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Abstract :

In 2015 I published the ODG Theory on my personal blog (www.gliargonauti.altervista.org),
before the detection of the first signal of a gravitational wave occurred in 2016.

 In the years that followed I wrote and published additionals chapters to the theory that I
groupe in this single articol during the coronavirus quarantine. The ODG Theory is based on
the ideas of General Relativity (GR) of Albert Einstein (AE), i.e. curved spacetime, but not on

the equations of GR, i.e. tensors. The basic idea is that the gravitational interaction is
trasmitted by gravitational waves and predicts the existence of negative gravity. The equations
of the ODG Theory are invariant for Lorentz trasformation, and in perfect agreement with the

weak field approximation of the RG given by gravitoelectromagnetism equations. 
Moreover in the ODG Theory the AE equivalence principle is respected, both weak and strong.

Introduction :

The description given by AE in the GR for the 
gravitational field is that it represents the 
spacetime geometry.
In one empty spacetime you have a  flat 
spacetime or Minkowski's spacetime.
When in a flat spacetime appears one density 
of matter, the latter perturbs the spacetime 
geometry and this perturbation represents the 
gravitational field.
The motion of density of matter (body) 
generates the gravitational wave.  

At this point a reflection would say :
if any body exists then it must be part of the 
spacetime and the spacetime exists inside and 
outside of the body. 
Denying what has been said is to deny the 
very existence of spacetime inside of any body.

With this considetation it is obvious that the 
perturbation exists inside and outside of the 
body. 
Then it is equally obvious to think that the 
gravitational wave starts from the center of the
body, and interact with everythink that meets.

My guess is that it is precisely the wave to 
transfer everything that meets what we call 
gravitational interaction.

http://www.gli.argonauti.altervista.org/


Chapter I : Foundamental Equations .

The Gauss Theorem for the flux of the vector
g⃗  is :

ΦS( g⃗ )=∫
S

d Φ( g⃗)=∫
S

g⃗ d S⃗−∫
S

GM
cos (θ)dS

r 2

                                                           (1.1)

ΦS( g⃗ )=−∫
S

GMd Ω=−GM∫
S

d Ω=−4πGM

                                                           (1.2)

 where d Ω=
cos(θ)dS

r2  is solid angle of the 

cone that has as its base the element dS.

Generalizing “M” in the continuous :

ΦS( g⃗ )=−4πGM=−4πG∫
V

ρdV        (1.3)

The divergence theorem for the vector g⃗  

is : Φs( g⃗ )=∫
S

g⃗ d S⃗=∫
V

∇⃗ g⃗ dV            (1.4)

Equating the divergence theorem with that of 
Gauss :

ΦS( g⃗ )=−∫
V

4πGρdV=∫
V

∇⃗ g⃗ dV        (1.5)

so :

∇⃗ • g⃗=−4πGρ                                 (1.6)

The equation 1.6 is the first fundamental 
equation for this theory.

Ohm's low in the electromagnetism is :
ΔV=RI .

Where : ΔV  is unlike electrostatic 
potential, I is the electrical current and R is the
electrical resistance.

Now we study the gravitational case using the 
solar sistem data.
In our case, the potential difference will be :

ΔV=V sun−V planet=
GM sun

r sun
−
GM planet

r planet
  (1.7)

where the potentials are expressed in the 
absolute value.

We set up a chart and study the relationship
ΔV
m planet

 :

As seen from the fit  : 

 ΔV=−9 •10−19mplanet+1,92 •1011        (1.8) 

Since the eccentricity of the orbits of the 
planets of the solar system are very low, it is 
possible to approximate the orbits in circle.
In this way we can take the average speed of 
the planets to study the relationship between 
the potential of the sun, calculated on the 
distance between the sun and the planet under
investigation, and the quadric speed average. 
Now we substitute the sun potential with the 
potential difference ΔV  and we study the 

relationship 
ΔV

v2
 :

In this case the fit is :

ΔV=
1
3
v2
+1,91 •1011

                        (1.9) 

Equating the 1.8 with the 1.9 :
 
  v2

=−2,7 •10−18m                            (1.10)

Differentiating respect to time :

  
dv2

dt
=−2,7 •10−18 dm

dt
     →      



 →   2 v⃗ g⃗=−2,7 •10−18 dm
dt

 →      

         

 →   v⃗ g⃗=−1,35•10−18 dm
dt

 →

 →  g⃗
d r⃗
dt
=−1,35 •10−18 dm

dt
         (1.11) 

Integrating with respect to time, you have :

∫ g⃗ d r⃗=∫−k dm   →   ∫ g⃗ d r⃗=−k m

  →  ∫ g⃗ d r⃗=−k∫
V

ρdV              (1.12)

where  k=1,35 •10−18 m2

kg s2
 .

As seen the element d r⃗  is the path space 
from m on the orbit and therefore it is 
reasonable to consider the integran on the first
member calculated on a closed line :

∮ ⃗g sund r⃗=−k∫
V

ρ planetdV                (1.13)

Applying the Stoke theorem  :

∫
S

∇⃗ x g⃗sun d S⃗=−k∫
V

ρ planetdV          (1.14)

From 1.3  :

∫
V

ρdV=−(
ΦS ( g⃗ )

4πG
)  →   

→  ∫
V

ρdV=−(
∫
S

g⃗ d S⃗

4πG
)               (1.15)

  
So :

∫
S

∇⃗ x g⃗sun d S⃗=∫
S

(
k

4πG
⃗g planet)d S⃗    (1.16)

And :

∇⃗ x g⃗sun=
k

4πG
⃗g planet   →  

→  ∇⃗ x g⃗sun=
k

4πG

d ⃗v tangential speed of the sun
dt

 

        

→  ∇⃗ x g⃗=
k

4πG
 v⃗
 t

                  (1.17)   

                                   
where it was used the definition of total 
derivative.
The equation 1.17 is the second fundamental
equation.

The equation 1.8 can be rewritten as :

ΔV−k ' '=−k '∫
V

ρdV                    (1.18)

where :

ρ=ρplanet ;k '=9 •10−19 m2

kg s2 ;k ' '=1,92 •1011 m
2

s2

And 1.13 as :

 
2
3∮ ⃗g sole d r⃗=−k '∫

V

ρpianeta dV         (1.19)

where : k=
3
2
k '  .

Therefore : 

2
3∮ ⃗g soled r⃗=ΔV−k ' '                   (1.20)

From 1.11 v⃗ g⃗=−1,35•10−18 dm
dt

 it's possible

calculate 
dm
dt

 knowing  v⃗=planet velocity

and g⃗=gravitational field of the sun . 

Now study ΔV  / 
dm
dt

 :

The fit is :

ΔV=−A
dm
dt
+k ' '                          (1.21) 



where :  A=4,14 •10−13 m2

kg s
 

             k ' '=1,92 •1011 m
2

s2
 .

Therefore :

2
3∮ ⃗g sole d r⃗=−A

dm
dt
+k ' '−k ' '=−A

dm
dt

  

                                                           
                                                        (1.22)

2
3∮ ⃗g sole d r⃗=−A

d
dt∫V

ρdV=−A∫
V

(
ρ

 t
)dV

                                                        (1.24)

since 
d m
d t

=
m
 t

+u⃗ ∇⃗ m  and ∇⃗m=0 .

From the continuity equation of the mass you 
have : 

∇⃗ J⃗+
ρ

 t
=0                                  (1.23)

and integrating the whole volume :

∫
V

∇⃗ J⃗ dV=−∫
V

(
ρ

 t
)dV                  (1.24)

and for the divergence theorem :

∫
S

J⃗ d S⃗=−∫
V

(
ρ

 t
)dV                     (1.25)

Therefore :

2
3∮ ⃗g sole d r⃗=A∫

S

J⃗ d S⃗                    (1.30)

and applying the curl theorem :

∫
S

∇⃗ x g⃗sd S⃗=η∫
S

J⃗ d S⃗   →        

 →   ∇⃗ x g⃗s=η J⃗                         (1.31)

where  η=
3
2
A=6,21 •10−13 m2

kg s
 .

Using the continuity equation and the 1.6 you 

have :

∇⃗ J⃗+ 
 t
(
−1

4πG
∇⃗ g⃗ )=0   →   

 →  ∇⃗ J⃗−∇⃗(
1

4πG
 g⃗
 t

)=0   →   

     

 →  ∇⃗ ( J⃗−
1

4 πG
 g⃗
 t

)=0             (1.32)

The 1.32 is a generalization of the vector J⃗ ,
in that it considers the momentum density both

in the stationary case 
 g⃗
 t

=0  and in the 

more general case 
 g⃗
 t

≠0  .

Therefore the 1.31 generalized is :

∇⃗ x g⃗=η( J⃗−
1

4πG
 g⃗
 t

)    →  

 →  ∇⃗ x g⃗=η J⃗−
η

4πG
 g⃗
 t

        (1.33)

with η=6,21 •10−13 m2

kg s
 .

The equation 1.33 is the third fundamental 
equation. 

Equating the 1.17 with the 1.33 you find the 

mass contuinity equation ∇⃗ J⃗+
ρ

 t
=0  .

Furthermore from GR drift the GEM Theory 
(GravitoElectroMagnetism) :

∇⃗ • E⃗ g=−4πGρ                           (1.34)

∇⃗ • B⃗g=0                                     (1.35)

∇⃗ x E⃗ g=−(
1
2c
)
 B⃗g

 t
                     (1.36)

∇⃗ x B⃗g=−(
8πG
c

) J⃗+
2
c

 E⃗ g

 t
          (1.37)

Equating the 1.17 with 1.36 you have that

B⃗=−z v⃗ and
1
2c
=

k
4πG z

with z=1 s−1 .

Instead if equating 1.33 with 1.36 you obtain 

the mass continuity equation ∇⃗ J⃗+
ρ

 t
=0 .



Chapter II : Gravitational wave.

The fundamental equations in the vacunum :

      2.1 ⃗ • g⃗=0               ;

      2.2 ∇⃗ x g⃗=
k

4πG
 v⃗
 t

  ;

      2.3 ∇⃗ x g⃗=
−η

4πG
 g⃗
 t

  .

Applying the curl operator to 2.2 you have :
 

−∇
2 g⃗+∇⃗(∇⃗ g⃗ )=

k
4πG


 t
(∇⃗ x v⃗)     (2.4)

So you have :

−∇
2 g⃗=

k
2πG

 ω⃗
 t

                            (2.5)

Now we study what kind of relationship binds 
the orbital angular velocity of a body with its 
gravitational field. 
To do this we'll use the solar system, therefore 
the planets and major moons.
The kind of relationship that we'll study will 

be : ω⃗=A
g⃗
r
+B  

where :
  A and B are costant to be determined ;
ω⃗  is the orbital angular velocity ;
g⃗  is the orbiting gravitational field ;
r   is the scalar of the radius of the   

        sherical body.

So you have :     ω⃗=−w
g⃗
r
+B           (2.6)  

Differentiating :  
d ω
dt

=−w
d
dt
(
g⃗
r
)       (2.7)  

where  w=25,2 s  .

Inserting 2.7 in 2.5 :

−∇
2 g⃗=

−kw
2πG

1
r
(
 g⃗
 t

)                       (2.8)

Using the identity :

∇
2
( fg)=(∇2 f ) g+2(∇⃗ f )(∇⃗ g )+ f (∇ 2g )  

                                    
you have :

∇
2
(r g⃗)−

kw
2πG

∂ g⃗
∂ t

=0                      (2.9)

The first member of the 19 can be written as : 

∇
2
(r g⃗)=∇ 2

(V )=∇⃗ ∇⃗V=∇⃗ (− g⃗)=−∇⃗ g⃗   
                                                         (2.10)

where consider the absolut value of the field as
if you are on the surface of the source that 
generates the field.

Accordingly, it has :

∇⃗ g⃗+
kw

2πG
∂ g⃗
∂ t

=0                          (2.11)

The 2.11 is the equation of the 
gravitational wave.

The only condition is that both  :

v=
2πG
kw

=1,23∗107 m
s
<c                 (2.12)

The solutions of 2.11 are of the type :

g⃗ ( d⃗ , t)= g⃗ cos( k⃗ d⃗−ω t)                   (2.13)

Considering that the wave is spherical, you will 
have the type solutions:

g⃗ ( d⃗ , t)=
1
d
g⃗ cos( k⃗ d⃗−ωt )               (2.14)

where “d” is the distance from the source.

The simplest configuration is the plane wave 

approximation ( ∇→ 
 x

) , and in this way 

all the derivatives with respect to “y” and “z” 
are zeroed.



So in the vacunum :

⃗ • g⃗=0   →     
∂ g x

∂ x
=0            (2.15)

∇⃗ x g⃗=
k

4πG
 v⃗
 t

 :                          

∂ g z

∂ y
−
∂ g y

∂ z
=

k
4πG

∂ vx
∂ t

→
∂v x
∂ t

=0  

                                                         (2.16)
∂ g x

∂ z
−
∂ g z

∂ x
=

k
4πG

∂ v y
∂ t

→

∂ g z

∂ x
=−(

k
4 πG

)
∂ v y
∂ t

                        (2.17)

∂ g y

∂ x
−
∂ g x

∂ y
=

k
4πG

∂ v z
∂ t

    →

∂ g y

∂ x
=

k
4πG

∂ v z
∂ t

                             (2.18)

∇⃗ x g⃗=−(
η

4πG
)
 g⃗
 t

   :                              

∂ g z

∂ y
−
∂ g y

∂ z
=−(

η

4πG
)
∂ g x

∂ t
 →

∂ g x

∂ t
=0  

                                                         (2.19)
∂ g x

∂ z
−
∂ g z

∂ x
=−(

η

4πG
)
∂ g y

∂ t
 →

∂ g z

∂ x
=

η

4πG

∂ g y

∂ t
                            (2.20)

∂ g y

∂ x
−
∂ g x

∂ y
=−(

η

4πG
)
∂ gz
∂ t

   →

∂ g y

∂ x
=−(

η

4πG
)
∂ gz
∂ t

                       (2.21)

As you can see the gravitational waves are 
transversal.
For completeness we also study the field v⃗
that appears in 1.17 . If apply the nabla 
operator to 1.17 :

⃗ • v⃗=0   →   
∂v x
∂ x

=0             (2.22)

And ∇⃗ x v⃗=2 ω⃗   :

∂v z
∂ y

−
∂ v y
∂ z

=2ωx   →  ωx=0     (2.23)

∂v x
∂ z

−
∂ v z
∂ x

=2ω y →
∂v z
∂ x

=−2ω y (2.24)

∂v y
∂ x

−
∂ vx
∂ y

=2ωz →
∂v y
∂ x

=2ωz   (2.25)

From 2.24, 2.25 and 2.17, 2.18 you see that
v y  and v z  have corresponding part in
ωy  and ωz  but also in g y  and g z .

From which it can be deduced that a part of the
wave or even a second wave generates a 
vortex around the source of the wave. This 
phenomenon is better known as 
gravitomagnetic field.

Another consideration should be made for 2.17 
and 2.20 or 2.18 and 2.21. Infact you have :

−(
k
η)=

g y

v y
=
g z

v z
→

k
η=2,174 •10−6 s−1

                                                        (2.26)

In the solar sistem for the planets and the 
major moons :

so :

g⃗=7,61•10−5 v⃗                               (2.27)

The difference between 2.26 and 2.27 depends
on the value of the field g⃗  which decreases 
as 1/r 2  . The best result is obtained if the 
value of g⃗  is calculated at a distance of “6r”,
infact you have :  g⃗=2,11 •10−6 v⃗ .
When we consider the distance of “6r” from the
center of the source we are in the vicinity of 
the relative geostationary orbits.



Chapter III. Energy density of g⃗ .

Let us first consider a system of point masses 
arranged in a fixed and known configuration, 
and we calculate the energy of gravitational 
interaction owned by the system.
Initially the masses are all endlessly and we 
calculate the work required to bring them into 
the configuration chosen.
The work will be accomplished by an external 

force F⃗ e  .
The positioning of the first mass can be 
effected by considering the zero work, because
in the space initially considered this is not a 
gravitational field (assuming flat spacetime).
The positioning of the second mass from 
infinity to a distance r 12  from the first mass,
it is performed by moving the second mass 
within the gravitational field of the first mass. 
The work that serves to position the second 
mass carried out by the external force by 
braking against the mutual attraction between 
the masses, and therefore the external force 

will be equal to F⃗ e
=−m2g1  .

The work accomplished by the external force 
will be :

L2=−∫
∞

r12

m2 g⃗ 1d r⃗=
Gm1m2

r12

                (3.1)

If we now bring a third mass from infinity to its
position, the work to be accomplished against 
the gravitational fields of the first two masses 
will be : 

L3=
Gm1m3

r13

+
Gm2m3

r 23

                      (3.2)

So the U energy possessed by a system of 
three masses will be :

U=L2+L3=
1
2
∑
(i≠ j)1

3

(
Gmim j

r ij
)             (3.3)

where the number 
1
2

 it was introduced 

because the summation includes each term 

twice since 
Gm1m2

r12

=
Gm2m1

r21

 .

In the more general case of a system of N 
point masses, the gravitational energy of the 
system will be:

U=
1
2
∑

(i≠ j )1

N

(
Gmim j

r ij
)                          (3.4)

The 3.4 can be written as :

U=
1
2
∑

(i≠ j )1

N

(
Gmim j

r ij
)=

1
2
∑
i=1

N

mi ∑
( j≠i)1

N

(
Gm j

rij
)     

                                                          (3.5)
Pointing to the second sum with

V i=∑
( j≠i )1

N

(
Gm j

rij
)  let's say that V i  it 

represents the potential generated in the 
position occupied by all the other masses. 

Equality V i=∑
( j≠i )1

N

(
Gm j

rij
)  is true since

i≠ j  and then r ij≠0  , and in this way 
you do not have infinite terms ( r≠0 ).

Therefore we rewrite the 3.5 as :

U=
1
2
∑
i=1

N

miV i                                  (3.6)

In the general case of macroscopic masses is 
convenient to go to the continuous case : 

U=
1
2∫τ

ρV d τ                                 (3.7)

where ρ(x , y , z )  is the density in the point 
(x,y,z), V  is the sum of the potential of all 
other masses involved in the point (x,y,z), and
d τ  is the volume element around the point 

(x,y,z).

From 1.6 ∇⃗ g⃗=−4πGρ  you have

ρ=
−∇⃗ g⃗
4 πG

 , so :

U=
−1

8πG∫τ
(∇⃗ g⃗ )V d τ                      (3.8)

A general property of the operator ∇⃗  says 

∇⃗ (V g⃗ )=(∇⃗V ) g⃗+V (∇⃗ g⃗ ) , but

∇⃗V=− g⃗  and g⃗ g⃗=g2  , then :

∇⃗ (V g⃗ )=−g2+V (∇⃗ g⃗ )                    (3.9)



so :

U=
−1

8πG∫τ
∇⃗ (V g⃗ )d τ−

1
8πG∫τ

g 2d τ          

                                                         (3.10)
For the divergence theorem :

U=
−1

8πG∫S
V g⃗ d S⃗−

1
8πG∫τ

g 2d τ    (3.11)

where τ  is any volume that includes all the 
distribution of mass in its interior, and S is the 
surface that encloses.

Fixed mass distribution, its total gravitational 
energy U is the sum of two terms that appear 
to the right of  the 112 independently of the 
volume considered to perform the calculation.
However, the second term of the right of 112

∫
τ
g 2d τ  , increasing the volume is 

increasing, at least until it does not contain the
whole volume in which g⃗≠0  . 
In other words: we consider more volume and 
more gravitational field consider , at least until
g⃗≠0 .

At the same time diminishes the first term ie 
the surface integral.
If we consider the volume becomes so large as 
to contain all the space in which g⃗≠0  , then
the first term allora il primo termine will tend 

to zero ∫
S

V g⃗ d S⃗ →0  :

U= ∫
all the space

(
−g2

8πG
)d τ=∫

τ
ug d τ       (3.12)

where :

ug=
−g2

8πG
                                      (3.13)

The 3.13 J /m3  represents the energy 
density of the field g⃗  present throughout 
the volume in wich g⃗≠0  .

Chapter IV: Poynting vector of g⃗ .

Consider a closed surface S of constant shape 
inside which are contained the field g⃗  .
Then the total energy U contained in S will be 

given by 3.12 U=∫
τ
(
−g2

8πG
)d τ   where

d τ  is the volume element contained in S.

Differentiating with respect to time 3.12 :

dU
dt

=∫
τ
(
−1

8πG
dg2

dt
)d τ                      (4.1)

and :

dU
dt

=∫
τ

(
−1

4πG
g⃗
d g⃗
dt

)d τ                    (4.2)

From 2.7  you have :

d g⃗
dt

=−(
1
w
)(r

d ω⃗
dt

)                            (4.3)

so :

dU
dt

=∫
τ

(
−1

4πG
g⃗ )(

−1
w
r
d ω⃗
dt

)d τ          (4.4)

and :

dU
dt

=∫
τ

(
1

4πGw
g⃗ (r a⃗))d τ   →   

→
dU
dt

=∫
τ

(
1

4πGw
(−∇⃗ V )( A⃗))d τ  (4.5)  

where V=gravitational potential , A⃗=r a⃗ ,
a⃗=orbital angular acceleration  and

 r=radius of the body .

From identity ∇⃗ (V A⃗)=(∇⃗V ) A⃗+V (∇⃗ A⃗)   
you have :

−(
dU
dt

)=∫
τ

(
1

4πGw
(∇⃗ (V A⃗)−V (∇⃗ A⃗)))d τ   

                                                          (4.6)
But the vector A⃗=r a⃗  is the scalar product 
between two constant terms. 
Infact  r=radius of the body  has a constant 
value, while a⃗  is a constant of the motion.
So also the vector A⃗=r a⃗=constant  and 

consequently ∇⃗ A⃗=0 , then :

−(
dU
dt

)=∫
τ

(
∇⃗ (V A⃗)
4πGw

)d τ                  (4.7)

Applying the divergence theorem to 4.7 :

−(
dU
dt

)=∫
S

(
V A⃗

4πGw
)d S⃗                    (4.8)

 
As we see the 4.8 says that, over time, the 



variation of energy contained in the closed 
surface that incloses the volume τ  , it is 
negative; then it meansthat there is a 
decrease of energy.

This energy per unit area is represented of the 
term inside of the integral 4.8, which we can 
be considered as a Poynting  vector I⃗ :

I⃗=
V A⃗

4πGw
                                       (4.9)

Infact the size of the vector I⃗  are W /m2 .
The vector I⃗  can be writes as :

I⃗=
A⃗

4πGw
d⃗ g⃗                                 (4.10)

where the vector d⃗  is the point to distance 
“d”, from the source, where we considered the 
potential “V” .
And using the 2.14 you have :

I⃗=
A⃗

4πGw
d⃗ (

1
d
g⃗ cos ( k⃗ d⃗−ω t))        (4.11)

I⃗=
A⃗

4πG w
u⃗d g⃗ cos (k⃗ d⃗−ω t)            (4.12)

where u⃗d=
d⃗
d

is the unit vector of vector d⃗

Considering that the average value over a priod
of the cosine squared is 1/2 , the average 
intensity of Ī of the wave is :

Ī=
r a g

4πGw √2
                               (4.13)

Chapter V: Direct evidence.

Consider a volume element inside which there 
are “n” particles of mass “m” per unit of 
volume, equipped with velocity v⃗  :

J⃗=n m v⃗                                          (5.1)

J⃗  is the momentum density.

If we take for example the moons of the planet
of the solar sistem we see that the momentum 
density of a moon, calculated on the volume of 
the sphere which as the radius of the planet-
moon distance, is propotional to the 
gravitational field of its planet calculated at 

planet-moon distance :

Infact is :

J⃗= p( g⃗ )
5
3  with  p=0,73

kg3 s7

m11       (5.2)

So :

g⃗ J⃗= p ( g⃗ )
5
3 g⃗ → W v= p(g )

8
3       (5.3)

where W v= power density  .

Since 5.3 strictly depens on 3.13, let's study :

W v

ug
= p(g )

8
3 (
−8πG
g 2 )=−8πG p( g )

2
3    (5.4)

If, as assumed, gravitational radiation is 
actually a gravitational wave , then there must 
be a relationship between 4.10 and W v  . 
But considering 5.4 now we will study 
relationship beteween W v and (4.13)^(2/3) .
For the power density it is necessary to keep in
mind that the celestial bodies turn on 
themselves, therefore :

W v=
1

Volume
(mvg+Ωω)                   (5.5)

and 

( Ī )
2
3=(

r a g
4πGw √2

)
2
3                           (5.6)

so in the solar sistem the relationship between 
5.5 and 5.6 is :



As is evident :

W v=2,53(
̄
I

2
3 )

3
2=2,53 Ī=σ Ī               (5.7)

The equation 5.7 highlights the proportionality 
that exists between the wave intensity and the 
power density that exists on the wavefront that
we are considering. 
This is the direct evidence that gravitational 
interaction is transmitted through gravitational 
waves.

Chapter VI : Negative Gravity.

In chapter II i derived the equation 2.5

−∇⃗
2 g⃗=

k
2πG

 ω⃗
 t

=
k

2πG
a⃗  where

a⃗=orbital angular acceleration  . 

Consider a point mass that orbits around a 
center with an angular acceleration a⃗ . If we 
add other point masses all connected to each 
other like a rigid body and fill all the space 
between the center and the first mass, then we
will have a set of masses that all orbit with the 
same acceleration. In other words we will have 
a gyroscope. So we can consider the 
acceleration a⃗ of 2.5 as the acceleration of a 
gyroscope.

The first member −∇⃗
2 g⃗  of the 2.5 gives us

an idea of the curvature of the field g⃗ , and 
in terms of derivatives it is nothig more than 
the second derivative with respect to the 
position of the field :

−∇⃗
2 g⃗=−( 

2

 x 2
+ 

2

 y 2
+

2

z 2
)(g x+g y+g z)  

                                                            (6.1)
therefore :

f ' ' (g )=−(
6Gm

r 4
)                              (6.2)

and :

−∇⃗
2 g⃗=−(−(

6Gm

r 4
))=

6Gm

r4
=−⃗g

6

r2
   (6.3)

consequently : 

− g⃗=
k

12πG
r 2 a⃗                                 (6.4)

with 
k

12πG
=5,3688•10−10m−1

where −⃗g  is the negative gravity ; “r” is 
the distance between the center of mass of the
source and the point where we are considering 
the value of −⃗g ; while a⃗  is the angular 
acceleration on its axis of the source.

The 6.4 tells us that to have negative gravity 
one needs to have angular acceleration, and 
that the field −⃗g  has the same direction as 
a⃗ . In fact if we use the rigth hand rule and 

say that the rotation axis is directed along “z”, 
we will a positive value a⃗  of a which will be 

directed along “z” and will have a positive 
direction concordant with the positive direction 
of “z”. With these consideration it is easy to 
note that the field −⃗g  will have the same 
direction of a⃗  :

In fact gravity has a double face a bit like in 
the electric and magnetyic field, it has both an 
attractive and a repulsive component.
In the gravitational case, however, the 
repulsive component appears if the field source
rotates on itself. 

First Postulate :
all bodies with mass manifest positive or 
attractive gravity, and if equipped with angular
acceleration on its axis then they also manifest
negative or repulsive gravity.

As is evident from 6.4, fixed an angular 
acceleration a⃗ , the intensity of − g⃗ it 
grows with increasing distance. From which it 
follows that at a certain distance from the 
source we will always have a condition of the 



type ∣− g⃗∣>∣+ g⃗∣ , that is, the gravitational 
effects will be mainly repulsive !
This effect could well explane the galactic 
rotation curves seriously questioning the 
existence of dark matter, as well as dark 
energy which is considered responsible for the 
acceleration of the expansion of the universe.
Negative gravity excludes the existence of both
the phenomena mentioned !!
The internal rotating systems of a galaxy 
produce the negative gravity necessary to 
increase the speed of external systems, while 
the whole galaxy behaves like a huge 
gyroscope that produce the negative gravity 
necessary to make galaxies move away from 
each other. The same goes for the clusters 
galaxies and gradually the larger systems, up 
to and including the whole universe.

Furthermore, it will always be possible to have 
a condition of the type ∣− g⃗∣=∣+g⃗∣ , i.e. the 
gravitational effects are cancelled in all points 
that are at the distance whereby ∣− g⃗∣=∣+ g⃗∣ :
Einstein's strong equivalence principle applies!!

      Chapter VII : Helmholtz theorem for    
                             negative gravity.

As for the divergence, let's start by applying 

the operator ∇⃗  to 6.4 :

∇⃗ (− g⃗ )=∇⃗(
k

12πG
r2 a⃗)                    (7.1)

from identity ∇⃗ ( f A⃗)=(∇⃗ f ) A⃗+ f (∇⃗ A⃗) :

∇⃗ (− g⃗ )=
k

12 πG
(∇⃗ r2

)a⃗+
k

12πG
r2
∇⃗ a⃗  

                                                          (7.2)

As is evident from 6.4 it must not be r⃗⊥ a⃗ . 
So if we say that both the vector r⃗ and a⃗
are directed along the “z” axis as r⃗=(0,0 , r )

and a⃗=(0,0 , a) we'll have ∇⃗ r2=2r  and 

∇⃗ a⃗=∇⃗(
−2π

T 2
)=0  , so :

∇⃗ (− g⃗ )=
k

6πG
r⃗ a⃗                            (7.3)

The 7.3 is the divergence of the field −⃗g .

According to 7.3 it seems that the field  −⃗g
is presented in the form of a vortex, and better
still a spacetime vortex. The rotary motion of 

the source twists the spacetime around the 
source and the twisting produces a cone-
shaped vortex where the intensity increases 
with increasing distance from the source :

On the other hand, if we apply the Gauss 
theorem for the flux to 6.4 we have :

∫
S

−⃗g d S⃗=∫
S

(
k

12πG
)r2 a⃗ d S⃗=∫

V

(
k

12πG
) r⃗ a⃗ d V

                                                           (7.4)

And if we aplly the divergence theorem to 6.4 :

Φs(−⃗g )=∫
S

−⃗g d S⃗=∫
V

∇⃗ ⃗(−g )dV       (7.5)

Equating 7.4 and 7.5 :

∇⃗ (− g⃗ )=
k

12 πG
r⃗ a⃗                           (7.6)

That is, 7.3 is double the 7.6 :

∇⃗ (− g⃗ )=2
k

12πG
r⃗ a⃗=

k
6πG

r⃗ a⃗         (7.7)

Therefore there are two vortex :

Instead as regards the curl of the field −⃗g , 

apply ∇⃗ x  to 6.4 :

∇⃗ x (− g⃗)=∇⃗ x (
k

12πG
r 2 a⃗)               (7.8)



using ∇⃗ x ( f A⃗)=(∇⃗ f ) x A⃗+ f (∇⃗ x A⃗)  :

∇⃗ x (− g⃗)=
k

12πG
(∇⃗ r 2

) x a⃗+
k

12πG
r 2
∇⃗ x a⃗  

                                                         (7.9)
and :

∇⃗ x (− g⃗)=
k

12πG
r 2
(∇⃗ x a⃗)              (7.10)

where ∇⃗ r2
=2 r⃗ , and r⃗ x a⃗=0 for r⃗a⃗ .

The 7.10 is the curl of the field −⃗g .

Indeed if we calculate ∇⃗ x a⃗  with
a⃗=(0,0 , a) :

∇⃗ x a⃗=i(
 az
 y

)+ j(−(
 a z

 x
))                (7.11)

and ∇⃗ x ⃗(−g) with ⃗(−g)=(0,0 ,−g )  :

∇⃗ x ⃗(−g)=i(
(−g z)

 y
)+ j(−(

(−g z)

 x
)) (7.12)

the two scalar equations are obtained :

(−g z)

 y
=

k
12πG

r 2  az
 y

                    (7.13)

(−g z)

 x
=

k
12πG

r 2  az
 x

                    (7.14)

which integrated by quadrature :

−gz=
k

12πG
r 2az                             (7.15)

lead us back to 6.4 .

If we compare the 7.10 with the curl of 
gravitomagnetic field given by 1.37

∇⃗ x B⃗g=−(
8πG
c

) J⃗+
2
c

 E⃗ g

 t
 through the 

relation B⃗=−z v⃗=−⃗g we find the mass 

continuity equation ∇⃗ J⃗+
ρ

 t
=0 . 

Chapter VIII. Energy density of −⃗g .

By studying the energy density of the field
−⃗g as done for the field g⃗ in chapter III, 

with the only condition thatthe masses are 
rotating masses, we obtain :

L2=∫
∞

r 12

m2(− g⃗1)d r⃗=
k

36πG
m2 a⃗1r 12

3
    (8.1)

where it is assumed that −(
1
3
∞

3
)→0 , and :

L3=
k

36πG
m3 a⃗1r 13

3
+

k
36πG

m3 a⃗2 r23
3

   (8.2)

so :

U=
k

36πG
∑

( j=i+1)1

N

( a⃗im j rij)                 (8.3)

and in the more general case of macroscopic 
masses :

U=∫
τ

(
k

36πG
ρ a⃗ r3

)d τ                      (8.4)

where ρ in the density of all bodies       
            distributed in the volume τ except   
            the first :
          a⃗  is the sum of all accelerations ;
          r 3 in the cube of all distances   
            between the bodies of the distribution;
          d τ is the volume element.

Now using the 7.3 and the identity

∇⃗ ( f A⃗)=(∇⃗ f ) A⃗+ f (∇⃗ A⃗) you have :

 U=∫
τ
(

1
6
)∇⃗ (−ρr 2 g⃗)d τ+∫

τ
(

1
6
)( g⃗ 2 r ρ)d τ  

                                                          (8.5)
and using the divergence theorem :

U=∫
S

(
1
6
)(−ρ r2 g⃗ )d S⃗+∫

τ
(
1
3
)( g⃗ rρ)d τ    

                                                          (8.6)
With the same considerations made in chapter 
III we come to consider that :

∫
S

(
1
6
)(−ρ r2 g⃗ )d S⃗→0                        (8.7)



so :

U= ∫
all the space

(
g⃗ r ρ

3
)d τ                        (8.9)

From 6.4 :

 − g⃗=
k

12πG
r 2 a⃗ → g⃗=−(

k
12πG

r 2 a⃗ )

                                                          (8.10)
therefore :

U=∫
τ

(−(
k

36πG
ρr 3 a⃗))d τ=∫

τ

u−g d τ (8.11)

where τ is all the space in which − g⃗≠0 , 
and u−g=J /m

3 represents the energy 
density of the field −⃗g .

If, hypothetically, we consider a region of 
spacetime in which both gravitational fields are
present (positive and negative) and have the 
same intensity, then we will a condition of the 
type :

ug=u−g → −(
g 2

8πG
)=−(

k
36πG

ρ r3 a⃗)

 → (
g 2

8πG
)−(

k
36πG

ρr 3 a⃗)=0        (8.12) 

  
The 8.12 highlights a very important 
relationship, in fact the two quantities are 
equivalent then the total energy density will be 
equal to zero. This means that : the 
gravitational effects can be cancelled!!
In practice, the spacetime vortex generated by 
negative gravity tries to flatten the spacetime 
curvature of positive gravity in its 
surroundings. 

Second Postulate :
if in any point of spacetime there is a condition
of the type ug=u−g , then at that point there
will be no type of gravitational acceleration 
neither actrattive nor repulsive; 
which is equivalent to having, for that point, an
inertial system condition unless other 
accelerations due to effects other than gravity.

Chapter IX : Poynting vector of −⃗g .

Consider a closed surface S of constant shape 
inside which are contained the field −⃗g  .
Then the total energy U contained in S will be 
given by 8.11 .
Differentiating with respect to time 8.11 :

U
 t

=∫
τ

( 
 t
(
−k

36πG
ρr 3 a⃗ ))d τ            (9.1)

studying :


 t
(ρ a⃗ r3

)=
ρ

 t
a⃗ r3

+ρ 
 t
(a⃗ r3

)           (9,2)  


 t
(ρ a⃗ r3

)=
ρ

 t
a⃗ r3

+ρ
 a⃗
 t

r3
+ρ

 r3

 t
a⃗  (9.3)

r 3

 t
=3 r2  r⃗

 t
                                    (9.4)  

finally :


 t
(ρ a⃗ r3

)=r3 a⃗
ρ

 t
+3ρ a⃗ r 2  r⃗

 t
          (9.5)

where 
 a⃗
 t

=0  because a⃗  ia a constant of

motion.

So using the continuity equation  :

U
 t

=∫
τ

(−(
k

36πG
(r 3 a⃗(−∇⃗ J⃗ )+3ρ r2 a⃗ v⃗ )))d τ

                                                           (9.6)  
where v⃗  is the variation of the distance 
between the sources.

Using 6.4 in to 9.6 :

U
 t

=∫
τ

(
1
3
(−⃗g ) r⃗ (∇⃗ J⃗ ))d τ−∫

τ

(−⃗g )ρ v⃗ d τ   

                                                           (9.7)  
     

Applying f (∇⃗ A⃗)=∇⃗ ( f A⃗)−(∇⃗ f ) A⃗ to the 
first integral of 9.7 :

1
3
(−⃗g ) r⃗ ∇⃗ J⃗=∇⃗ (

1
3
(−⃗g ) r⃗ J⃗ )−(∇⃗

1
3
(−⃗g) r⃗ ) J⃗

                                                           (9.8)  
and :

(∇⃗
1
3
(−⃗g ) r⃗ )=

1
3
r⃗ ∇⃗ (−⃗g )+

1
3
(−⃗g)      (9.9)



Using 7.3 and 6.4 :  

(∇⃗
1
3
(−⃗g ) r⃗ )=

2
3
(−⃗g)+

1
3
(−⃗g )=(−⃗g ) (9.10)

therefore :

U
 t

=∫
τ

(∇⃗ (
1
3
(−⃗g) r⃗ J⃗ )−(−⃗g ) J⃗−(−⃗g ) J⃗ )d τ

                                                          (9.11) 
and :

U
 t

=∫
τ

∇⃗ (
1
3
(−⃗g ) r⃗ J⃗ )d τ−∫

τ

(2(−⃗g ) J⃗ )d τ

                                                          (9.12) 

where in the second integral of 9.7 is ρ v⃗= J⃗ .

Applying the divergence theorem to the first 
integral of 9.12 :

U
 t

=∫
S

(
1
3
(−⃗g ) r⃗ J⃗ )d S⃗−∫

τ
(2(−⃗g) J⃗ )d τ

                                                         (9.13)
and :

−(
U
 t

)=−∫
S

(
1
3
(−⃗g) r⃗ J⃗ )d S⃗+∫

τ
(2(−⃗g ) J⃗ )d τ

                                                         (9.14) 

It is easy to see that the second integral of 
9.14 is the dissipation of the energy in the 
volume τ  in which − g⃗≠0 , because the 
motion of the sources caused by negative 
gravity. In fact the integrand represents a 
volumetric power density W /m3 ;
while the first integral is an increase of energy 
in the surface S that incluses the volume τ
in which − g⃗≠0 , therefore there is no flux 
of energy through the surface S that incluses 
the volume τ in which − g⃗≠0 .
Namely : there is no Poynting vector for 
negative gravity.

So, summing up, we can say that 9.14 tells us 
that the energy associated with the field −⃗g
remains confined in the region of the space 
where − g⃗≠0 and the dissipation is due 
exclusively to the motion of the sources of the 
fields, i.e. only an energy trasformation occurs 
that is, we pass from the negative gravity 
energy to the mechanical energy of the 
sources.

Third Postulate :
all bodies with mass that move through 
spacetime emit gravitational waves transferring
positive or attractive gravity to other bodies 
through the Poynting vector given by 4.13;
if they rotate themselves then they are also 
sources of negative gravity, but the transfer of 
energy of negative or repulsive gravity to other
bodies occurs only in the region of spacetime 
where the field − g⃗≠0 .

The third postulate implies that it is : 
  

∇⃗ (−⃗g )=0                                      (9.15)

in apparent disagreement with :

∇⃗ (− g⃗ )=
k

6πG
r⃗ a⃗                             (7.3) 

The explanation is that 7.3 considers flux 
through the surface of the source, while 9.15 
only applies to the surface that encloses the 
volume in which − g⃗≠0 , that is, the surface
that incloses the vortices that represent the 
field −⃗g :

According to the ralation B⃗=−z v⃗=−⃗g used 
in chapter 7 to compare 7.10 with 1.37 and 
find the mass continuity equation

∇⃗ J⃗+
ρ

 t
=0 .



Chapter X : Conclusions.

The equations of the ODG Theory that describe
the gravitational field ± g⃗  are :

∇⃗ • g⃗=−4πGρ                               (10.1)  

∇⃗ x g⃗=
k

4πG
 v⃗
 t

                            (10.2)  

∇⃗ x g⃗=η J⃗−
η

4πG
 g⃗
 t

                    (10.3)  

∇⃗ (− g⃗ )=
k

6πG
r⃗ a⃗    local                 (10.4)  

∇⃗ (−⃗g )=0           general                (10.5)  

∇⃗ x (− g⃗)=
k

12πG
r 2
(∇⃗ x a⃗)              (10.6)  

with :

k=1,35 •10−18 m2

kg s2
                         (10.7)  

η=6,21 •10−13 m2

kg s
                          (10.8)  

and :

10.4 is true for the flux through the surface of 
the source.

10.5 is true for the flux through the surface of 
the vortices.

For the 10.1 and 10.4 the gravitational 
monopoly exists.

The equations of the GEM Theory is :

∇⃗ • E⃗ g=−4πGρ                             (10.9)  

∇⃗ • B⃗g=0                                      (10.10)

∇⃗ x E⃗ g=−(
1
2c
)
 B⃗g

 t
                      (10.11)

∇⃗ x B⃗g=−(
8πG
c

) J⃗+
2
c

 E⃗ g

 t
          (10.12)  

Equating 10.2 with 10.11 and 10.5 with 10.10:

B⃗=−z v⃗=−g⃗                                (10.13)

1
2c
=

k
4πG z

                                 (10.14)  

with z=1 s−1 .

Equating 10.2 with 10.3, 10.3 with 10.11 and 
10.6 with 10.12 you obtain the mass continuity
equation :

∇⃗ J⃗+
ρ

 t
=0                                 (10.15) 

The following postulates apply : 

First Postulate :
all bodies with mass manifest positive or 
attractive gravity, and if equipped with angular
acceleration on its axis then they also manifest
negative or repulsive gravity.

Second Postulate :
if in any point of spacetime there is a condition
of the type ug=u−g , then at that point there
will be no type of gravitational acceleration 
neither actrattive nor repulsive; 
which is equivalent to having, for that point, an
inertial system condition unless other 
accelerations due to effects other than gravity.

Third Postulate :
all bodies with mass that move through 
spacetime emit gravitational waves 
transferring positive or attractive gravity to 
other bodies through the Poynting vector given
by 4.13;
if they rotate themselves then they are also 
sources of negative gravity, but the transfer of 
energy of negative or repulsive gravity to other
bodies occurs only in the region of spacetime 
where the field − g⃗≠0 .



In summary :

the gravitational field has a double face
± g⃗ :

the +⃗g field is the attractive gravity 

with ∣+⃗g∣=−(
Gm

r 2
) ;

in general the −⃗g field behaves like the 
gravitomagnetic field B⃗ , but locally it 
can be considered as repulsive gravity 

with ∣−⃗g∣=
k

12πG
r 2a . 

An observer looking at a reference system
with a rotating gravitational source, will 
observe three different effects: 

a) ∣+⃗g∣>∣−⃗g∣ : curved spacetime and 
gravitational effects mainly attractive, the
observer will see the test bodies affected 
by the source fall. In the extreme case
+⃗g→∞  it will observe a black all ; 

B) ∣+⃗g∣=∣−⃗g∣ : flat spacetime and zero 
gravitational effect, the observer will see 
the test bodies as inertial reference 
system ;
C) ∣+⃗g∣<∣−⃗g∣ : curved spacetime and 
gravitational effcts mainly repulsive with 
the force orthogonal to the field −⃗g as 
for the gravitomagnetic force of Lorentz, 
the observer will see the test bodies move
away orthogonally to the axis of rotation 
of the source. In the extreme case
−⃗g→∞  it will observe a white hole.

The effect of gravitomagnetism were 
experimentally detected thanks to the two
satellites : Gravity-Probe-B of 20 april 2004 
and Lares of 13 february 2012. 
Both satellites experience the effects know as :
frame-dragging or Lense-Thirring effect and 
geodetic effect or precession De Sitter.

To test the effects of negative gravity three 
experiment would suffice : 

1) weight loss of a rotating body;
2) repulsive gravitational thrust given by

−⃗g  field.
3) observation of white holes born from 

highly rotating black holes in which
∣+⃗g∣<∣−⃗g∣ .

In the second experiment, Lorentz force for the
gravitomagnetic field B⃗ must be taken as 
the anti-gravity force by replacing the B⃗  
field with −⃗g field, as predicted by 10.13 .
The Lorentz force must be considered only in 
the region of spacetime where the field
− g⃗≠0 , i.e. inside of the spacetime vortices 

in accordance with the third postulate.

In this way the ODG Theory will be fully 
verified.

Unfortunately I don't have the necessary 
technology to verify the accuracy of my 
theory.
But the necessary technology already 
exists and if someone wanted to try to 
carry out the three experiments that I 
proposed, I would be happy. 
Thank you. 


