (26) 
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Multifractals Statistical Mechanics 

q   1 T   

( )q   U   

( )q q   F   

( )f    S   

Tab 1: Mapping Multifractals to Statistical Mechanics 

(T =  temperature, U =  energy,  F =  free energy, S =  entropy) 

It is well known that the dynamics of generic classical fields is governed by the least-action 

principle [8, 17] 

 
4

( , )S d x L  =    (27) 

where S  is the action whose minimization yields the Euler-Lagrange equations 

 0 0
( )

L L
S 



 


  
=   − =


  (28) 

The Hamiltonian associated with (27) is defined by  

 0( ) ( ) ( ) ( )H x x x L x =  −   (29) 

in which the conjugate momentum is  

 
0

( )
( )

L
x




 
=


  (30) 
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One can interpolate between Lagrangian and Hamiltonian formulation of the theory 

using the kinetic ( )T and potential ( )V components according to    

 , 2L T V H T V L H V= − = +  = −   (31) 

By (31), if the potential is independent of 0 ,  (30) can be written as  

 
0 0

( )
( ) ( )

L H
x

 


   
= =

 
,   if 

0

0
( )

V

 
=


   (32) 

Inspection of the first entry in Tab. 1 hints to the analogy  

 1
Eq t

T
 =   (33) 

where 0Et ix= −  is interpreted as Euclidean time, identical with the inverse temperature 

of statistical mechanics expressed in natural units ( 1k = )  [18]. Side by side evaluation of 

(29) to (32) with (22) to (24) leads to the following operational identification 

 0 Et
     (34) 

 ( )q H    (35) 

 
( )q

L
q


−    (36) 

 0 ( )f     (37) 

 ( ) ( ) Ef d t    =   ≈ ( ) Ef t    (38) 
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 1 2 2K K V=  −   (39) 

Therefore ( )   and ( )f   form a pair of conjugate variables defining the Lagrangian 

field analog of SOC. Relations (33)-(37) are consolidated in Tab. 2.   

Multifractals Lagrangian dynamics 

q    Et   

( )q    H   

( )q q    L−   

( )f     
0   

Tab 2: Mapping Multifractals to Lagrangian dynamics 

( Et =  Euclidean time, H =  Hamiltonian, L =  Lagrangian )  

A key observation is now in order. Integrating (36) over the Euclidean time (33) shows 

that   

 3( )
( )E

E
E

t
x t

t
S d d


= −  ≈ 3( )E

E
E

t
t

t


−    (40) 

in which   denotes the spatial domain of integration. Taken together, (19), (28) and (40) 

hint that multifractal geometry and SOC lie at the root of the least-action principle.    

We close by noting that the sole intent of our work is to shed light on the tantalizing 

connection between Lagrangian dynamics and SOC. Future research may focus on several 

aspects of field theory that were not covered here, such for example, the propagator 

structure of QFT and the FSS ansatz (1) [7]. The reader is also directed to [14] for a 
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preliminary analysis of the relationship between the Legendre transform and the path 

integral formalism of perturbative QFT.   

APPENDIX 

A closer inspection of (15) reveals that an arbitrary change of ( )f   is formally equivalent 

to a shift in 4 1D = −  , in response to a change of the dimensionless RG scale  [23]. 

To derive the connection between the two scaling relationships, we require the following 

alternative definition of (15) to hold true 

 0( )( )

0( ) ( ) ( )
ffN


      −−= =   (A1) 

where 0   and 0  denote two reference values. (A1) leads to 

 0( , )

0( ) ( )
     =   (A2) 

in which 

 0

0

( )
( , )

( )

f

f


  


=   (A3) 

Consider next the simple case of a free particle of mass 0m  moving at low speed with linear 

momentum p  in one space dimension. The dispersion relationship linking the linear 

momentum with energy is 

 

2

0
2

p
m

E
=   (A4) 
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Passing to the Euclidean representation EE iE= −   in (A4) yields the Euclidean mass 0,Em   

in the form 

 
2

0,
2

E

E

i p
m

E
= −   (A5) 

When translated in terms of (35) and (37), the above equation suggests that the 

counterpart of Euclidean mass in the SOC framework is given by 

 

2

0,

( )

2
E

f
m




=   (A6) 

(A6) represents a cubic function in  , if the spectrum ( )f   is assumed to be quadratic. 

(A2) and (A6) hint that the dynamical property of “mass” emerges from the continuous 

dimensionality of spacetime 4 1D = −  , an argument made throughout our previous 

publications (see for example [11-12]). 
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