Top Quarks Decay So Rapidly That Hadronization Cannot Occur, Considerably Restricting Decay Possibilities

George R. Briggs
Abstract: Top quarks decay so quickly that they do not have a chance to hadronize to particles made of bound quarks. Instead they decay to form bosons or leptons.

The fact ${ }^{1}$ that top quarks decay so fast that they cannot hadronize into bound quark particles means that The matter type decay products of top quark matter of $\mathbf{1 7 1 . 7}$ GeV could only be Higgs bosons of 125.0 GeV , weak Z particles of $91.19 \mathrm{GeV}, \mathrm{W}+$, W -bosons of $80.38 \mathrm{GeV}, \mathrm{Z}(4430)$ heavy neutrinos, the 3 lighter neutrinos, taus of 1776 MeV , muons of 105.6 MeV , electrons of 0.511 MeV , and archaic electrons of 0.5 MeV (12 mass -particle types in all).

This author has published on the fact that dimensionless dark matter ${ }^{2}$ top lepton tau-antitau particle pairs of $\mathbf{3 5 5 2} \mathrm{MeV}$ dark energy exist. Here their existence undoubtedly signals the 3.55 MeV Up neutron quark and the fact that nature requires 2 of them to form each neutron. We also note that 4 x Z(4430) tetraquakes plus 40 MeV ($\mathbf{8 0}$ archaic electrons) more weigh $17760 \mathrm{MeV}=10 \times \mathbf{1 7 7 6} \mathbf{~ M e V}$ and this is a signal for the existence of both the top lepton (tau) and the archaic electron (bottom lepton).

1. "Hadronization", Wikipedia (2020)
2. George R. Briggs, "HCE8S theory indicates that dark neutrinos exist and are derived from dark matter tau-antitau spinless chargeless composite particles ", ViXra 1711.0455, (2017)
