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Abstract

An initial boundary value problem to a system of linear Schrödinger equations with
nonlinear boundary conditions is considered. It is shown that attractor of the problem

lies on circles in complex plane. Trajectories tend to �xed points of hyperbolic type with

unstable manifold which is formed by saddle points of codimension one. Each element

of the attractor are periodic piecewise constant function on pase and amplitude of a

wave function in WKB -approximation with �nite or in�nite points of discontinuities

on a period of the Julia type. More exactly, it has been obtained limit solutions of

the problem which with accuracy O(h2) match the exact attractor of the boundary

problem, which is independent on h > 0 in the zero WKB - approximation. The

presented mathematical result are applied to the study of dynamics of two charged

particles with opposite impulses, which are con�ned by two �at walls with surface

potentials of double-well type. It is shown that asymptotic behaviour of particles is

similar to the behaviour of orbits that arise to well-known logistic map in complex

plane. As example, there exist limit periodic nearly piecewise constant distributions

of wave functions of Mandelbrot type with Julia type points of 'jumps' for amplitudes

and phases of given free charged particles in a con�ned box with surface nonlinear

double-well potential at walls in magnetic �eld.

Keywords: Shrödinger equations • Gamilton-Jacobi equation • transport equation •
initial value boundary problem • asymptotic solutions of relaxation type • periodic piece-
wise constant distributions • system of di�erence equations • system of integro-di�erence
equations of the Volterra type • attractor.

1 Introduction

In this paper, asymptotic solutions of a system of linear 'identical' Shrödinger equations with
functional nonlinear boundary conditions, and special initial conditions will be considered.
Such solutions may be described as ϕ(x, t)eiS(x,t)/h, where ϕ are amplitudes, S are phases,
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h > 0 is a small parameter. The solutions can be �nd with accuracy O(h2), where O(h2)→ 0
as t→ +∞. It is shown that Shrödinger equations can be reduced to a canonical system of
Hamilton-Jacobi and transport equations. And the boundary conditions for wave functions
can be reduced to the corresponding boundary conditions for the classic canonical system
(see, for example, [38, 39]). Initial problem for the canonical system of equations has been
considered by Maslov in [38].

It will be proved by method of characteristic that for potential H(p) = p2/2, where p is
impulse, solutions have the form

ψ(x, t)→ f(t± x/p) S(x, t)→ g(t± x/p) (1)

where f, g ∈ R2 are vector-functions, ψ is the amplitude and S is the real phase. This
observation allows to use the reduction of hyperbolic equation to system of di�erence equa-
tions with continuous time which have piecewise constant periodic solutions if time tends to
in�nity (see, [11].

To be more concrete, let us consider two 'identical' free particles with Hamiltonian

H1,2 =
p21,2

2
and impulses (p1 = p, p2 = −p). Then the dynamics of these particle satis�es to

Hamiltonian equations

q̇ = Hp, ṗ = −Hq (2)

where H = H1 or H = H2. If Hq = 0 and Hp = p then particles are placed on straight lines
dx/dt = ±p that motivate the form of traveling waves (1). Next, from mechanics it is known
that phases of particles can be written as

dS

dt
[x(t), t)] =

∂H

∂t
[(x(t), t)] +

∂S

∂x
[(x(t), t]ẋ (3)

along these characteristic dx(t)/dt = ±p. Further, that the phase satis�es to the Hamilton-
Jacobi equation

∂S1,2

∂t
+
p2

1,2

2
= 0 where

∂S1,2

∂x
= p1,2 (4)

along trajectories of the Hamiltonian ODE equation, so that

dSk = −p
2
k

2
dt± pdt, k = 1, 2. (5)

Formula (5) will be used to prorogate the phase from a boundary into volume of motion of
free particle. The similar method will be use to prorogate the amplitude into bulk for the
transport equation of the canonical system.

As example, let us consider 'scattering phase' boundary conditions

S1(0, t) = Φ1[S2(0, t)], S2(l, t) = Φ2[S1(l, t)], t > 0, (6)

where Φ1,Φ2 ∈ C2(I, I) for some open bounded interval I. For example, in [42] a device based
on a Q-switched oscillator with two nonlinear delayed feedback loops has been propose. It is
shown that due to the appropriate phase transformation of the signal, which generate each
successive pulse, the phase di�erence between the two neighboring pulses evolves according to
the Bernoulli doubling map. It means that in boundary conditions (6) we can put Φ1 : S → S
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and Φ2 : S → 2S. From [42] it follows that there is a hyperbolic chaotic attractor, which
produce a robust, structurally stable chaos. There is possible experimental implementations
of the scheme. Boundary conditions (6) permit to �nd the phase separately from amplitudes,
and then to �ned amplitudes from the transport equation, where the phase is the known
asymptotically periodic piecewise linear function.

Further, using the method of characteristic and relation (5) with help of the boundary
conditions we arrive at

S1(0, t) = Φ1[S2(0, t)] = Φ1[S2(0, t)] = (7)

Φ1[S2(0, t− l/p)]− pl/2− l] = Φ1 ◦ [Φ2(S1(0, t)− pl/2 + l))− pl/2− l]. (8)

Next, we assume for simplicity that Phi1 := Id, where Id is identical map. Then

S2(l, t) = Φ2[S1(l, t)] = (9)

Φ2

[
S1(0, t− l/p)− 1

2
p2 l

p
+ pl

]
= (10)

Φ2

[
Φ1(S2(0, t− l/p))pl

2
+ pl

]
= (11)

Φ2

[
Φ1(S2(l, t− 2l/p)− 1

2
p2 l

p
− pl) + pl

]
. (12)

Then from (9) it follows that

⇔ S2(l, t) = Φ2

[
S2(l, t− 2l/p) +

lp

2
]. (13)

De�ning S2 → S2 + µ, from (14) we derive at

S2(l, t) = Φ2

[
S2(l, t− 2l/p)] + µ, (14)

where µ = lp
2
. Thus, we obtain the di�erence equation with continuous time solutions of

which can be �nd by iterations, step by step, if we know an initial function S2(l, t) for
t ∈ [−l/p, 0). In typical situations, solutions tend to piecewise constant periodic functions
with �nite, countable or uncountable points of discontinuities on periods [11] at x = l. On any
points (x, t) solutions can be prolonged along characteristic dx/dt = −p. The phase S2 can be
�nd from the boundary condition S2(l, t) = Φ2[S2(l, t)], and then S2(l, t) can be prolonged in
the volume along characteristic dx/dt = p. Points of discontinuities Γ of S1 and S2 match and
ones are propagating along characteristic dx/dt = ±, respectively. The set Γ of characteristic
is �nite or in�nite (countable or uncountable, homeomorphic to the Cantor set). We call
such limit distributions of phases and amplitudes by asymptotic solutions of relaxation, pre-
turbulent or turbulent type, respectively. Thus, S2(l, t) → p2(t) ∈ P+(Φ2), where P+(Φ2)
is a set of attractive circles of �xed points the map Φ2 : I → I, S2(l, t) = Φ2[S1(l, t)], and
hence S1(l, t)→ (Φ2)−1(p1) for almost all points on I.
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The transport equations are

∂Sk
∂x

∂ϕk
∂x

+
∂ϕk
∂t

+
1

2
ϕ
∂2Sk
∂x2

= 0, (15)

where

S(x, t) = S(0, t− x/p)− p2

2

x

p
+ px. (16)

Thus, the phase is linear on characteristics dx/dt = ±p, and equation (15) is

p
∂ϕ1

∂x
+
∂ϕ1

∂t
= 0, (17)

−p∂ϕ2

∂x
+
∂ϕ2

∂t
= 0 (18)

with boundary conditions

ϕ1(0, t) = Ψ1[ϕ2(0, t), ϕ2(l, t) = Ψ2[ϕ2(l, t), t ∈ R+. (19)

Without loss of generality, we assume that Ψ1 := Id. Then a solution has the form

ϕ1(x, t) = y(t− x/p), ϕ2(x, t) = y(t+ x/p) (20)

where y(t) is a solution of the di�erence equation

y(t) = Ψ2[y(t− x/p)], t ∈ [−x/p,∞). (21)

We suppose that Ψ2 ∈ C2(I, I). Then this map is structural stable , Per(Ψ2) = P+ ∪
P−. P+, P− are attractive and repelling circles of Ψ2, where P

+ is �nite and P− is �nite
or countable on characteristics [11]. Then the problem has asymptotic 2N l/p - periodic
piecewise constant solutions of variable ζ = t − x/p, where N ia least common multiple of
attractive circles.

As a result, in WKB - approximation with accuracy O(h2), we have solutions

ψ2(x, t) = ψ1(t+ x/p)eiS2(t+x/p), ψ1(x, t) = Ψ1(t− x/p)eiS1(t−x/p). (22)

In conclusion, applications to the motions of two free charged particles in box with two
�at walls with surface potentials of double-well type will be considered. Notice that if we
consider quadratic or logistic maps given on complex plane C as the boundary conditions,
then these conditions motivate the structure of Mandelbrot type on circles S1 on complex
plane for the boundary quantum problem, which are typical for quadratic or logistic maps.

Below it will be shown that the quantum problem can be reduced to the study of
iterations of the complex map: z → Φ(z), where Φ := Φ1 ◦ Φ2 is a superposition of maps.
We choose Φ[z(ϕ, S)]→ z[Φ1(ϕ),Φ2(S)] in polar coordinates. It means that Φ : S(1) → S(2),
where a circle S(·) ∈ C in the behavior of orbits for corresponding dynamical systems has
been studied in ( [27], Eq. (17)).
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2 Problem statement

We consider the two free particles with opposite impulses p and −p which move on interval
0 < x < l, so that at ends on the interval there is action of surface nonlinear potentials.
Then in the bulk of a pattern an evolution of particles satis�es to the two linear Schrodinger
equations

−ih∂ψ1

∂t
− h2

2

∂2ψ1

∂x2
= 0, (23)

−ih∂ψ2

∂t
− h2

2

∂2ψ2

∂x2
= 0. (24)

Interaction of free particles with 'surface' potentials is described by the di�erential boundary
conditions

∂ψ1

∂t
= F1[ψ1, ψ2],

∂ψ2

∂t
= F2[ψ1, ψ2] as x = 0, t > 0, (25)

∂ψ1

∂t
= G1[ψ1, ψ2],

∂ψ2

∂t
= G2[ψ1, ψ2] as x = l, t > 0. (26)

We use also the initial conditions and with the initial conditions

ψk(x, 0) = ϕk(x, 0)eiSk(x,0), (27)

where S → S/h.
Let us assume that the di�erential form, which correspond to ODE (25), (26, is exact.

It means that

F2[ψ1, ψ2]dψ1 − F1[ψ1, ψ2]dψ2 = dW1[ψ1, ψ2] = 0, (28)

G2[ψ1, ψ2]dψ1 −G1[ψ1, ψ2]dψ2 = dW2[ψ1, ψ2] = 0. (29)

Further, we suppose that the functional relations

dW1[ψ1, ψ2] = 0, dW2[ψ1, ψ2] = 0 (30)

are globally solvable on some interval I, so that

ψ1 = Φ1[ψ2], ψ2 = Φ2[ψ1]. (31)

Then di�erential boundary conditions (25),(26) can be reduced to the functional boundary
conditions

ψ1 = Φ1[ψ2] as x = 0, t > 0, (32)

ψ2 = Φ2[ψ1] as x = l, t > 0, (33)

where ψ1(0, 0) = Φ1[ψ2(0, 0)], ψ2(0, l) = Φ1[ψ2(0, l)], and similar conditions may be written
on �rst and second derivatives of functions ψ1, ψ1.
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It will be proved that with accuracy O(h2) solutions can be �nd as

ψk := eiSk(x,t)/hϕk(x, t), k = 1, 2, (34)

where Sk(x, t) and ϕ(x, t) are smooth and real functions. Substituting (34) into (23),(24),
we obtain that(
∂Sk
∂t

+ V (x) +
1

2
(∇S)2

)
ϕ+ (−ih)

(
∂Sk
∂x

∂ϕk
∂x

+
∂ϕk
∂t

+
1

2
ϕk
∂ϕ2

k

∂x2

)
+

(−ih)2

2

∂ϕ2
k

∂x2
= 0. (35)

From (35) it follows that S(x, t) is a solution of the Hamilton-Jacobi equation

∂Sk
∂t

+ V (x) +
1

2

(
∂Sk
∂x

)2

= 0 (36)

and ϕ(x, t) is a solution of the transport equation

∂Sk
∂x

∂ϕk
∂x

+
∂ϕk
∂t

+
1

2
ϕ
∂2Sk
∂x2

= 0. (37)

We assume that maps Φ1,Φ2 have the form

Ψ1[eiSϕ] := (S, ϕ)→ (eif1(S)), g1(ϕ), Ψ2[eiSϕ] := (S, ϕ)→ (eif1(S), g2(ϕ)), (38)

where S → S/h. It means that Φ1,Φ2 transform circle into another circle, so that there
is decomposition of the transformation in (S, ϕ) plane of Oϕ and OS - directions. Then
boundary conditions (32),(33) can be rewritten as

S1(0, t) = f1[S2(0, t)] S2(l, t) = f2[S1(l, t)], (39)

ϕ1(0, t) = g1[ϕ2(0, t)] ϕ2(l, t) = g2[ϕ1(l, t)]. (40)

Asymptotic behavior of phases
Note that from mechanics it is known the formula

dS[x(t), t]

dt
=
∂S

∂t
[x(t), t] +

∂S

∂x
[x(t), t]

dx(t)

dt
(41)

which is true along trajectories dx(t)dt = ±p. Next, the main role plays the main relation
of anaclitic mechanics p := ∂S/∂x, which allows, using additionally the Hamilton-Jacobi
equation with Hamiltonian H(p) := p2/2 rewrite (72) as

S[x(t), t] = S[x(t0), t0]−
∫ t

t0

V [p(s− t0) + x(t0)]ds− 1

2
p2(t− t0) + p[x(t)− x(t0)]. (42)

Next, from (42), using additionally boundary conditions, we arrive at

S1(l, t) = f1 ◦ f2[S1(l, t)] + µ (43)
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where

µ = −
(
V1 −

p2

2

)
l

p
−
(
V2 −

p2

2

)
l

p
. (44)

Indeed, integrating the di�erential form from a point (l, t) to a point (0, t − l/p) along
dx(t)/dt = p, we obtain that

S1(l, t) = S1(0, t− l/p)−
(
V1 −

p2

2

)
l

p
. (45)

Indeed, using the boundary conditions at x = 0 and x = l, we get that

S1(l, t) = f1[S1(0, t− l/p)]−
(
V1 −

p2

2

)
l

p
+ pl = (46)

f1

[
S2(0, t− 2l/p)−

(
V2 −

p2

2

)
l

p
− pl

]
−
(
V1 −

p2

2

)
l

p
+ pl =

f1 ◦
[
f2(S1(l, t− 2l/p))−

(
V2 −

p2

2

)
l

p
− pl

]
−
(
V1 −

p2

2

)
l

p
+ pl.

Denote

µ2 =

(
V2 −

p2

2

)
l

p
− pl, µ1 =

(
V1 −

p2

2

)
l

p
+ pl, (47)

f1,µ1 =
[
f2(S1(l, t− 2l/p))− µ1

]
, f2,µ2 = f1,µ1 − µ2. (48)

Let G := f1,µ1 ◦ f2,µ2 : I → I. Assume that G ∈ C2(I, I is structural stable. Such maps form
open dense subset. Then a set Per G of periodic points of G is decomposed in the union
P+ - points of attractive circles and P− - points of repelling circles, where the set P− is
�nite or countable ([11],p.234)). In typical cases, from these assumptions it follows that the
di�erence equation

S1(t) = G[S1(t− 2l/p)] (49)

has 24N - asymptotic periodic solutions with �nite, countable or uncountable points of dis-
continuities Γ on a period. The structure of set Γ depends on the structure of the delimiter
D :=

⋃⋃
n/ge0G

−nP̄−, where P̄− is the closure of P−. Here, D is nowhere dense closed set
of measure zero, which is �nite (particularly, empty), countable or countable.

We call such solutions by solutions of relaxation, pre-turbulent and turbulent type (see,
Fig.1). Thus a phase of the initial boundary value problem can be determined independently
on amplitudes.

Assume that Ψµ : I → I, where I is bounded open interval, the map is structural
stable and Ψµ ∈ C2(I, I). Then a set PerΨµ of periodic points is decomposed on a set of
attractive points P+ and a set P− of repelling circles, so that PerΨµ = P+

⋃
P−, where
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P− is �nite or countable, and a set P+ is �nite. Below will be considered a case when P− is
�nite. Let D =

⋃
n≥0 Ψ−nµ P̄− is the separator of the map Ψµ. The separator is countable, or

uncountable nowhere dense closed set of measure zero [11]. The separator D is uncountable
if and only if the map Ψµ has circles with periods 6= 2i, i = 0, 1, 2, .... The separator D is
uncountable if and only if the map Ψµ has circles with periods 6= 2i, i = 0, 1, 2, ....

Let h1(t) is an initial function given on [−l/p, 0). Let us de�ne Γ = Ψ−1
µ and assume

that ˙h1(t) 6= 0, t ∈ Γ. Then Γ is closed nowhere dense set. Solutions can be found by
iterations of the initial function h1(t) with help of the map Ψµ. If Γ is �nite, then limit
solutions are periodic piecewise constant distributions with �nite points of discontinuities on
a period. We call such solutions by solutions of relaxation type.

3 Nontrivial ordering structures

We consider now the hamiltonian ODE with hamiltonian H(x, p) = 1
2
(p2 + x2) where

ẋ = Hp(x, p, t) = p, ṗ = −Hx = −x (50)

with initial conditions

x(0) = x0(α), p(0) =
∂S

∂x
(α). (51)

For each �xed α, we call solutions (x(α, t), p(α, t)) of these ODE by double characteristics.
Projection of this curve on Rn

x (here n = 1). Its projection x = x(α, t) is called by the
trajectory of dynamical system. Thus for each �xed x0 we have the straight line rotates
around of initial coordinates with constant angle velocity, so that vectors x(x0, t), p(x0, t)
can be obtained from the vector (x0, p0) by orthogonal transformation with matrix(

cos t sin t
− sin t cos t

)
(52)

For example, for the hamiltonian H(x, p) = 1
2
(p2 + x2), because

x(x0, t) = x0 cos t+ α sin t, p(x0, t) = α cos t− x0 sin t. (53)

Consider a set of points (x, p) with x0 ∈ R. It is a manifold L0 at plane (x, p) (a straight
line parallel to Ox - axes. Then L0(t) ia helical surface at (x, p, t) [?],

S(x, t) = S(x0, t0) +

∫ t

t0

(p dx−H dt) (54)

where integration is along x0 = x0(x, t).
Interpretation of formula (54) is following. Since (x0, t) are global coordinates on L, we

must consider part of L which is homeomorphic on a plane (x, t). It is possible if t ∈ [0, π/2).
Here function x := x(p, t) must be a solution of equation
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p− ∂S

∂x
[x(p, t)] = 0. (55)

Thus on L we can introduce coordinate τ = (τ1, ..., τk) ∈ U , where U = Rk
τ (here k = 2).

Then a surface L can be given by equations Q0(τ1, ..., τk), where Q0(τ) is a smooth n -
dimensional function. Let p(τ, t), q(τ, t) be solutions of the Hamiltonian system

ṗ = −Hq, q̇ = Hp, p|t=0 =
∂S0

∂x
(q0(τ)), q|t=0 = q0(τ), t ∈ [0, T ], (56)

and let b(τ, t), c(τ, t) be matrix solutions of the system in variations:

ḃ = −Hqpb−Hqqc, ċ = Hppb+Hpqc (57)

with initial conditions

b|t=0 =
∂2S0

∂x2
(q0(τ)), c|t=0 = E, (58)

where E is unit matrix of dimension n × n and functions Hpp, Hqq, Hpq have arguments
p(τ, t), q(τ, t), t).

Now we consider projection πqL
k
t of manifold Lkt on q - plane of phase space R2n

p,q, so
that

πqL
k
t := δkx,t := {x ∈ Rn : |x = q(τ, t) = k}. (59)

It means that πq : R2n
p,q → Rn

x is di�eomorphism. Then at a closed neighbourhood of ∆x,t of
surface δkx,t the system of equations

< x− q(τ, t), x− qτj(τ, t) >= 0, j = 1, ..., k (60)

is smooth solvable on interval t ∈ [0, T ]. There is an approximate solution wich is determined
on a set ∆x,t by the formula

S(x, t) = S0(q0(τ)) +

∫ t

0

(< p(τ, t1), q̇(τ, t1) > −H(p(τ, t1), q(τ, t1), t1)) +O(x− q(τ, t)|τ=τ(x,t)(61)

where τ(x, t) is a solution of system (60). For example, in (54) τ(x, t) = x0(x, t).
Next, in the transport equation we use the transformation

ϕ(x, t) =
1√

dx/dx0

ϕ1(x, t). (62)
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Figure 1: Limit distributions of relaxation type.

Then this equation can be rewritten as

∂ϕ

∂t
+
∂S

∂x

∂ϕ

∂x
+

1

2

∂2S

∂x2
ϕ =

dϕ

dt
+

1

2

∂2S

∂x2
ϕ = 0 (63)

where we us formulas ∂S
∂x

= p and ẋ = p. Now using the formula

dϕ

dt
=

(
∂x

∂x0

)
dϕ1

dt
(64)

we obtain the transport equation [39]

dϕ1

dt
= 0 (65)

on L, where d/dt is a derivative along the vector �eld

V (H) := p
∂

∂x
− x ∂

∂p
+
∂

∂t
(66)

on L in phase space (x, p, t).
As a result, we obtain the Liouvill equation

du

dt
=
∂u

∂t
+

n∑
i=1

(
∂u

∂xi
ẋi +

∂u

∂pi
ṗi

)
= 0 (67)
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where a function u(x, p, t) determines a probability to �nd particles in a volume dxn dpn at
a time t. The Liouvill equation follows from the equation

∂u

∂t
+
∂J

∂x
= 0 (68)

where J = vu is the �ow of particles and v is a velocity of particles. If ẋ is independent
from x and ṗ is independent from p, Liouvill equation (67) is identical to transport equation
(68). For the Liouvill equation, a corresponding nonlinear boundary problem in x, p, t) in
quadrat has been considered in [?]. To the similar boundary problem in can be reduced the
Cahn-Hilliard equation in R3 [?].

4 Reduction of transport equations to di�erence equa-

tions

Now we assume that Φ1,Φ2 have the form

Ψ1 := eiΨ̂1[S2]Ĝ1[ϕ2], Ψ2 := eiΨ̂2[S1]Ĝ2[ϕ1], (69)

where S → S/h. It means that Φ1,Φ2 are maps from one circle on another circle in complex
plane which 'stretches' amplitudes and 'rotate' phases. Then the boundary conditions can
be decomposed on independent boundary conditions

Ŝ1 = Φ̂1[S2] as x = 0, Φ̂2 = Ĝ2[S1] as x = l, (70)

ϕ1 = Ĝ1Φ̂1[ϕ2] as x = 0, ϕ2 = Φ̂2[ϕ1] as x = l. (71)

Thus, the quantum problem is reduced to two 'independent' classic boundary boundary
problems: to the Hamilton-Jacobi equation and to the transport equation. In the next
section, it will be obtained asymptotic for functions Sk := Sk(x, t, h) with accuracy O(h2) as
t→ +∞.

Now, as noted in Introduction, we can use the formula of analytic mechanics

dS

dt
=
∂S

∂t
+
∂S

∂x

dx

dt
= −H(p) + p dx (72)

where H(p) is the Hamiltonian, the �rst term obtained from the Hamilton-Jacobi equation,
and the second term from the relation p := ∂S/∂x, so that equation (72) is ODE along
vector-�eld dx(t)/dt = p. Integrating (72) along dx/dt = p, and using with functional
boundary conditions for phases, we arrive at

S1(l, t) = Φ̂1{Φ̂2[S1(l, t− l/p)] + µ}+ µ (73)

where µ = −pl/2 + p. De�ne by Ψµ the right part of (73). Then

S1(l, t) = Ψµ[S1(l, t− l/p)]. (74)
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We obtained the di�erence equation with continuous time. Solutions of (74) represent asymp-
totically piecewise constant periodic impulses (see,[11]). Limit distributions depend on initial
functions on [−l/p, 0) and ones may be �nd, step by step, iterating initial data with help of
the map S1 : I → I. As a result, the study of asymptotic of quantum boundary problem
is reduced to the study of one-dimensional maps in some topological space. Such approach
has been introduced by Sagdeev et al [33, 34, 35, 36, 37]. One of the applications, quantum-
mechanical e�ects on electron�electron scattering investigated in high-temperature plasmas.
An e�ective pseudo-potential model has been considered, for example, in [32] to describe the
total spin states in Born approximation. Note that we can introduce in (74) the temperature
as a parameter. Then this parameter admits the existence the series of Sharkovsky's type or-
dering bifurcations of the phases: for example, the well-known period doubling bifurcations.
Particularly, this statement will be proved below.

4.1 Typical examples of discrete maps

In other words, the problem is reduced to the map Υ : C → C at complex plane. The
theory of such maps has been developed (see, for example,[25, 27]) in case when we have
deal with a map, which acts from circle into circle. If we add to equation (74) sinusoidal
periodic function, then we obtain an equation, which has been proposed by Kolmogorov as
a simple model that describes the motion of mechanical rotator without or with periodic
perturbations. For another physical applications, we may consider the motion of charge
particles in sinusoidal magnetic �eld [17]. As a result, for a phase of free charge particle
in periodic magnetic �eld (see physical example below) we obtain di�erence equation of
Kolmogorov type, which is called by Arnold mapping:

θn = θn−1 + Ω− k

2π
sin 2πθn−1, (75)

where the right part plays the role of periodic perturbation or, for charged particles, the
amplitude of magnetic �eld depending on the phase.

The next typical example is the well-known Chiricov map or standard map:

θn = θn−1 + k sinun−1, (76)

un = un−1 + pn, (77)

where θ is a frequency of particle, u is the amplitude of a wave function, and k is the strength
of magnetic �eld. Then if k 6= 0, then there is a periodic motion of a charged particle in each
�nite region, which represent a neighbourhood of some rational point Ω. For Ω ∈ [0, 1], there
arise regions (Πn := (Ω, kn) such that in any of these regions exists a periodic motion. The
corresponding regions are called by Arnold tongues. At k = 0, the Arnold tongue is isolates
set of measure zero, which forms Cantor set of dimension d = 0.8700 ± 3.7 × 10−4 (see,
[43]). Arnold tongues may be interpreted as resonance zone, which emanate from rational
numbers.

Further, we assume that Ψ : I → I, the map is structural stable, and Ψ ∈ C2(I, I).
Then the set of non-wandering points is equal Υ(Φ) := PerΨ = FixΦN , where PerΨ
is a set of periodic, and FixΦN is a set of �xed points of the map Φ, and N ∈ Z+ is

12



some integer number. Υ(Φ) := A+
⋃
A−
⋃
A±, where A+, A−, A± are sets of corresponding

attractive, repelling and saddle �xed points of the map ΦN . For structural stable map,
PerΨ = P+

⋃
P−, where P− is �nite or countable and a set P+ is always �nite. Let

P− be �nite and D =
⋃
n≥0 Ψ−nµ P̄− is a separator of the map Ψ. Then D is countable or

uncountable nowhere dense closed set of measure zero. D is uncountable if and only if Ψµ

has circles of periods 6= 2i, i = 0, 1, 2, .... D is uncountable if and only if Ψµ has circles with
periods 6= 2i, i = 0, 1, 2, ... [11].

Let h1(t) be an initial function given on [−l/p, 0). De�ne Γ := Ψ−1
µ and assume that

˙h1(t) 6= 0, t ∈ Γ. Then Γ is closed nowhere dense set. Hence, solutions of equation (74) can
be found by iterations of function h1(t) with help of iterations of Ψµ. If Γ is �nite, then limit
solutions belong to a set P∇, that is we have �nite points of discontinuities on a period.

Note that this approach has been used to �nd 3D - dimensional distributions spatial-
temporal clusters for Cahn-Hilliard 3D - equation with functional boundary conditions and
double-Neumann homogeneous conditions at surface of 3D - dimensional unit cube (see,
[15]. The spatial-temporal ordering can be obtained also for non-relativistic equations of
quantum �eld theory (see, [40, 18]). Next, besides applications to charged particle in box with
nonlinear surface potentials, the functional boundary conditions has been used in [29, 30]
to describe surface nonlinear pairing of white and black solitons [29] that is fundamental
problem of modern physics, and on the description of N - soliton interaction in optical �bers
that is more simple problem.

5 Asymptotic of amplitudes

Now we consider the similar asymptotic of solutions of the transport equation with functional
boundary conditions. Initially, we have deal with the equation

∂Sk
∂x

∂ϕk
∂x

+
∂ϕk
∂t

+
1

2
ϕk
∂S2

k

∂x2
= 0, (78)

where ∂Sk/∂x = ±p, k = 1, 2. Then from (78) we arrive at

∂ϕ1

∂t
+ p

∂ϕ1

∂x
+

1

2
ϕ1
∂2S1

∂x2
= 0, (79)

∂ϕ2

∂t
− p∂ϕ2

∂x
+

1

2
ϕ1
∂2S2

∂x2
= 0 (80)

with boundary conditions (70). As before, along dx(t)/dt = ±p equations (79),(80) are

dϕ1(x(t), t)

dt
= −1

2
ϕ1
∂2S1

∂x2
as dx(t)/dt = p, (81)

dϕ2(x(t), t)

dt
= −1

2
ϕ2
∂2S2

∂x2
as dx(t)/dt = −p. (82)
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Integrating (81), (82) and using the boundary conditions, we get the system of integro-
di�erence equations:

ϕ1(l, t) = Φ̂1

[
Φ̂2(ϕ1(l, t− 2l/p)− 1

2

∫ t−l/p

t−2l/p

ϕ2(p(t− s) + l, s)
∂2S2

∂x2
(p(t− s) + l, s)ds

]
(83)

−1

2

∫ t

t−l/p
ϕ1(p(s− t) + l, s)

∂2S1

∂x2
(p(s− t) + l, s)ds,

ϕ2(0, t) = Φ̂2

[
Φ̂1(ϕ2(0, t− 2l/p)− 1

2

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)
∂2S1

∂x2
(p(s− t) + 2l, s)ds

]
(84)

−1

2

∫ t

t−l/p
ϕ2(p(t− s), s)∂

2S2

∂x2
(p(t− s), s)ds,

where S1, S2 are known functions, which can be �nd from di�erence equations

S1(l, t) = Ĝ1 ◦ Ĝ2[S1(l, t− l/p)] + µ}+ µ, (85)

S2(0, t) = Ĝ2 ◦ Ĝ1[S2(0, t− l/p)] + µ}+ µ, (86)

For example, if G2 := Id, where Id is identical map, then we obtain two identical di�erence
equations. Asymptotic behaviour of solutions depends on initial phases, which are given on
[−l/p, 0). For instance, S1(l, t) is oscillating periodic piecewise constant function as t→ +∞.
But S2(0, t) tends to a constant that can be interpreted as localisation of the phase. Next,
since S1(x, t), S2(x, t) are known, solutions of integro-di�erence equations (83),(84) can be
�ned by iterations if initial data ϕ1(l, t), ϕ2(0, t) on [−l/p, 0).

The main observation is that there is convergence of solutions of integro-di�erence equa-
tions (83),(84) to solutions of di�erence equations

ϕ1(l, t) = Φ̂1 ◦ Φ̂2(ϕ1(l, t− 2l/p), (87)

ϕ2(0, t) = Φ̂2 ◦ Φ̂1(ϕ2(0, t− 2l/p), (88)

where (◦) is superposition of maps. Thus, we obtained the two independent di�erence
equations. Each of these equations has asymptotic periodic piecewise constant periodic
solutions with �nite or in�nite points of discontinuities on a period.

5.1 The structure of attractors

The special boundary condition allow us to �nd a phase and farther to substitute the known
function in integro-di�erence equations. Next, a problem is to �nd in these equations asymp-
totic of integral terms I1(t), I2(t)) in (83),(84). But it is easy to prove that asymptotic of

14



these integrals is I1(t) ∼ e−k1t, I2(t) ∼ e−k2t, where numbers k1, k2 are positive. The prove
follows from observation that

∂2S1

∂x2
(p(s− t) + 2l, s)→ 0,

∂2S2

∂x2
(p(t− s), s)→ 0 (89)

for almost all points t ∈ R+ as t → +∞, excluding a set Γ of points of discontinuities of
limit functions for phases S1(t− x/p), S2(t+ x/p).

Indeed, it is easy to see that

∂2S1

∂x2
(x, t) =

∂2S1

∂x2
(t− x/p), ∂2S2

∂x2
(x, t) =

∂2S2

∂x2
(t+ x/p). (90)

Then from (90) it follows that integro-di�erence equations can be rewritten as

ϕ1(l, t) = Φ̂1

[
Φ̂2(ϕ1(l, t− 2l/p)− 1

2

∂2S2

∂x2
(t+ l/p)

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]

(91)

−1

2

∂2S1

∂x2
(t− l/p, s)

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds,

ϕ2(0, t) = Φ̂2

[
Φ̂1(ϕ2(0, t− 2l/p)− 1

2

∂2S1

∂x2
(t− 2l/p)

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)ds
]

(92)

−1

2

∂2S2

∂x2
(t)

∫ t

t−l/p
ϕ2(p(t− s), s)ds,

But

∂2S1

∂x2
(ζ) =

1

p2

∂2S1

∂ζ2
(ζ),

∂2S2

∂x2
(η) =

1

p2

∂2S2

∂ζ2
(η). (93)

From (93) it follows that equations (91),(92) can be rewritten as

ϕ1(l, t) = Φ̂1

[
Φ̂2(ϕ1(l, t− 2l/p)− 1

2p2

∂2S2

∂η2
(t+ l/p)

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]

(94)

− 1

2p2

∂2S1

∂ζ2
(t− l/p)

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds,

ϕ2(0, t) = Φ̂2

[
Φ̂1(ϕ2(0, t− 2l/p)− 1

2p2

∂2S1

∂ζ2
(t− 2l/p)

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)ds
]

(95)

− 1

2p2

∂2S2

∂η2
(t)

∫ t

t−l/p
ϕ2(p(t− s), s)ds.

15



Figure 2: Hyperbolic attractor in polar coordinates. u1, u6 are saddle points and u2, u3 form circle of period

2

.

Further, linearizing equations (85),(86) for phases at some neighbourhoods of attractive
�xed points P1, P2, we get the linear equations

S1(ζ) = λ1S1(ζ − l/p), S2(η) = λ2S2(η − l/p), (96)

where λ1 = [Ĝ1 ◦ Ĝ2]′(P1), λ2 = [Ĝ2 ◦ Ĝ1]′(P2) and |λ1| < 1, |λ2| < 1. Solutions of these
equations are

S1(ζ) = ek1ζ , S2(η) = ek2η, k1 =
p

l
ln |λ1|, k2 =

p

l
ln |λ2| (97)

with accuracy to a constant factor.
Then phases equations (94),(95) can be written as

ϕ1(l, t) = Φ̂1

[
Φ̂2(ϕ1(l, t− 2l/p)− k2

2e
−k2/p

2p2
ek2t

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]

(98)

−k
2
1e
−k1l/p

2p2
ek1t

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds,

ϕ2(0, t) = Φ̂2

[
Φ̂1(ϕ2(0, t− 2l/p)− k2

1e
−k1l/p

2p2
ek1t

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)ds
]

(99)

−k
2
2e
−k2l/p

2p2
ek2t

∫ t

t−l/p
ϕ2(p(t− s), s)ds.

If |p| → ∞, then equations (98),(99) can be reduced to the equations

ϕ1(l, t) = Φ̂1 ◦ Φ̂2(ϕ1(l, t)), ϕ2(0, t) = Φ̂2 ◦ Φ̂1(ϕ2(0, t)). (100)

16



Figure 3: Typical distributions of trajectories for a hyperbolic map

.

Solutions of equations (100) 'placed' on �xed points of mapping Φ̂1 ◦ Φ̂2, ϕ2(0, t) = Φ̂2 ◦
Φ̂1(ϕ2(0, t)) ∈ C2(I, I). The �xed point correspond to a constant solution. If |p| <∞, then
solutions stick together into oscillating solutions of equations (98),(99).

Next, let us denote by α1, α2, β1, β2 coe�cients in equations (98),(99), respectively. Then

ϕ1(l, t) = Φ̂1 ◦
[
Φ̂2(ϕ1(l, t− 2l/p)− α1e

k2t

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]

(101)

−α2e
k1t

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds,

ϕ2(0, t) = Φ̂2 ◦
[
Φ̂1(ϕ2(0, t− 2l/p)− β1e

k1t

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)ds
]

(102)

−β2e
k2t

∫ t

t−l/p
ϕ2(p(t− s), s)ds.

Now, we assume that Φ̂2 := Id. Then from (98),(99) it follows that

ϕ1(l, t) = Φ̂1

[
ϕ1(l, t− 2l/p)− α1e

k2t

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]

(103)

−α2e
k1t

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds,
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ϕ2(0, t) = Φ̂1[ϕ2(0, t− 2l/p)]− β1e
k1t

∫ t−l/p

t−2l/p

ϕ1(p(s− t) + 2l, s)ds (104)

−β2e
k2t

∫ t

t−l/p
ϕ2(p(t− s), s)ds.

In the next subsection, it will be proved that asymptotically solutions of these integro-
di�erence equations tend to corresponding di�erence equations.

5.1.1 Attractor of integro-di�erence equations is equal to attractor of di�erence

equations

Here we prove that an attractor of problem (103),((104) coincides with an attractor of the
di�erence equations

ϕ1(l, t) = Φ̂1

[
ϕ1(l, t− 2l/p)], (105)

ϕ2(0, t) = Φ̂1[ϕ2(0, t− 2l/p)]. (106)

Indeed, solutions of equations (103),((104) can be determined by iterations of initial data on
[−p/l, 0) step by step. For example, the �rst iteration for the �rst equation has the form:

ϕ1(l, t+ 2l/p) = Φ̂1 ◦
[
Φ̂1

[
ϕ1(l, t− 2l/p)− α1e

k2t

∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
]
(107)

−α2e
k1t

∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds− α1e

k2(t+2l/p)

∫ t+l/p

t

ϕ2(p(t+ 2l/p− s)− l, s)ds
]

−α2e
k1(t+2l/p)

∫ t+2l/p

t+l/p

ϕ1(p(s− t− 2l/p) + l, s)ds.

If α1 = α2 = 0, then there are invariant solutions of di�erence equation (p1(t), p2(t)) such

that p2(t) = Φ̂1

−1
(p1(t)). These solutions are asymptotic periodic piecewise constant 4N -

periodic functions with �nite points of discontinuities on a period, where N is leat common
multiple of attractive circles of the map Φ̂1 [11].

The map ϕ1 → Φ̂1(ϕ1) can be constructing as a map from C2 into C2 for almost all
points Γ, excluding a �nite set of points of discontinuities Γ. Then there is δ > 0 such that,
for all |α1 + α2| < δ/M , the corresponding integral operator also is constructing in C2 -
norm for almost all points t ∈ R+. Similarly, we can prove that the operator for the second
integro-di�erence equation is constructing in C2 - norm. It means that there is a vector-
function (ϕ̂1, ϕ̂2), which is a C2 - solution of the integro-di�erence equation. If for the
di�erence equation a limit function is oscillating and asymptotic periodic with non-decay
amplitude, then for integro-di�erence equation a solution (ϕ̂1, ϕ̂2) is also oscillating at a
small neighbourhood of invariant periodic solution (p1(t), p2(t)).
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We prove that (ϕ̂1, ϕ̂2)⇒ (p1(t), p2(t)) in C2 - norm as t→ +∞ for almost all t ∈ R+.
Indeed, we assume that

∣∣∫ t−l/p

t−2l/p

ϕ2(p(t− s)− l, s)ds
∣∣ < M,

∣∣∫ t

t−l/p
ϕ1(p(s− t) + l, s)ds

∣∣ < M,(108)

∣∣∫ t+l/p

t

ϕ2(p(t+ 2l/p− s)− l, s)ds
∣∣ < M,

∣∣∫ t+2l/p

t+l/p

ϕ1(p(s− t− 2l/p) + l, s)ds
∣∣ < M.

Then the �rst iteration for the �rst of the integro-di�erence equations is described by equation
(107). Continuing the iterations, we obtain that the last terms of equation (107) tends to
zero as t→ +∞. Indeed,

β(t) = α2e
k1(t+2l/p)

∫ t+2l/p

t+l/p

ϕ1ds+ α2e
k1(t+4l/p)

∫ t+4l/p

t+2l/p

ϕ1ds+ ... (109)

≤ α2Mek1(t+2l/p) 1− (ek1(t+2l/p))n

1− e2l/p
.

Then β(t) → 0 as → +∞. Further, from inequalities ek1t < 1 and ek2t < 1 it follows
that if a solution of equation (107) belongs to a δ - neighbourhood of attractive invariant
solution (p1(t), p2(t) of the di�erence equations, then this solution (ϕ̂1, ϕ̂2) belongs to a δ -
neighbourhood of a solution (p1(t), p2(t) for all t ∈ R+. Moreover, a solution (ϕ̂1, ϕ̂2) tends
t

o a solution (p1(t), p2(t) as t → +∞. The prove is complete for solutions relaxation
type.

As a result, the quantum problem has hyperbolic structural stable global attractor which
is described on Fig.1. Elements of the attractor are exact invariant solutions of the quantum
boundary problem. For limit solutions of relaxation type, from (35) it follows that

(−ih)2

2

∂ϕ2
k(x, t)

∂x2
→ 0 (110)

as t→ +∞ for almost all points.

5.2 Applications for classical mechanics

Here, we consider applications to quantum mechanics for free particles in surface scalar po-
tentials. We will focused on the in�uence of a magnetic �eld on a charge particle. Classically,
we have the Lorentz force law F = q(E + vB), where q is the charge and v is the velocity.
The q may be positive or negative. For a quantum particle, the Hamiltonian has the form
H(q, p) := 1

2
mv2 + qψ, where m is the mass and ψ is a wave function.

For quantum equations, the dynamical boundary conditions describes functional connec-
tion between velocities of surface particles on left and right sides of the box in x - direction.
Indeed, let v(t) = (a(t), b(t)) be a velocity of a charged particle. Let us introduce a complex
(a, b) - plane, so that z(t) = a(t) + ib(t), or in polar coordinates z(t) = |z(t)|eiϕ(t). Next,
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we assume that on a particle acts a force F on the direction of vector ~e = (a, b). For ex-
ample, it may be a damping force F (v) = −γv, where γ ∈ R. It is possible also a case
F (v) = −γv + βv2, β ∈ R, arising from a double-well potential.

We assume that at time tn the particle gets a kick c = a + ib, where a is the kick
strength in x1 - direction , and b is the kick strength in x2 - direction. Now we de�ne
velocities v±n = (u±n , w

±
n before and after the kick. Then we obtain that u+

n = u−n + â and
w+
n = w−n + b̂, or z+

n = z−n + c.
Further, there is a magnetic �eld B(t), which has on interval t ∈ [tn, tn+1 a constant

value B = (0, 0, Bn). Then, as shown in [17], is

Bn = h(v+
n , ϕ

+
n ), (111)

τn = f(v+
n , ϕ

+
n ), (112)

and τn = tn+1 − tn is a time between kicks.
Next, we assume that there is the initial problem

g′t = F (g), g(0) = g0. (113)

Then again from [17] it follows that an evolution of a particle satis�es to the system of
discrete di�erence equations

v−n+1 = g(τn, v
−
n ), (114)

ϕ−n+1 = ϕ−n + ωnτn, (115)

where v−n and ϕ−n denote module and angle of a velocity of the particle before a next kick.
The angle ϕ rotates with the Larmor frequency.

Here, a simplest form of time di�erence τn = tn − tn−1 has been described as function
on v has been described in ([17], Figuró 5), where τ ∈ [0, 6] and v ∈ [0, 2], and the charge of
the particle is q = 2, 3, ..., 10. The function τ := τ(v) has the form of monotone decreasing
hyperbole τ ∼ µ/v, where µ is a constant. Then from (114) we obtain the discrete di�erence
equation:

v−n+1 = Φ2(µ, v−n ). (116)

From (116) we arrive at

v−t+l/p = Φ2(µ, v−t ), (117)

where Φ2(v) = g[f(v, v)]. From (117) it follows that an approach in [17] can be used to
generalise the homogeneous motion of the particle on the case, depending on space variable
x. The reason is because the quantum particle can be reduced on characteristic to the initial
problem, but to the di�erence equation with continues time.

Of course, the such approach can be generalized. For example, we can obtain the relation

vn+1e
iϕn+1 = g[f(vn, ϕn), ϕn]× ei(ϕn+h[v,ϕn),f(ϕn),ϕn)]f(vn), (118)
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where index (+) has been omitted (see, [17], Eq.(17)). These equations can be considered
as 'boundary conditions' for the quantum problem. Indeed, we can to study in similar
manner the motion of two type of particles with opposite impulses, assuming that quantities
(immediately before (−) or after (+) kick) arise as kicks between particles with opposite
impulses at a point x = 0 in a moments tn, tn−2 and at a point x = l in a moments
tn+1tn−1. Then we must solve the two similar initially problem with potentials A1(ψ1, ψ2)
at x = 0 and A2(ψ1, ψ2) at x = 0. Then we obtain the boundary quantum problem which
is reduced to the canonical system of di�erence equations. For problem from [17], such
study of iterations of some complex maps complex map Φ ∈ C can be represented as Φ :
(v, ϕ)→ Φ1(v, ϕ),Φ2(v, ϕ), where Φ1 and Φ2 are determined by the boundary conditions of
type (118). In equations (118), the function h := B(v, ϕ), where B is a magnetic �eld.

5.3 Applications to quantum electronic

Next example, where may be considered nonlinear boundary conditions, depending on phases
and amplitudes together, is the parametric generator, which is composed by three LC - cir-
cuits and by the quadratic nonlinear element on the basis of the operational ampli�er. Here,
we can consider the boundary equations, which describe the interacting mode amplitudes.
These equations represent the mathematical analog of the ampli�er. In this case, the prob-
lem is reduced to a system of the three di�erential equations for the amplitudes with an
attractor of the Lorenz type [28].

In the absence of the de-tuning ot, Hamilton-Jacobi equations can be omitted, and
respectively the quantum problem admits the reduction to one di�erence equation for am-
plitudes. In the presence of the de-tuning of, we must consider also the phase dynamics.
Assuming quadratic nonlinearity, in [28] has been formulated a system of amplitudes equa-
tions, which (in the case of a �xed phase) are reduced to a system of di�erential equations
the �rst order. The nonlinear element circuit diagram is shown in ([42], Figure 1).

6 Asymptotic behaviour of solutions for system of di�er-

ence equations

Thus, it has been shown that the boundary quantum problem can be reduced to the study
of behaviours of orbits or trajectories of the two-dimensional dynamical system, which is
produced by a some map Φ : (ϕ, S) → (f1(ϕ, S), f2(ϕ, S) that transform plane (ϕ, S) into
plane. Let G be a bounded open subset in R2 and Φ : Ḡ → G is a continuous map such
that: (1) di�erential DΦu is continuous on G, where u := (ϕ, S); (2) a set Φ−1(u) is �nite for
each u ∈ G; (3) a set Ω(Φ) of non-wandering points of the map Φ is �nite and hyperbolic.
It means that if a spectra σ(B) of operator B, then the supposition that Ω(Φ) is �nite is
satis�ed, for example, if Ω(Φ) = Fix(Φ), where Fix(Φ) is a set of �xed points of Φ, and
σ(DΦu) ⊂ {ez : |<z| > δ > 0} for each u ∈ Ω(Φ). The condition of hypertonicity Ω(Φ)
implies that if u ∈ Ω(Φ) and Φk(u) = u, then σ(DΦu)

⋂
{z : |z| = 1} = φ, where φ is empty

set.
Asymptotic behaviour of solutions of system of di�erence equations in R2, which are

produced by the map Φ with the properties (1)− (3) are known for a hyperbolic structural
stable map Φ ∈ C2(G, Ḡ, where G ⊂ R2 for spacial initial data given on interval [−p/l, 0)
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(see, for example, [11, 8, 12]). If the map

Φ : (v, ϕ)→ (Φ1(v, ϕ),Φ2(v, ϕ)) (119)

is hyperbolic and structural stable, then there are asymptotic periodic piecewise constant
solutions p(t) = (p1(t), p2(t)), where p ∈ P+, where P+ is a set of attractive circles of
Φ : R2 → R2. For example, if Φ has two attractive �xed points p1, p2 ∈ P+ and one �xed
point of saddle type P± of codimension 1 with unstable manifold W u(P±) (see, Figure 1).
Then a components v(t), ϕ(t)) → (p1,2, 0), where (p1,2, 0) are two attractive �xed points.
A saddle point (0, 0) has a one-dimensional separatrixe W u(P±), so that each given initial
curve ν(t), t ∈ [−1, 0) tends to a point p2 on intervals [−1, t∗)

⋃
[t∗, 0), where a point t∗ is

determined by an intersection ν(t)
⋂
W u(P±) (see, Figure 1).

In this particular case, component of limit solutions for the two di�erence equations
are described on Figure 2. We call such solutions by limit solutions of relaxation type. In
application to physics, the graphic on Figure 2 represent the velocity or 'number' of charged
free particles in surface potential with three critical points and unique energetic barrier,
that is, for the double-well potential. Limit solutions on Figure 2 are 2 - periodic with one
point p± ∈ Γ of 'discontinuities' on a period. A set Γ is produced by a set of pre-images
Γ = Φ(W±)−n, n = 0, 1, 2, ... [11, 8, 14, 15, 14]. A set W± is �nite, but a set Γ may be �nite,
countable, or countable. If Γ is countable with some points of condensations on interval
[t, t+ 2), we call limit solutions by solutions of pre-turbulent type. If Γ is uncountable, then
we call limit solutions by solutions of turbulent type [8, 11]. The similar limit distributions
can be obtained for an 'angle of rotation' of a particle, that is, for phase of the wave function.

Including a permanent magnetic �eld we can observe more complex distributions of
electron density, which is described by the term |u(x, t, h)|2 = |ϕ(x, t)|2 + O(h) that in
quantum mechanics has the interpretation as density of probability to �nd 'electron' in a
given bulk. Notice that in classical mechanics |ϕ(x, t, h)|2 has of measure corresponding to
the transport equation in the canonical system. If =S 6= 0, the measure depends on the
small parameter h, so that |u|2 ≈ e−2=S/h|ϕ|2 (see, [38], p.34).

7 Example 2

Is we assume time t = tn+1 a kick of strength c is acting, that is z+
n = z−n + c. Then this

relation on C - plane can be written as [17]

v+
n+1e

iϕ+
n = v−n+1e

iϕ−
n + c. (120)

Putting (116),(117) into (120), we arrive at

v+
n+1e

iϕ+
n+1 = Φ1(v+

n+1, ϕ
+
n )× eiΦ1(v+n+1,ϕ

+
n ) + c (121)

(see, [17], Eq. (16)). Di�erence equations repeat the di�erence equations, which has been
constructed for the quantum problem if we assume that c = 0. It corresponds to the case
when of the simplism functional boundary conditions used in the canonical system.

22



8 One-dimensional topology

In one-dimensional topology, it is known that if there is a circle of period 3 then there are
circles of each period. But in the two-dimensional topology, or on unit circle this statement
is incorrect. If unit circle S1 is parameterized by an angle Θ ∈ [0, 1], then maps can be
written as

Θn+1 = f(Θn (mod 1). (122)

Assume that we have two systems on periodic circle with frequencies γ and γ′, respectively.
Then Θ(t) = γ(t) (mod 1). Next, suppose that we need only measure the sample Θn :=
Θ(t0 + n/γ) of the �rst angle, which is given by

Θn+1 = f(Θn + ω (mod 1), (123)

where ω = γ/γ′. Then the map in (123) describes a rotation by a fraction ω of a full turn
per sampling period. This rotation will be denoted by R(ω). Then the two di�erent cases
are: (1) If ω is a rational, p/q with p, q ∈ Z, then

θn+1 = θn + qω (mod 1). (124)

Such maps are called by lifts [27, 43, 26, 23, 25]. Hence, we obtain a periodic orbit, and θn
has only a �nite number of di�erent values; (2) If ω is a irrational, the sequences θn is dense
on [0, 1]. Hence, we have a quasi-periodic orbit with a period which is a superposition of the
two incommensurate frequencies γ and γ′.

Further, the set of rational numbers is dense on [0, 1] with zero measure. Then the
relation Ω = γ/γ′ is irrational with probability of 1, even we can �nd rational values arbitrary
close . As a result, we observe 'frequency locking'. The frequency ratio Ω remains �xed at a
neighbourhood of the point p/q, that is Ω is constant on some interval (p/q −∆, p/q + ∆),
where a size ∆ can be considered as a width of a plateau.

Let us consider the well-known Arnold map

θn+1 = θn + ω +
k

2π
sin 2πθn (mod 1). (125)

The rotation number is

ρ = lim
n→∞

1

n

n−1∑
n=0

∆θn (126)

where

∆θn = ω +
k

2π
sin 2πθn. (127)

Note that ρ = ω if k = 0.
If k ≤ 1, then the rotation number ρ(ω, k) can be describe as following: (i) The ρ

does not depend on orbits used to compute this number; (ii) If ρ is irrational, then the
map is equivalent to the rotation R, and the motion is quasi-periodic; (iii) If ρ = p/q, then
asymptotic orbits are periodic with a period q.
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For k ≤ 1, we can determine parameter regions in (ω, k) - plane, where ρ(ω, k) is rational.
As an example, let us consider the region ρ(ω, k) = 0. The corresponding asymptotic regime
is θn+1 = θn, which location is given by

ω = − k

2π
. (128)

For −k/2π ≤ ω ≤ k/2π, there are two stable �xed points and one unstable �xed point (see,
[23], Figure 7.2)). Applying this result to the quantum boundary problem, we obtain 2 -
periodic asymptotic functions with one point of discontinuities on a period, since here is only
one repelling �xed point, and the main property is that the map is invertible. As a result,
we get the example of limit distributions of relaxation type.

For w = ±k/2π, the graph of the map is tangent to the diagonal, producing that stable
and unstable periodic orbits are created together. These orbits must be destroyed through
saddle-node bifurcations. Notice that the width of frequency-locking interval ρ(ω, k) = 0
increases linearly with k that corresponds to K = 1 to almost one ω′ from third possible
values of w. Thus, for k = ±2π we have saddle-node bifurcation.

9 Asymptotic properties of two dimensional maps

Thus, the circle map θn = f(θn−1, where θn is the angle, normalized to 2π, corresponds to
n - th iteration around the circle. This map may be considered as the prototype for more
complex behaviour generated by a class of two-dimensional circle maps. For such maps,
there are two iterated variables that couple a radial coordinate rn with an angle coordinate
θn, so that

θn = f(θn−1, rn−1), rn = g(θn−1, rn−1, (129)

where f and g are arbitrary functions. But f is periodic, so that

f(θ + 1) = f(θ) + 1. (130)

In other words, f is a lift. Moreover, there are functions f̂ which are homeomorphic to f
[23]. Particularly, sine circle map is the lift.

Remind that average number of rotations per iteration on a circle map, that is a measure
of 'periodicity' of the system, can be calculated as

W (k, ω) = lim
n→∞

1

n
(f(θn)− θ0). (131)

For example, if in the sine map ω = 0, then W = 0. The variable θn can be converged to a
series, which is periodic in the sense that we obtain the lift

θn+p = θn + p (132)

with rational W = p/q for periodic series, and with irrational W for quasi-periodic series.
Note that positions θn+1 and θn changes monotonic around of perimeter of a torus.

Here, 'chaos' is possible only if a map is non-invertible. For example, it is possible for
the sine map if the map has local extremum at the points
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θmax = 1− 1

2π
cos−1 k−1, θmin =

1

2π
sin−1 k−1 (133)

This extremum exist only for k > 1, so that the line k = 1 means the possibility of chaos.
More precisely, it means the existence of limit solutions of pre-turbulent and turbulent type
for the quantum boundary problem (see, [?], Figure 1.B). For k > 1, the map is no invertible.
Hence, if we have such boundary conditions that the quantum problem can be reduced to
Arnold map, there are quasi-turbulent distributions of phases.

Next, the branch of the map can be sketched within the square 0 < θn < 1, 0 < θn+1 < 1,
because of its periodicity. For k < 1, and ω rational, there are frequency locking within
regions, which are known as Arnold tongues. The region of corresponding parameters is
0 < k < 1, 0 < ω < 1. Arnold tongues represent in�nite numbers of tongues in this region.
These tongues arise at each rational number p/q as ω ∈ [0, 1]. Correspondingly, for the
quantum boundary problem, in this region of parameters we obtain limit piecewise constant
periodic solutions of pre-turbulent type.

As k is increasing then the tongues move together. But despite their �nite width they
do not intersect until k = 1. If k = 1, then overlap is complete. Above k = 1, there are
possible (for di�erence equation with the phase) limit solutions of turbulent type. But ones
can coexist with ordering that corresponds to so-called intermittency when limit solutions
of pre-turbulent and turbulent type coexist. It is associated with previous frequency-locked
regions. In the square (p/q, ω) := [0, 1]× [0, 1], a plot against rational p/q generate a 'devil's
staircase' if k = 1. In this case, each horizontal step for p/q corresponds to a frequency-locked
state or limit solutions of relaxation type.

The 'staircase' is self-similar, that is in 'reality' there is overall structure for graphic of
'staircase' with ordering picture, which is fractal. Thus, we have the fractal structure for a
phase of a wave function for the quantum boundary problem. The same structures can be
construct for amplitudes.

10 Computer modelling

Note that there are parametric models for analysis of synthesis architecture iterations on a
circle (see, for example, [26]). Indeed, let r be analysis segment index. We de�ne the general
expression for k - th partial parametric model, according to

x̂k(n, r) =

Mk∑
m=1

Am,k(n, r) cos (Φm,k(n, r)), (134)

where Am,k is the time-varying amplitude, Mk is the modelling order, that is a number of
sinusoids of k - th partial model. Φm,k is the time-varying phase. Typical multi-pitch signals,
modelling with the harmonic model is the following: If K = 1, we have

Am,k(n) = ame
dmn, Φm,k(n) = ωnn+ φm, (135)

where ωk, 0 ≤ k ≤ K − 1 is a set of angular frequencies. And we have to satisfy Mkωk ≤ π.
We denote by am,k, φm,k the m - th amplitude phase and real damping-factor parameterized
of partial model. The pole is de�ned by zm,k = edm,k+iωm,k .
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Notice that due to the varying amplitude, the modulus of the pole is not limited to the
unitary circle. Indeed, we have

|zm,k| = e2dm,k , arg (zm,k) = ωkm. (136)

The pole can take any value in the complex plane.
The synthesis of the modelling signal is

x̂l(n) = x̂l−1(n) + aldln cos (ωln+ φl), (137)

where l = kMk+m and 1 ≤ l ≤M . Typically, for large iterations we may obtain a piecewise
constant periodic signal as shown in ([26], Figure 7). Thus, with help of such type algorithm
we can construct an attractor of quantum problem.

Application can be found (to addition to the moving of charge particles) in the context of
low bit-rate audio coding. The model is deduced to the multi-pitch speech signals, modelling
and to the representation of multiple harmonic musical instruments [26].

11 Asymptotic for hyperbolic two dimensional dynamical

systems

Now we consider a complex map f̂µ : (x, z)→ (x2
z +µ, bz) which is determined by the system

of di�erence equations:

x(t+ 1) = x2(t) + z(t) + µ, (138)

, z(t+ 1) = bz(t) (139)

where b = ea < 1. Then asymptotic of solutions of system (138),(139) is determined by
asymptotic properties of trajectories of the map

fµ : x→ x2 + µ (140)

in R1. For example, if µ > 1/4 then the map fµ has no �xed points, and z(t) → 0, x(t) →
+∞ as t → +∞, where z(t) and x(t) are imaginary and real parts of a point at a complex
plane. If µ ≤ 1/4, then fµ has the two �xed points (x1, 0), (x2, 0), where

x1,2 =
1

2
(
(

1±
√

1− 4µ
)
. (141)

There are no periodic points with a period which is larger then 1.
If −3/4 < µ < 1/4, the point (x1, 0) is attractive of 'node' type, and the point (x2, 0)

is of 'saddle' type (see, [11], Figure 72). A region of attraction of the point (x1, 0) is open
unbounded region W at (x, z) - plane with a boundary

∂W :=
∞⋃
n=0

f−nµ (P±), (142)

where (P± is a saddle point P± = (x2, 0).
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Now, we use the following de�nition: The �lled Julia set of a function f de�ned as

K(f) = {w ∈ C : fk(w)→ +∞}. (143)

Then the Julia set of a function f is de�ned as a boundary of

J(f) = ∂ K(f). (144)

Then from Figure. 3 it follows that K(f) represents all points w = x+ iz, which lies below
separatrices at (x, z) - plane. The set J(f) lies on real axes in C upper the separatrices.

If −5/4 < µ < −3/4, the two �xed points (x1, 0), (x2, 0) are saddle type. The map f̂µ
has an attractive circle of period 2, which is formed by points (x3, 0), (x4, 0), so that

x3,4 =
1

2
(
(
−1±

√
−3− 4µ

)
(145)

with an attractive area W . The boundary ∂W contains points a1 = (x1, 0), a2 = (x2, 0)

of saddle type and their separatrices P
(1)

f̂µ
(a1), P

(2)

f̂µ
(a1). Each of these separatrices consists

from countable set of curves (see, Fig.3).
Let us de�ne these curves by

Gk =
3⋃

n=1

W (k)
n , (146)

where k = 0, 1, 2, .... For example, on Figure 4, we have k = 0, or k = 5.
Then each set Ĝk, which lies below the separatrices Gk, form the �lled Julia set Kk(f)

which is repelling set because fk(w) → ∞ as t → ∞. On the other hand, the Fatou set
forms attractive set because on this set we obtain a limit function p(t) ∈ (xi, 0), i = ¯1, 4 on
a set K(f). Then the Julia set

J(f) := ∂K(f) :=
∞⋃
k=1

Gk (147)

determines a set of points of discontinuities Γ of a limit solution, that is, these points corre-
spond to characteristic of canonical system for the quantum problem.

If J(f) is �nite, we have limit solutions of relaxation type. If J(f) is countable, we call
corresponding limit solutions of the quantum problem by solutions of pre-turbulent type. If
J(f) is uncountable, then we obtain limit solutions of turbulent type, respectively.

On Fig.2, points u3, u6 are saddle type of codimension 1. Then the two-dimensional map
has attractive circle of period 2l/p, which is formed by points u2, u4 with an attractive region
W , which contains u3, u6 - �xed points and their separatrices. Each of these separatrices is
some pre-image of 'saddle-type' main separatrice. They together form �nite, countable or
countable set of curve D1, ..., D6, .... Note that on Fig.2 it is described a case at (Re z, Im z)
- plane, but the same picture take place topologically also at (ϕ, S) - plane that can be done
by the corresponding transform the variables.

11.1 Remark 1

According to the theory of Schroder and Siegel (see, [25]) , certain complex analytic maps
possess a family of closed invariant curves in the complex plane. We have made a numerical
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study of these curves by iterating the map, and have found that the largest curve is a fractal.
When the winding number of the map is the golden mean, the fractal curve has universal
scaling properties, and the scaling parameter di�ers from those found for other types of
maps. Also, for this winding number, there are universal scaling functions.

12 Conclusion

An initial value boundary problem for the two linear system of the Shrödinger's type equa-
tions with nonlinear dynamic boundary conditions is considered. Approximate solutions
with accuracy O(h2) are constructed. It is proved that an attractor of the problem contains
periodic piecewise constant function along characteristic dx/dt = ±p, which have �nite,
countable or uncountable number discontinuous characteristic � limit distributions of wave
function of relaxation, pre-turbulent or turbulent type, respectively. The problem is solved
by reduction of the origin problem to system of integro-di�erence equations of the Volterra
type. The structure of the approximate attractor depends on initial; data of the quantum
problem and topology of the boundary conditions. Physical applications to the motion of free
charged particle in bounded box with nonlinear surface potentials in permanent magnetic
�eld has been done. The connection with Mandelbrot set is discussed.
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