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Abstract. By generically constraining the boundary term of the action of gravity, the formal
structure of the observed types of matter fields (scalar, fermion/Dirac and spin 1) is obtained
in the weak gravity limit, including their gauge behaviour, covering the standard model. By
gravity, we mean any theory having the Gibbons-Hawking-York boundary term as its torsion-
free weak gravity limit. The constraining term is assumed to be local, not explicitly coordinate-
dependent and to be the boundary term of a bulk function (Lagrangian). In this way, the
latter is fixed to a large extent, admitting couplings and mass terms. The formal matching
with observed fields suggests that matter should be the consequence of gravity constraining,
and quantum matter would result from constrained quantum gravity. This implies that it is
possible to compute the value of 6.564 · 10−69 m2 for the fundamental quantum constant of
gravity – the smallest possible change of the boundary term. Also, the freedom to construct
a fundamental quantum concept of gravity is strongly reduced, and the weak gravity limit is
completely determined. For strong gravity, the boundary term – rather than the Hamiltonian
– yields a key quantum counting operator.

1. Introduction
A common view is that experimental evidence for quantum gravity is still out of reach –
unless we already possess experimental data without having noticed it. The goal of this article
is to investigate such a possibility of a fundamental relation between quantum gravity and
quantum field theory (QFT) for matter and, in the positive case, to take advantage from the
experimentally well-established QFT in the weak gravity regime to derive quantum properties
for gravity. This investigation not only provides a guide line for a quantisation restriction but
also leads to the experimentally falsifiable computation of the fundamental quantum constant
for gravity.

The idea that the quantisation of matter fields might reflect quantum space-time is not new, see
[1] for a series of arguments. In such a case, if space-time has a discrete microscopic structure, it
must cause matter to behave non-continuously as well, eventually preventing matter from being
classical at the microscopic level. Nevertheless, no concrete proposal on the precise mechanism
of the emergence of quantum matter from quantum space-time has been formulated yet.

Since it is not clear at this time what kind of theory of quantum gravity will survive
future observations, we prefer to avoid any restricting a priori assumption on the quantisation
procedure, rather concentrating on the relation between gravity and matter. In Section 2, we



work out the generating mechanism for matter fields at the “classical” level by constraining
gravity on its boundary term. Our perturbative analysis yields that there exist precisely only
three possible types of non-trivial, local and not explicitly coordinate-dependent matter fields
up to first order in the coordinate derivative and second order in the field power on the boundary
(the perturbative analysis being justified because the experimentally best accessible parameter
range for significant data is in the weak gravity regime). The emerging fields are of the scalar,
the fermion (Dirac) and the spin 1 type, i.e. the observed field types emerge (standard model).
In our analysis, we consider two matter field types as being distinct if the form of their matter
field equations of motion differ. The detailed proofs are provided in Subsections 2.1–2.5, but
can also be skipped by the busy reader. The proposed mechanism only works when considering
the boundary term; we do not know of any alternative straight-forward mechanism capable of
restricting the types of fields to these same three categories including their gauge behaviour. We
conclude that a mere coincidence of such a precise field type matching is unlikely and propose
to raise the gravitational constraint concept to a fundamental principle.

We argue in the second part of this article how the quanta of gravity (whatever they are)
can force the emergence of quantum matter fields. On the other hand, based on the constraint
mechanism, we exclude that matter quantisation could be caused by a mechanism which does not
simultaneously affect gravity. As a consequence, the fundamental quantum constant of gravity
is related to Planck’s constant (via the Planck area). The predicted value for the quantum
constant should allow a straight-forward future experimental test by investigating the motion
or phase behaviour of a small number of particles propagating “within” their own quantised
gravitational field. Moreover, since the quanta live on the 3d-boundary of a region of a general
relativistic space-time manifold with no a-priori symmetries, the resulting joint gravitational
and matter theory is not based on the concept of a Hamiltonian. This also means that the
viability of the theory cannot be guessed from conventional renormalizability arguments.

The constrained gravity concept of matter has additional interesting features:

(i) This is the first proposal for which matter keeps a status different from gravity without being
treated as an ad-hoc term. This is also in contrast with theories unifying non-gravitational
and gravitational interactions on equal footing while inertia is supposed to emerge as a
gravitational phenomenon. In the constrained gravity concept, matter emerges generically,
thereby reducing at once the initial assumptions needed. These features are remarkable.

(ii) The constraint is applied to the boundary term of gravity, i.e. in a reduced dimension (3d
or 2+1) space which is expected to be the dimension for quantum gravity [2].

(iii) Finally, gauge (or internal) symmetries directly follow from the residual freedom to modify
the constraint “parameters” while leaving the gravitational configuration unchanged.

One may wonder why we should propose that nature causes matter to emerge from a
gravitational constraint mechanism. To some extent, the motivations may be obtained from
some thermodynamic or statistical mechanical interpretations of gravity, e.g.:

• The path integral formulation [3] of gravity provides an analogy with statistical mechanics
for a canonical ensemble. A constraint field can then be seen as a kind of thermodynamic
potential (much like e.g. the chemical potential changes the statistical probabilities of
occurrence of certain thermodynamic states of a gas).

• Thermodynamic formulations are inspired by black hole thermodynamics [4, 5, 6] or,
equivalently, by accelerated observers, via the Unruh temperature [7] or the First Law of
thermodynamics interpretation of General Relativity (GR) by [8, 9], from which 2d-surface



areas acquire the status of an entropy as seen by the accelerated observer. In this context,
the entropy is related to the heat crossing the horizon (radiation of matter). It is therefore
natural to interpret the radiated matter as a manifestation of gravity.

• Multiple observer entropy: To go even further, when foliating the boundary of a space-time
region into multiple 2d-surfaces, the Gibbons-Hawking-York boundary term acquires the
interpretation of a sum of entropies perceived by multiple Rindler observers. In fact, only
multiple observers would have a realistic chance to measure a horizon temperature [10].
Interestingly, the boundary term of the gravitational action (up to a non-dynamical term)
is precisely proportional to the multiple observer entropy which is maximized in order to
find the macroscopic state with highest probability (namely the boundary geometry of GR).
The next step is to supply a metric-independent constraint field to the multiple observer
entropy which reduces the degrees of freedom. If we then maximize the multiple observer
entropy, we obtain a non-vacuum geometry with matter content [11].

2. Constraining the boundary term of gravity via a generic function
The considerations of this article are not restricted to one theory of gravity but allows for any
models having GR as their torsion-free weak gravity limit. Considering GR as the simplest
example, when computing the action by integrating over a space-time region V with boundary
∂V , the Gibbons-Hawking-York boundary term S∂V (GHY-term) must be added to the Hilbert-
action in order for the metric to be fixed on ∂V [3, 12]:

S∂V =
c4

8πG

∫
∂V
d3x

√
|γ| K + C, (1)

where K is the trace of the second fundamental form Kab on ∂V and can be written in terms of
the induced metric γab (with determinant γ) and the Lie derivative L⊥ with respect to the unit
normal vector na on ∂V ,

K = −1

2
γabL⊥γab, (2)

and ∂V (assumed spatial in (1)) can be generalised to any piece-wise smooth non-null boundary,
C is a free term depending on γab only and defines the asymptotic behaviour of γab but has
otherwise no impact on the gravitational setting. The non-dynamical term of type C is added
independently of the chosen theory. While (1) is particularly useful in the context of the weak
gravity regime, more general theories are included in the general concept, as for example f(R)
gravity (replacing R by f(R) in the action) for which

S∂V =
c4

8πG

∫
∂V
d3x

√
|γ| df

dR
K + C (3)

is found [13, 14], while the metric and the scalar curvature R are fixed on ∂V .

Since the boundary term reflects part of the action, it cannot behave arbitrarily but must
satisfy its own variation condition. Consider that the bulk action Sbulk of a given theory satisfies
δSbulk = 0 under the Neumann condition (fixed derivative of γab or fixed torsion-less part of the
spin connection) and δ(Sbulk + S∂V ) = 0 under the Dirichlet condition (fixed γab or fixed frame
field eIa, and optionally torsion), with S∂V 6= 0. Then, the boundary term S∂V satisfies the
following variation principle with respect to e.g. γab (or eIa) and the connection:

δbS∂V = 0, (4)



where we define the boundary variation of the boundary term
∫
∂V f([X]) of an action with

Lagrangian F ([X]), with δf = [δv(Y )]u(X) + v(Y )[δu(X)] and Y = Y ([X]) � X, by

δb

∫
∂V
f([X]) =

∫
∂V
δbf([X]), δbf([X]) = v(Y )

∂u(X)

∂X
(δ1X) +

∂v(Y )

∂Y
(δ2Y )u(X), (5)

with δiZ([X]) = Z([X + δiX])− Z([X]), with “[X]” denoting the dependence on X and its
derivative X:µ and with variations δ1X, δ2X which are related to each other by

δ1

(√
−gF

)
+ δ2

(
√
−g

[
F −

(
∂F

∂X:µ
X

)
;µ

])
= 0 (6)

but otherwise arbitrary, and the colon in X:µ denotes the partial derivative if X is a gravitational
object, e.g. the metric, and the covariant derivative otherwise. The second term of (6) contains
a divergence term which does not contribute to the equation of motion. In the case of GR,
for example, we use: X → gαβ or γab, u = X, and Y → Nab =

√
γ(Kγab −Kab), v = Y . (4)

generalises correspondingly if higher derivatives are to be included. In (6), X is fixed and can be
off-shell, δ1X and δ2X depend on each other, and (6) should not be confused with a “variation
principle”. By working out the variations in (6) and integrating over V , we immediately obtain
(4) as soon as gαβ is on-shell, i.e. (4) yields the same result as the usual variation principle
δ(
√
−gF ) = 0 with the appropriately fixed boundary condition, if (4) is applied to all possible

volumes V within the region with non-vanishing divergence term. Therefore, (4) can be used to
solve for physical configurations. This fact is needed in what follows.

Boundary terms like (1) or (3) only describe a vacuum geometry. In general, we are interested
in off-vacuum geometries. Stationary off-vacuum geometries can be obtained by constraining
the boundary term. Correspondingly, the bulk action must be constrained depending on
how we are constraining the boundary term. Constraints can be imposed by an extra-
term containing an “independent parameter ϕ” (similarly to the Lagrange multiplier method):

S∂V → S∂V + Sconstr∂V (ϕ; . . .). For the desired new, off-vacuum geometry, the gravitational terms
will come along with a net “gradient” with respect to γab which must be compensated by the
net “gradient” of the constraint term. The modified stationarity requirement reads:

δbS
constr
∂V = −δbS∂V . (7)

Unlike the case of vacuum gravity, we have (at least) one additional variable ϕ to vary, so that (7)
implicitly contains (at least) 2 boundary variation restrictions in the form of (6), one for gravity
(e.g. δ1g

αβ, δ2g
αβ) and the remaining one for δ1ϕ, δ2ϕ. Because the form of the constraint term

is not given before-hand, we start from (7) and write the following generic ansatz for Sconstr∂V
which satisfies locality and non-explicit coordinate dependence (a natural assumption since these
two latter conditions already apply to S∂V ):

Sconstr∂V =

∫
∂V
d3x
√
−g 2σ([ϕ], [γab]) + Cm, (8)

where we exemplarily consider metric-dependent gravity to simplify the formalism, and Cm is,
again, a function of the metric alone and can be absorbed into C. The “parameter” ϕ is a formal
object of type still to be determined. Since ϕ can be a (generalised) function of the coordinates
and δb also involves the derivative, we use square brackets to denote dependence on ϕ and its first
derivative ∇µϕ (ϕ may also be tensorial). We shall justify later on by a perturbation argument
why we assume no higher than the first order derivative to be involved. As for the derivatives
of γab, they are excluded below.



One of our assumptions is that a bulk constraint term Sconstrbulk needs to exist which has Sconstr∂V
as its boundary compensation term. In fact, whenever Sconstrbulk depends on ∇αϕ, a boundary
term appears. We start with the bulk ansatz

Sconstrbulk =

∫
V
d4x
√
−g 2L([ϕ], gαβ). (9)

We identify L as a Lagrangian candidate for matter and σ as the density of its boundary term.
Like σ, the function L([ϕ], gαβ) is not explicitly coordinate-dependent since σ is invariant under
the local coordinate transformations leaving the metric unaltered and, therefore, L must be
invariant and thus not explicitly coordinate-dependent in order to preserve the metric. Moreover,
since σ is local, so is L. To see this, one can inspect σ via a non-local ansatz (containing
expressions f(x, y) integrated over y). However, since σ is local, any local transformation
y → y′(y), f(x, y)→ f(x, y′(y)) leaves σ invariant, and L must also be invariant, so that y
can be chosen arbitraryly and L becomes local. Notice that L may depend on the metric,
but not on its derivatives, otherwise this would yield additional gravitational boundary term
contributions, i.e. the gravitational boundary term would depend on ϕ, in contradiction to the
definition of S∂V . Hence, σ does not depend on derivatives of γab either. Variation of (9) yields:

δSconstrbulk

2
=

∫
V
d4x

∂(
√
−gL)

∂gαβ
δgαβ +

∫
V
d4x
√
−g [EL]δϕ+

∫
∂V
d3x
√
−g nµ

∂L
∂(∇µϕ)

δϕ, (10)

where

[EL] =
∂L
∂ϕ
−∇µ

∂L
∂(∇µϕ)

(11)

yields the “Euler-Lagrange Equation” (ELE) for the field ϕ when set to zero. There are two
ways for obtaining the ELE: we either have to fix ϕ in the boundary term in (10) or to add the
compensation term

Sconstr∂V = −2

∫
∂V
d3x
√
−g nµ

∂L
∂(∇µϕ)

ϕ, (12)

to Sconstrbulk and then fix ∇αϕ on the boundary, in (opposite) equivalence to the boundary
compensation procedure of gravity. In the case σ = (∂σ/∂ϕ)ϕ which will be the only relevant
one for the analysis in this article, it follows:

∂σ

∂ϕ
= −nµ

∂L
∂(∇µϕ)

. (13)

L has, therefore, the form

L = −∂σ
∂ϕ

[⊥→µ]

∇µϕ− V (ϕ, gαβ), (14)

if we consider one single field ϕ, where [⊥→µ] means replacement of the index ⊥ by µ, and ⊥
incorporates arbitrary orientations since the boundary “shape” can be chosen arbitrarily from
the set of all possible boundaries, i.e. the normal vector nµ varies arbitrarily (piecewise smoothly)
along the boundary.



We shall now analyse how σ([ϕ], γab) depends on ϕ, by considering an expansion in terms
of ϕ. Such an expansion is reasonable in the weak gravity limit, assuming a nearly vanishing

curvature, i.e. a stress tensor Tαβ ∼ δ(
√
−gL)/δgαβ ≈ 0 in cartesian coordinates, and thus small

amplitudes of ϕ, as follows. We define an amplitude of ϕ to have a critical value if a higher
order term ∼ O(ϕnh) reaches a magnitude comparable to a lower order term ∼ O(ϕnl). For a
much lower than critical amplitude of ϕ (weak gravity), the term ∼ O(ϕnh) contributes much
less than the term ∼ O(ϕnl), i.e. higher order terms become small corrections for weak gravity.
To work out the expansion, we think of the boundary ∂V as the union of small elements dΣj

centered at 3d-positions xaj , and the object ϕ = ϕ(xa) is a set of variables ϕj = ϕ(xaj ) (and we
do the same for ϕ;b). Therefore, for every position labeled j, we can expand σ(ϕj , ϕ;bj , γab(x

a
j ))

in terms of ϕj and ϕ;bj , and the continuum limit is finally recovered using xaj+1 − xaj → 0. Since
all types of solutions of the ELE resulting from (14) are of concern, it may be to restrictive to
treat ϕj as a real-valued scalar or tensor variable; rather, ϕj may also possess some number
N of inner degrees of freedom. We must therefore take into account N different subvariables
i
ϕj , i = 1 . . . N , instead of just ϕj (a special case are complex values with N = 2), while (14) is

extended to contain up to N terms ∼ ∇µ
i
ϕ. Furthermore, there may be more than one variable

involved. With labels [l], we write
i
ϕ[l] for every species. Keeping all this in mind, we obtain:

σ =
∑
r≥0

[ 1∑
k1=0

∑
[l]i

AR1k1[l]i

i
ϕ

[l](k1)
R +

1∑
k21,k22=0

∑
[l]i[m]j

ARS2k21k22[l]i[m]j

i
ϕ

[l](k21)
R

j
ϕ

[m](k22)
S + . . .

]
, (15)

where
i
ϕ

[l](k)
R stands for the kth derivative of

i
ϕ

[l]
R =

i
ϕ

[l]
a1...ar with explicitly written

tensor order r (the indices can be boundary space indices or ⊥), and the coefficients
AR...nknm1...mn[l]i...

= AR...nknm1...mn[l]i...
(γab) do not explicitly depend on the coordinates. One of our

assumptions is to consider contributions up to second order in
i
ϕ

[l](k)
R . One would expect a lot

of independent types of expressions out of Expansion (15) – roughly given by the dimension of
the vector space of the coefficients. In fact, only very few realisations truly give us new types
of fields as will come out. To investigate this, we consider finite sums σ[n,k,r], where the square
bracket indicates the maximum n, k, r occurring in each sum. We shall start with the simplest

form – both in terms of
i
ϕ

[l]
R and with respect to the tensor order r of

i
ϕ

[l]
R – and progressively

scan expressions and objects of increasingly complex form. Every σ[n,k,r] may give rise to a new
form of Lagrangian and therefore to a new type of field ϕ.

As specified previously, this procedure is executed up to first order in the derivative of ϕ on ∂V .
This restriction is reasonable in the weak gravity limit, assuming a nearly vanishing curvature
and thus a stress tensor Tαβ ≈ 0 in cartesian coordinates, with the following argumentation.
Every derivative ∇µ applied to a Fourier mode ∼ exp(ikµx

µ) of ϕ produces a factor ikµ.
Therefore, the kinetic term of L leads to at least a contribution ∼ kβ to Tαβ, so that we expect
a growth of at least some part of Tαβ with increasing mode frequency (or energy). At some
critical frequency, a higher (kh-th) derivative term may have a value comparable to a lower
(kl-th) derivative term. But for the much lower frequencies relevant for weak gravity, the kh-
th derivative term contributes much less than the kl-th derivative term, i.e. higher derivative
terms are small corrections for weak gravity. For this reason, we retain no higher than the first
derivative. Despite the perturbative nature of our severe restrictions (up to first derivative and
second order in the field power), our main goal to explore the relation between quasi-flat space
QFT and constrained gravity remains unaffected.



Internal symmetries: Even after having found every σ[n,k,r] including the algebraic structure

of the
i
ϕ

[l]
R , and after having solved the ELE up to a free choice of the potential terms, there

remains some freedom for how to choose
i
ϕ

[l]
R without affecting the gravitational configuration.

This freedom causes restrictions on the admissible form of L: If a global or local transformation of
i
ϕ

[l]
R preserves σ, it must preserve L. The (infinitesimal) local transformations are the restrictive

ones. For instance, terms with products (
1
ϕ[l1] 2

ϕ[l2]) are preserved if the
i
ϕ

[li]
R are multiplied by

properly matched phase factors exp [iδΩi(x
µ)]. The underlying issue is: Due to the freedom of

the potential terms, even if σ is preserved by a given transformation, L may change in a non-
trivial way, causing the metric itself to change and eventually modifying the constraint condition
on the boundary, in contradiction with the invariance of σ. We therefore have to require that
L remains unaffected by all transformations under which σ is preserved. The transformations
mentioned here are precisely gauge transformations of QFT (see the specific cases below). The
gauge invariance of L is known to be crucial for renormalizability of a quantum field theory. It
is interesting that matter fields need to have a Lagrangian if gauge invariance shall hold [15].
This also reinforces our assumption about the existence of an expression Sconstrbulk having Sconstr∂V
as its boundary term.

In the weak gravity limit, it is the equations of motion for matter which can best be
distinguished by the observations; equations of motion of gravity are harder to distinguish.
For this reason, if two distinct Lagrangians L1,L2 have the same ELE, we assume that only L1

or L2 is of relevance.

Our next task is to reduce as much as possible the number of relevant combinations of n, k
and [l] numbers occurring within the same expression σ[n,k,r]. Consider:

• Fixed n = 1: For n = 1, k = 1, we immediately have L = −V . For n = 1, k = 0 (possibly
mixed with k = 1), an additional σ-contribution ∼ αRϕS appears, where αR is constant,
the index ⊥ is either within R or within S, so that ∇µ∂L/∂(∇µϕ) = 0. Therefore, for
n = 1, the ELE yield ∂V/∂ϕ = 0 and thus V does not depend on ϕ and can be ignored. In
summary, the ELE for n = 1 has physically trivial content.

• n = 2 terms with two different species [l], [m 6= l]: For k = 1, σ contains terms of the

form ∼ 1
ϕ[l] 2

ϕ[m](1) which leads to a Lagangian with kinetic term K ∼ 1
ϕ[l](1) 2

ϕ[m](1), and K

has a second boundary term ∼ 1
ϕ[l](1) 2

ϕ[m]. Expression K leads to ELEs with kinetic terms

∼ ∇µ∇µ
2
ϕ[m],∇µ∇µ

2
ϕ[l], and σ can be substituted by terms ∼ 1

ϕ[m] 2
ϕ[m](1),

1
ϕ[l](1) 2

ϕ[l]. For

k = 0, we have terms of the form
1
ϕ[l]RαR⊥S

2
ϕ[m]S with generalised constant factor αR⊥S ,

i.e. every component can be represented as a matrix. The reality condition for σ implies

that we can group such expressions to pairs
1
ϕ[l]RαR⊥S

2
ϕ[m] +

2
ϕ†[m]Sα†S⊥R

1
ϕ†[l]R using adjoint

conjugation †. Introducing
2
ϕ[l]R =

1
ϕ†[l]R and

1
ϕ[m]S =

2
ϕ†[m]S , we obtain the kinetic term K

of the Lagrangian, following the same procedure as outlined in Subsection 2.2,

K ∼ λlm
1
ϕ[l]RαRµS∇µ

2
ϕ[m]S + µlm(∇µ 1

ϕ[l]R)αRµS
2
ϕ[m]S

+ λml
1
ϕ[m]Sα†SµR∇

µ 2
ϕ[l]R + µml(∇µ

1
ϕ[m]S)α†SµR∇

µ 2
ϕ[l]R (16)

and therefore two ELEs with kinetic term ∼ ∇µ
i
ϕ[l] and two ELEs with kinetic term

∼ ∇µ
i
ϕ[m]. Each of the obtained kinetic terms can be multiplied by further matrix factors



β
(†)[l]S

T , β
(†)[m]S

T with appropriate dimensions in such a way that we can substitute the

original σ-term by (i)
1
ϕ[l]RαR⊥Tβ

[l]T
S

2
ϕ[l]S to obtain the first pair of ELEs and by (ii)

1
ϕ[m]Rβ

[m]T
R αT⊥S

2
ϕ[m]S to obtain the second pair of ELEs. The equivalence holds whenever

(αR⊥Sβ
[l]S
T )† = αR⊥Sβ

[l]S
T and (β

[m]R
T αR⊥S)† = β

[m]R
T αR⊥S (which also ensures the reality

of the new σ-terms). We can achieve this by splitting the products A = α
[l]
R⊥Sβ

[l] or

β[m]α
[m]
R⊥S into hermitian and anti-hermitian parts, A = A+ +A−, with A± = (A±A†)/2,

thus doubling the terms of σ. Transforming e.g. β[m] → iβ[m] allows to construct hermitian
matrices for all terms. In summary, terms with different species can be substituted by terms
with one single species each. As for the potential terms, they are not yet fixed. We will
henceforth consider σ-expressions with pure species and omit the label [l] for easier reading.

• Fixed n = 2: Different orders k = 0, 1 of derivatives of
i
ϕR occurring within the

same expression, e.g. σ ∼ 1
ϕ ∂⊥

2
ϕ+

1
ϕ α⊥

2
ϕ, can be reduced to one single pure k. To

achieve this, one can substitute
2
ϕ→ e−αµx

µ 2
ϕ, where the general exponential is defined

as eA =
∑

m≥0A
m/m! and the objects αµ are possibly matrix-valued. The term ∼ α⊥

2
ϕ is

compensated via the derivative of the exponential, and the exponential can be cancelled by
1
ϕ→ 1

ϕeαµx
µ
, so that we obtain a pure k expression for σ.

• Fixed k numbers: For σ[2kr] with k21, k22 = 0 or 1, and subterms ∼ i
ϕk1 with k1 = k2i, we

can complete the product, i.e. write σ[2kr] in the form ∼ [(
1
ϕ(k21) +

1
a)(

2
ϕ(k22) +

2
a)], where

the extra term
1
a

2
a merely affects the constant C, and then transform

i
ϕ(k2i) → i

ϕ(k2i) − i
a

(i = 1, 2); this leaves us with a pure n = 2 expression.

• General case: With the fixed n = 2 trick, we only retain the largest k in the n = 2 terms.
Any n = 1 terms with the same k as in at least one n = 2 term can be eliminated with
the fixed k number trick. We only need to consider n = 1 terms for which k is not the
same as in anyone of the n = 2 terms. However, n = 1 terms with k = 1 are trivial, we only

need to consider terms ∼ i
ϕ with no n = 2 counterpart, i.e. only n = 2 terms ∼ i

ϕ(1)j 6=iϕ (k2j)

are of concern in σ, whence k2j = 1, otherwise a term ∼ i
ϕ(1)j 6=iϕ (1) would appear in the

Lagrangian which would produce a term ∼ i
ϕ
j 6=i
ϕ (1) in σ. Therefore, terms ∼ i

ϕ with no
n = 2 counterpart are trivial for the same reason as for the n = 1 case.

As we have seen, n can be restricted to n = 2 as the only case of interest. We are lead to
retain expressions with single numbers n, k, r. However, this guide line does not prevent us from
making exceptions below when gauge theoretical reasons suggest it. Table 1 shows an overview
of all pure n, k, r expressions which are relevant in this sense.

As an example, the second line of Table 1 typically describes a term ∼ A201(γab) ϕ
† ∂⊥ϕ and ϕ

is e.g. a scalar function. Or the object ϕ on the fourth line is of the form ϕa. In our investigations,
we concentrate on the weak gravity limit (with γab ≈ ηab using Euclidean coordinates, assuming
a negligible cosmological constant Λ). In this limit, the detailed dependence on γab is not
essential. In case of ambiguities, we only retain the simplest expressions in terms of γab. For
later convenience, factors

√
−g are kept throughout inside the integrals.

The expressions leading to the lines of Table 1 (except the first one) are analyzed in detail in
the following subsections. In summary, it is shown that the second line yields the scalar type
field, the third line yields the fermion (Dirac) type field, and the fourth line yields the spin 1



Table 1. Overview of possibly relevant formal expressions for σ.

Number of Order of coordinate Tensor order Resulting
factors ϕ derivative of ϕ boundary term

n = 1 k = 0, 1 Trivial
(σ ∼ ϕR or ∇⊥ϕR,∇aϕR)

n = 2 k = 1 r = 0 Scalar field term
n = 2 k = 0 r = 0 Fermion field term (Dirac)
n = 2 k = 1 r = 1 Spin 1 field term
n = 2 k = 0 r = 1 Gauge invariance fails
n = 2 k = 0, 1 r ≥ 2 No degrees of freedom /

Gauge invariance fails

type field (including Yang-Mills), while the remaining lines violate the assumptions. The busy
reader interested in the conclusions can readily skip Subsections 2.1–2.5.

2.1. The scalar field term

On the second line of Table 1, we consider n = 2, k = 1 and r = 0. We start with σ = −κ 1
ϕ∂⊥

2
ϕ

(κ = constant; the sign is only a convention) as our first ansatz. In the event that
1
ϕ coincides

2
ϕ,

the number of independent objects is reduced and a factor 2 appears in the following application
of the functional derivative. However, the analysis of such special cases does not change the main
outcome but merely affects field attributes like charge multiplicity; these shall not be discussed
further in the context of this article for simplicity. Inserting σ into (14) and varying with respect

to
1
ϕ yields:

L = κ∂µ
1
ϕ∂µ

2
ϕ− V, (17)

κ∇µ∂µ
2
ϕ+

∂V

∂
1
ϕ

= 0. (18)

The first term of (17) is of the form of the kinetic term of the Klein-Gordon field for which it

is most commonly assumed that
2
ϕ = ϕ,

1
ϕ = ϕ†. We shall, however, carry on with the general

case with arbitrary
i
ϕ. The second term V can be interpreted as the “potential term” of L. (18)

is the corresponding ELE. The form of the kinetic term of (17) implies that an additional term
should be incorporated in σ to compensate both divergence terms in the variation procedure:

σ = −κ 1
ϕ∂⊥

2
ϕ− κ(∂⊥

1
ϕ)

2
ϕ. (19)

Because of locality, V can be expanded in terms of
i
ϕ:

V = V0 + V 1
1
ϕ+ V 1−

2
ϕ+ V2

1
ϕ

2
ϕ+ V 2+

1
ϕ

1
ϕT + V 2−

2
ϕT

2
ϕ+O(

i
ϕ(T )3). (20)

To obtain a direct interpretation of the coefficients of V , we take the limit gαβ → ηαβ and

write
2
ϕ(xα) as a Fourier-back-transform in (18),

2
ϕ(xα) =

∫
d4k exp(ikµx

µ)
2
ϕ̃(kβ). Ignoring

higher than first order terms (in any fields), we rewrite:



∫
d4k eikµx

µ
[κkµk

µ
2
ϕ̃(kβ)− Ṽ 1 − V2

2
ϕ̃(kβ)− 2V2+

1
ϕ̃(kβ)−O(

i
ϕ̃(T )2)] = 0. (21)

Therefore, the bracket expression of (21) must vanish for any kβ (this is the ELE in momentum

space). By writing Ṽ 12+ = Ṽ 1 + 2V2+

1
ϕ̃, we immediately see that either Ṽ 12+ = 0 or Ṽ 12+ is an

expression of fields which are dynamical only if chosen from Table 1, and Ṽ 12+ is of first order in
any fields. However, kµk

µ is invariant under Lorentz-transformations kβ → k′β, and V2 does not

depend on kβ. Expanding Ṽ 12+ = Ṽ 10 + Ṽ µ
11kµ+ . . ., we see that all coefficients Ṽ µ

1i must be the

same multiple of the respective coefficients of
2
ϕ̃, order by order, and thus Ṽ 12+(kβ) ∼

2
ϕ̃(kβ), and

Ṽ 12+ can be absorbed into V2

2
ϕ̃(kβ). The only remaining first order potential term in any fields

in (21) is, therefore, the third one in the bracket, with V2 ∼ m2 constant. Hence, up to second

order in
i
ϕ, the expression V (20) also is Klein-Gordon type compatible. Higher orders in any

fields allow for more general potentials (including e.g. Yukawa-type couplings (see below) and
a ϕ4-term). As would be expected, (18) can already be satisfied by a complex scalar function,
1
ϕ = ϕ∗,

2
ϕ = ϕ, but higher internal degrees of freedom are admissible as well.

Finally, we have to examine the gauge conditions. First of all, σ (19) is locally U(1)-invariant.
Moreover, we may have local invariance of σ with respect to (infinitesimal) transformations
2
ϕ → exp[iδχm(xµ)Tm]

2
ϕ and

1
ϕ → 1

ϕ exp[−iδχm(xµ)Tm], where Tm are the generators of

SU(N/2), if the total number of degrees of freedom of
i
ϕ is N > 2 (including real / imaginary

parts), or SU(Ns) if Ns > 1 distinct (interchangeable) scalar complex fields are comprised. All
these invariances must hold for L as well. The kinetic term of L is already invariant, and we
thus obtain a restricting condition for admissible potential terms, including potential terms with
coupled fields from Table 1. At first order, the SU(N/2)- and SU(Ns)-invariances require that
V2 be diagonal in the inner degrees of freedom and does not cross-couple within the Ns fields,
i.e. V2 ∼ m2. With the procedure described in this article, the obtained invariances are in line
with QFT (e.g. [16]).

To describe the most general case, we also should consider the ansatz σ = −κ 1
ϕα∂⊥

2
ϕ for fields

with N > 2 inner degrees of freedom, where α can be described in a matrix representation, and
the symmetric order of the factors offers full generality. If α is regular, the ELE for this ansatz
is equivalent to (21) with the condition of diagonal V2 restricted or dropped depending on the
structure of α. Indeed, if α is non-diagonal, we must skip (or reduce) the SU(N/2) symmetry
requirement for L from σ.

2.2. The fermion field term (Dirac type)
The third line expression of Table 1 differs from the second line by the missing derivative ∂⊥:

σ = −κ 1
ϕα⊥

2
ϕ (22)

We have anticipated the relevant order of the factors (which can be non-commutative due

to the internal degrees of freedom of
i
ϕ; the symmetric order allows full generality), and the

object α⊥ in-between has a structure yet to be determined. Inserting −∂σ/∂ 2
ϕ = κ

1
ϕα⊥ and

−∂σ/∂ 1
ϕ = κα⊥

2
ϕ into (14) in the extended form and considering the limit gαβ → ηαβ yields two

different expressions for L:



L = κλ1(∂µ
1
ϕ)αµ

2
ϕ+Kµ

1 ([
i
ϕ])∂µ

2
ϕ− V (

1
ϕ,

2
ϕ, gαβ), (23)

L = (∂µ
1
ϕ)Kµ

2 ([
i
ϕ]) + κλ2

1
ϕαµ∂µ

2
ϕ− V (

2
ϕ,

1
ϕ, gαβ). (24)

Identifying κλ1α
µ 2
ϕ = Kµ

2 ([
i
ϕ]) and κλ2

1
ϕαµ = Kµ

1 ([
i
ϕ]) and defining

K± = κ[
1
ϕαµ∂µ

2
ϕ± (∂µ

1
ϕ)αµ

2
ϕ] (25)

gives us the general Lagrangian ansatz

L = λ+K+ + λ−K− − V (
i
ϕ, gαβ). (26)

Only the contribution K+ gives rise to a non-vanishing boundary term when varied with respect

to
1
ϕ and

2
ϕ, this fixes λ+ = 1/2, while λ− remains free. On the other hand, in the limit gαβ = ηαβ,

eIα = δIα, L describes dynamical fields only if λ− 6= 0, since the variation of the kinetic term
must be non-vanishing and K+ does not contribute to the ELE. While we derive the latter, the
choice of λ+ in turn is irrelevant, we may even set λ+ = 0 (standard anti-symmetric form). We
shall choose λ− = ±1/2, these will be the suitable values in order to couple ϕ to other fields
without unnecessary extra factors (see below):

L± = ±κ
2

[
1
ϕαµ∂µ

2
ϕ− (∂µ

1
ϕ)αµ

2
ϕ]− V (

i
ϕ, gαβ). (27)

E.g. L+ yields the ELE

καµ∂µ
2
ϕ− ∂V

∂
1
ϕ

= 0, (28)

κ∂µ
1
ϕαµ +

∂V

∂
2
ϕ

= 0. (29)

Again, V can be expanded using (20) and we write the ELE (28) to first order in any fields in
momentum space:

iκ αµkµ
2
ϕ̃(kβ)− Ṽ 12+(kβ)− V2

2
ϕ̃(kβ)−O(

i
ϕ̃2) = 0. (30)

Again, we immediately see that either Ṽ 12+ = 0 or Ṽ 12+ is a first order expression with any of
the Table 1 fields. The Lorentz invariance of L determines how the transformation

2
ϕ̃→ S

2
ϕ̃ (31)

is non-trivially related to the transformation of kµ. Correspondingly,

1
ϕ̃→

1
ϕ̃S−1 (32)

ensures Lorentz-invariance of σ. On the other hand, the Lorentz invariance of kµk
µ truly yields

an additional condition and can thus be used to restrict (30) further. To this end, we multiply
(30) from the left by [iκ ανk

ν + V2], where αβ ≈ ααηαβ, and we simplify this with ββ = −iκαβ:

[κ2βµβ
νkµkν + κβµk

µV2 − κV2β
µkµ − V 2

2 ]
2
ϕ̃+ κβµk

µṼ 12+ − V2Ṽ 12+ = 0. (33)



(33) considerably constrains the characteristics of ββ. Since the Lorentz transformation

behaviour of
i
ϕ̃ is already fixed and (33) must hold independently of the Lorentz frame,

we can split (33) into parts which transform differently from each other and therefore must
vanish independently. In this process, the term Ṽ 12+ progressively disappears from (33). The
contribution Ṽ 1 (first order in any fields) can be written as a sum, Ṽ 1s+Ṽ 1−+Ṽ 1+, where Ṽ 1s is

proportional to a field of type [n = 2, k = 1, r = 0,
i
ϕ̃′] and Ṽ 1± of type [n = 2, k = 0, r = 0,

1/2

ϕ̃ ′]

(
i
ϕ̃′ denotes the coupled field; other types of fields are irrelevant as shown in the other

subsections). We can immediately split off the terms transforming like (32) (Ṽ 1+ + 2V2+

1
ϕ̃ = 0)

and also eliminate the only terms transforming like a scalar function (Ṽ 1s = 0) and like a vector
(κβµk

µṼ 1s = 0). We next split off the terms which transform like (31), i.e. the term ∼ Ṽ 1− as

well as
2
ϕ̃ preceded by the extractable Lorentz-invariant part from the square bracket of (33),

which can be either:

(i) −V 2
2 ,

(ii) κ2β0β
0kµk

µ − V 2
2 ,

(iii) κ2βiβ
ikµk

µ − V 2
2 for an arbitrary i = 1, 2, 3,

(iv) or combinations of (ii–iii).

Variant (i) is trivial (β02
= 0 = βi

2
), while the remaining variants lead to mutually equivalent

results. It is therefore sufficient to pick out variant (ii) and to test its viability:

[κ2β0β
0kµk

µ − V 2
2 ]

2
ϕ̃− V2Ṽ 1− = 0. (34)

Using the same arguments as in Subsection 2.1, we can absorb Ṽ 1− into V2

2
ϕ̃ in (30) and (34), i.e.

ignore Ṽ 1−. At this point, we introduce local coordinates with propagation along an arbitrarily
selected i-direction: kj = 0 for j 6= i, 0. The residual part of (33) then becomes

[κ2(β0β
0 − βiβi)ki

2
+ κ2(βiβ

0 − β0β
i)k0ki + κ(β0V2 − V2β

0)k0 + κ(βiV2 − V2β
i)ki]

2
ϕ̃ = 0. (35)

Since (35) must hold for arbitrary k0 and i (notice that βiki depends on the arbitrary choice of
i), every round bracket expression must vanish separately. We thus obtain the conditions

(β0)
2

= −(βi)
2
; [β0, βi]+ = 0; [β0, V2]− = 0 = [βi, V2]+. (36)

For the residual part with propagation parallel to the ij-plane (kk = 0 for k 6= i, j, 0), we obtain

[βi, βj ]+ = 0. (37)

Using (34) and since β02 6= 0, we can find an explicit representation in which the number of

components of
i
ϕ̃ is minimized but positive, i.e. β02

is regular. Since β02
is diagonalizable, there

is even a representation so that V 2
2 ∼ 1 (∼ identity). With this, (34-37) can be summarised as

[βµ, βν ]+ = 2ηµν(β0)
2
; κ2(β0)

2
kµk

µ = V 2
2 ∼ 1; [β0, V2]− = 0 = [βi, V2]+, (38)

i.e. ββ = κγβ satisfies a Clifford algebra in 3 dimensions. The simplest realisation of (28) with
(38) is of the form of a 2-component field (Majorana). The next realisation is the 4-component
Dirac field, with V2 ∼ β0. Realisations with M × 4 > 4 internal degrees of freedom also must



be examined, where V2 = εβ0, ε acts on the M -fold and γµ on the 4-fold components. We
distinguish fermions of

• Majorana type (2 components),

• (generalised) Dirac type: ε is diagonal,

• non-Dirac type: ε is non-diagonal, e.g. antisymmetric with M = 2 (ELKO) [17, 18].

The Majorana type must be excluded for the following reason. The Majorana field is identical
to its anti-field and therefore neutral. On the other hand, the U(1) invariance is satisfied by σ
but not by the kinetic term, thus causing an excess term which requires a U(1) coupling (see
also examples below); but this coupling is suppressed since the field is neutral.

We shall next examine in more detail the M = 1 Dirac field. In order to properly couple
L± to gravity (eIα 6= δIα), (27) must be brought into a general covariant and thereby Lorentz

gauge invariant form – this is best illustrated in the well-known case
2
ϕ = ϕ,

1
ϕ = ϕ†, using

the covariant derivative for spinors, ∂µϕ→ Dµϕ = ∂µ − i
4ΓIJµ σIJ , with ΓIJαe

J
β = eIγΓγβα − e

I
β,α,

σIJ = i
2 [γI , γJ ] and γµ = γIeµI , and we set λ+ = 0 (L real and anti-symmetrtic) [19]:

L+ =
κ

2
[ϕ̄iγµDµϕ− (Dµϕ̄)iγµϕ]− v2ϕ̄ϕ, v2 = κ

√
kµkµ. (39)

We then have to examine the internal gauge invariances with local infinitesimal transformations
1
ϕ→ 1

ϕ exp(iδ
1
χ),

2
ϕ→ exp(iδ

2
χ)

2
ϕ – we consider gαβ ≈ ηαβ. We find that σ is invariant with

respect to U(1) and to SU(2) via a decomposition of ϕ into postive and negative helicity

components (1 ∓ γ5)ϕ/2, but not with respect to a larger group, e.g. the one generated by

δ
i
χ = δ

i
χµαµ. This is due to the fact that the direction of the normal vector on a boundary

varies, i.e. σ fails to be invariant since αµα⊥ = ±α⊥αµ with upper sign for a component ⊥= µ
and lower sign for ⊥6= µ. With respect to U(1) and SU(2), it is well-known that K− is not

invariant due to the excess (first order) terms −iκ 1
ϕαµ(∂µδ

1
χ)

2
ϕ and −iκ 1

ϕσkα
µ(∂µδ

1
χk)

2
ϕ/2, where

σk can be represented by the Pauli matrices and
i
ϕ becomes a SU(2) doublet field, but both

terms can be compensated by a potential term of L± which couples
i
ϕ at third order to vector

fields ξ0
α, ξ

k
α occurring on the fourth line of Table 1,

iκ
1
ϕαµgξ0

µ
2
ϕ, i

κ

2

1
ϕαµḡσkξ

k
µ

2
ϕ, (40)

where the coupling constants g, ḡ are introduced to enable free rescaling of ξ0
α, ξ

k
α. (40) are

the well-known “gauge connection” terms which are most commonly transferred to Dµ. The

invariance of e.g. L+ requires that gξ0
α → gξ0

α + ∂αδ
1
χ0, under which the Lagrangian for ξ0

α can
be kept locally invariant (see Subsection 2.3), and a corresponding transformation behaviour for
ξkα with an additional non-linear term. This allows for e.g. electro-weak gauge theory. There is
also the possibility to have nf > 1 different fermion fields for which σ is locally invariant under
SU(nf ) transformations, so that ”colour couplings“ are correctly supported, using Yang-Mills
theory (see Subsection 2.3). Finally, as is well known, electro-weak gauge invariance of massive
fermions can be satisfied if a Yukava-type coupling to a scalar field is included (e.g. Higgs); this
is realised via the second line of Table 1. Although our gauge analysis is in the approximation
gαβ ≈ ηαβ, an extension to the generally covariant formalism is possible by adapting the potential
terms, or, equivalently, adapting the derivative Dµ.



In the presence of torsion (Einstein-Cartan theory [19]), we need to ensure that L remains
compatible with σ. In a Riemann-Cartan manifold, the connection is Γ̃γαβ = Γγαβ −K

γ
αβ , where

Γγαβ is the Christoffel symbol computed from gαβ, and K γ
αβ is the contorsion tensor. We can

split the covariant divergence term in the following way:

∫
V
d4x
√
−g∇̃µ(ϕ†αµδϕ) =

∫
V
d4x (∂µ [

√
−g (ϕ†αµδϕ)]−

√
−g K µ

νµ ϕ
†ανδϕ)

=

∫
∂V
d3x
√
−gnµ(ϕ†αµδϕ)−

∫
V
d4x
√
−gK µ

νµ ϕ
†ανδϕ, (41)

where ∇̃µ is the covariant derivative with torsion. The covariant divergence term splits into

• a divergence term without torsion which is compensated by our original boundary term and

• an extra term without derivative, coupling to the torsion at first order – it can be absorbed
into the potential term of the bulk action.

The torsion field can be solved for using the equation of motion for the torsion which is part of
the gravitational field equations (e.g. Einstein-Cartan).

To see whether an M > 1 theory could be viable, we first investigate additional infinitesimal
local transformations which mix inner degrees of freedom and under which σ is invariant; these
are SU(M) transformations ϕaA → [exp(−iδχmTm)]BAϕ

a
B and they mix the M -fold components

only (not the 4-fold ones). Again, they do not leave K− invariant, but the excess term can be
compensated by a Yang-Mills coupling. Moreover, while the mass term is invariant for a Dirac
type field, it is not for a non-Dirac type field, due to the non-diagonal ε = εlTl. Transforming the
non-Dirac “mass” term produces one more extra term −κv2ε

lϕ̄A
a

[Tl, Tm]BAδχ
mϕaB which must be

compensated. One option is to accommodate this compensation via the above-mentioned Yang-
Mills coupling by properly adapting its transformation behaviour. This is demonstrated in
Subsection 2.3. As for the remaining symmetries, U(1) and SU(2) both apply to the Dirac-
like fields, while the non-Dirac-like fields cause restrictions on the admissible couplings. As an
example, M = 2 with totally antisymmetric tensor ε (ELKO [18]) yields a “charge conjugation
eigenspinor” field; it must be neutral with respect to the charge it refers to and this prevents
the U(1) gauge coupling with respect to this charge. In the same way, for each non-Dirac field
ϕl specified by a choice εl 6= 0, one can find a “conjugation” operator Cl for which ϕl is an

eigenspinor. Indeed, εl causes a crossing of spinor components. At the same time, there is a
transformation U ∈ SU(M) which causes precisely a crossing of the same spinor components.
Although the generator of U would need to appear in the couplings, it is prevented by the
eigenspinor property. This matter of fact requires us to exclude the non-Dirac field types.

To summarise, in conformity to the standard model, we have obtained Dirac-type fields with
coupling to spin 1 type fields (e.g. electromagnetic, W±, Z0 or gluon), to a scalar field (e.g.
Higgs) and the possibility to couple it to torsion.

2.3. The spin 1 field term

On the fourth line of Table 1, we consider a vector field
i
ϕa or

i
ϕµ (r = 1) and a first order

(covariant) derivative (k = 1). Three types of expressions,



σ1 = −κ(∇⊥
1
ϕa)

2
ϕa, (42)

σ2 = −κ(∇a
1
ϕ⊥)

2
ϕa, (43)

σ3 = −κ(∇a
1
ϕa)

2
ϕ⊥, (44)

must be linearly combined. (42-44) lead to the following kinetic terms for the Lagrangian:

K1 = κ∇α
1
ϕβ∇α

2
ϕβ, (45)

K2 = κ∇α
1
ϕβ∇β

2
ϕα, (46)

K3 = κ∇α
1
ϕα∇β

2
ϕβ. (47)

These terms depend on the connection and therefore on the derivative of the metric which has
to cancel out of L. This is achieved by choosing the linear combination to be ∼ K1 −K2, i.e.

L = −κ
2

1
Fαβ

2
Fαβ − V (48)

with the field tensor defined as

i
Fαβ = ∇α

i
ϕβ −∇β

i
ϕα, (49)

so that we retain σ = σ2 − σ1. This boundary term only accounts for the variation of L with

respect to
2
ϕa and must be paired with an expression for the variation with respect to

1
ϕa:

σ =
κ

2
[

1
F⊥a

2
ϕa +

1
ϕa

2
F⊥a]. (50)

Expanding V in (48) and writing the ELE δL/δ 1
ϕa = 0 in momentum space yields (with

gαβ → ηαβ):

κkβk
β

2
ϕ̃α(kµ)− κkαkβ

2
ϕ̃β(kµ)− Ṽ 12+α − V2

2
ϕ̃α(kµ)−O(

i
ϕ̃(T )2
µ ) = 0. (51)

We split (51) into a longitudinal component by multiplying it by kα, and a transverse component
by computing its 4d-vector product with kγ , using the operation vα → vαkγ − vγkα:

kαṼ 12+α = kαV2

2
ϕ̃α, (52)

κkβk
β(

2
ϕ̃αkγ −

2
ϕ̃γkα) = Ṽ αkγ − Ṽ γkα, (53)

where Ṽ α = Ṽ 12+α + V2

2
ϕ̃α. From (52), we can ignore the longitudinal components of Ṽ α. With

(53), we find V α ∼
2
ϕα + ∂αχ, where χ is an arbitrary function. We are free to fix χ so that

∇β 2
ϕβ = 0 (Lorenz gauge), and the second term of (51) vanishes. Therefore, to first order in any

fields, since kβk
β is Lorentz-invariant and V2 is kβ-independent, we can skip the Ṽ 12+α-term for

the same reason as in Subsection 2.1. To first order in any fields,
2
ϕα obeys the same equation

of motion as the spin 1 field (for the Yang-Mills form of L, see below). The simplest form of
i
ϕα is a vector field

i
ξα which is (at most) complex-valued. There is also the option of additional

internal degrees of freedom or additional species of spin 1 fields, which allows for Yang-Mills
type fields.



We shall first analyse the abelian theory, writing
1
ϕα = ϕ†α,

2
ϕα = ϕα for simplicity although

all steps generalise to
i
ϕα fields. For σ, we find local invariances only if ϕ†α = ϕα. Then we

have U(1)-invariance and invariance under (infinitesimal) transformations ϕα → [exp(iδχ)]βαϕβ,

where the δχba(x
µ) are real. These invariances must hold for L as well. In all mentioned cases, the

kinetic term of L is already invariant, and we thus obtain a restricting condition for admissible
potential terms. Moreover, if L is the Lagrangian of a gauge field which couples to a fermion
field (Subsection 2.2 plus 2.3), we have to ensure that L be invariant under infinitesimal gauge
transformations

gϕα → gϕα + ∂αδχ, (54)

as announced in Subsection 2.2, simultaneously with the abelian fermion transformation
ϕ→ exp(−iδχ)ϕ. This is already the case for the kinetic term of L, and the potential term
can be restricted so that the sum Ltot = L+ Lf + Li satisfies the gauge condition, where Lf is
the uncoupled fermion Lagrangian and Li is the fermion-spin-1 coupling term, see Subsection 2.2.

In the case ϕ†α = ϕα, in order for Li to satisfy the remaining, above-mentioned invariances of σ,
it suffices to adapt the first Li term in (40) to

iκ
1
ϕfα

µg(ξ0
µ + ξ†0µ )

2
ϕf/2. (55)

In case of torsion, any contribution ∼ Kρ
αβϕρ to Fαβ can be split away from the divergence

term in δL/δϕ†µ (similarly to Subsection 2.2), so that σ ∼ ϕ†aF⊥a + F †⊥aϕ
a with

Fαβ = ∇αϕβ −∇βϕα + 2Kρ
αβϕρ (56)

(which is the torsion-less spin 1 field tensor). With (56), we immediately obtain a torsion-less
kinetic term in a Lagrangian of the form of (48) and a coupling to torsion in the potential term.

Non-abelian theory in the limit gαβ → ηαβ: If more than one field or inner degree of freedom
is related to the gauge mechanism of more than one fermion (of common structure), we label
the coupled spin 1 fields by an extra index k: ϕα = ξkα. We shall start with the fermion

transformation ϕi → [exp(−iδχkTk)]jiϕj from Subsection 2.2 which represents a non-abelian
gauge group. For Dirac type fields, imposing gauge invariance on the Lagrangian with spin 1
coupling leads to the well-known transformation law for Yang-Mills fields:

gξkα → gξkα + ∂αδχ
k + gfklmξ

l
αδχ

m, (57)

where fklm are the (completely antisymmetric) structure constants satisfying [Tl, Tm] = ifklmTk.
For the gauge mechanism to work, we must bring the spin 1 Lagrangian into an invariant form.
Indeed, this can be achieved by replacing (49) by the well-known Yang-Mills field tensor

F kαβ = ∂αξ
k
β − ∂βξkα + gfklmξ

l
αξ

m
β (58)

and using the Jacobi identity for fklm. For non-Dirac type fermion fields, to take into account
the “mass” term with non-diagonal ε, we can modify the transformation law (57) to

gξ̄kα → gξ̄kα + ∂αδχ
k + fklmgξ̄

l
αδχ

m, (59)

together with the substitution



ξ̄kα = ξkα +
v2

4g
γαε

k. (60)

Also replacing ξkα → ξ̄kα in (58), we immediately see that the resulting new kinetic term for the
spin 1 Lagrangian is invariant, and the potential term can be restricted to be invariant as well.

In the case ϕ†α = ϕα, in order for Li to satisfy the remaining invariances of σ, it suffices to adapt
the Li terms in (40) to

iκ
1
ϕfα

µg(ξ0
µ + ξ†0µ )

2
ϕf/2, iκ

1
ϕfα

µḡσk(ξ
k
µ + ξ†kµ )

2
ϕf/2. (61)

2.4. No derivative-free vector field
In contrast to the fourth line of Table 1, the fifth line does not provide a derivative of the vector
field in the expression for σ, and we must consider a linear combination of three expressions:

σ1 ∼ 1
ϕaα1

a⊥b
2
ϕb, (62)

σ2 ∼ δb⊥
1
ϕbα

2
a

2
ϕa, (63)

σ3 ∼ 1
ϕaα3

a
2
ϕbδ

b
⊥. (64)

A special case of (62–64) can be obtained by setting α1
a⊥b = α1

⊥ηab. For this case, the same
procedure as in Subsection 2.2 leads to the kinetic terms

K1/κ = λ1
1
ϕαα

1
β∇β

2
ϕα + µ1(∇β 1

ϕα)α1
β

2
ϕα, (65)

K2/κ = λ2
1
ϕβα

2
α∇β

2
ϕα + µ2(∇β 1

ϕβ)α2
α

2
ϕα, (66)

K3/κ = λ3
1
ϕαα3

α∇β
2
ϕβ + µ3(∇β

1
ϕα)α3

α
2
ϕβ. (67)

The covariant derivative ∇α
2
ϕβ contains the connection Γραβ, and the symmetric part Γρ(α,β) (the

Christoffel symbol) is determined by derivatives of the metric which must cancel. Therefore,

each term containing e.g. ∇α
2
ϕβ should have Γρ(α,β) cancelled by −Γρ(β,α) from a term containing

−∇β
2
ϕα. In this manner, no space-time connection remains, except for a possible contorsion

term which is not a kinetic gravitational contribution. We obtain α1
α = α2

α = α3
α = αα together

with λ2 = −λ1 = −λ, µ3 = −µ1 = −µ, and µ2 = λ3 = 0 since the second term of (66) and the
first term of (67) cannot be paired for cancelling. Therefore, (65–67) becomes

L = κλ
1
ϕβαα(∇α 2

ϕβ −∇β 2
ϕα) + κµ(∇α 1

ϕβ −∇β
1
ϕα)αα

2
ϕβ − V. (68)

We now repeat the procedure starting from (62) which can be used as the general ansatz
(without the restriction α1

a⊥b = α1
⊥ηab). The kinetic term reads (with term labels skipped):

K/κ = λ
1
ϕαααγβ∇γ

2
ϕβ + µ(∇γ 1

ϕα)ααγβ
2
ϕβ. (69)

In order to suppress all Christoffel symbols again, we need to antisymmetrize the differentials
in (69). Or, equivalently, ααγβ must be totally antisymmetric in α, γ, β. If we again examine
the special case αa⊥b = α⊥ηab and antisymmetrize αa⊥b, it vanishes identically, therefore only
the full expression (69) may be non-trivial. Again, we define K± = K[µ = ±λ]. Evaluating the
ELE in momentum space in analogy to Subsection 2.2, one finds that ααγβ satisfies a Clifford

algebra with anti-commutator [α µδ
α , α ν

δ β]+ ∼ ηµνV δ
2αV2δβ.



Examining the internal invariances of σ, we find (i) U(1) invariance and (ii) one

more invariance with respect to local infinitesimal transformations
1
ϕα → 1

ϕβ[exp(iδ
1
χ)]αβ ,

2
ϕα → [exp(iδ

2
χ)]αβ

2
ϕβ, where the δ

i
χαβ are real, with δ

1
χδααδγβ + ααγδδ

2
χδβ = 0 or, equivalently,

δ
1
χδα = δ

2
χδα = δχδα (obtained for α = β) and δχδααδγβ = δχδβαδγα. This represents 16 elements

of δχδα and 12 equations (i.e. combinations of component index triples γ < α < β) with
Clifford-algebra valued coefficients. In every equation, both coefficients have the same γ-index,
i.e. the same algebra element. This non-singular system of equations is underdetermined by 4
excess degrees of freedom. Therefore, (ii) must be taken into account in our analysis. K− is
not invariant with respect to any of (i) or (ii). While the excess term from (i) can easily be
compensated by third order term coupling to a vector field ξα occurring on the fourth line of
Table 1, (ii) would require a third order term coupling to a tensor field ξαβγ (i.e. r = 3) which is
not available according to the sixth line of Table 1. Therefore, L fails to satisfy invariance (ii).
For this reason, we must exclude the case n = 2, k = 0, r = 1.

2.5. Higher tensor order fields

Throughout this subsection, although we write
2
ϕR = ϕR,

1
ϕR = ϕ†R for simplicity, this restriction

is not necessary for the following steps to be valid.

In the n = 2, k = 1, r ≥ 2 case, we have to repeat the procedure of Subsection 2.3. In order
for the Christoffel symbols to cancel, we must antisymmetrize as follows:

L = − κ

(r + 1)!
F †α1...αr+1

Fα1...αr+1 − V (ϕµ, gµν) (70)

with

Fα1...αr+1 =
∑
π

(−1)sgn(π)∇̃π1ϕπ2...πr+1 , (71)

where π: (αi) 7→ (πi), i = 1 . . . r + 1 are the permutations of the indices and ∇̃ is the torsion-
less covariant derivative. Neglecting torsion effects, expanding V in (70) and writing the ELE
δL/δϕ†α2...αr+1 = 0 in momentum space yields (with gαβ → ηαβ):

κkα1 [
∑
π

(−1)sgn(π)kπ1ϕ̃π2...πr+1 ]− Ṽ 12+ α2...αr+1 − V
β2...βr+1

2α2...αr+1
ϕ̃β2...βr+1 −O(ϕ̃2) = 0. (72)

This can also be written as

κkα1 [

r+1∑
i=1

kαiϕ̃
A
αi+1...αr+1α1...αi−1

]− Ṽ 12+ α2...αr+1 − V
β2...βr+1

2α2...αr+1
ϕ̃β2...βr+1 −O(ϕ̃2) = 0, (73)

where

ϕ̃Aα2...αr+1
=
∑
π̄

(−1)sgn(π̄)ϕ̃π̄2...π̄r+1 (74)

and π̄: (αi) 7→ (π̄i), i = 2 . . . r + 1 are the permutations restricted to the field indices.
We shall now compute the r partial longitudinal components of (73) by multiplying it
by kαi with i = 2 . . . r + 1, and a totally transverse component by computing its r-fold



antisymmetric product with vectors kγi , using the following operation and convention:
v...αi... → v...αi...kγi − v...γi...kαi = 2v...[αi...kγi], with i = 2 . . . r + 1. We have:

kαi Ṽ 12+α2...αr+1 = kαiV
β2...βr+1

2α2...αr+1
ϕ̃β2...βr+1 , (75)

κkα1kα1ϕ̃
A
[α2...[αr+1

kγ2] . . . kγr+1] = Ṽ [α2...[αr+1
kγ2] . . . kγr+1], (76)

where Ṽ α2...αr+1 = Ṽ 12+α2...αr+1 + V
β2...βr+1

2α2...αr+1
ϕ̃β2...βr+1 . From (75), we can ignore the longitudinal

components of Ṽ α in (72). We can successively integrate (76) and thereby choose the Lorenz
gauge for each step as in Subsection 2.3. E.g. the first step yields

κkα1kα1ϕ̃
A
[α2...[αrαr+1

kγ2] . . . kγr] = Ṽ [α2...[αrαr+1
kγ2] . . . kγr], (77)

together with the outermost Lorenz gauge condition ∇αr+1∇[γ2 . . .∇[γr ϕ̃
A
α2]...αr]αr+1

= 0. At the

end, we obtain Ṽ α2...αr+1 ∼ ϕ̃Aα2...αr+1
. From this and from the innermost Lorenz gauge conditions

∇αiϕAα1...αr = 0 with i ≤ r, (72) becomes

κkα1k
α1ϕ̃Aα2...αr+1

− V2ϕ̃
A
α2...αr+1

= 0. (78)

However, the number of physically significant components of the field ϕAα1...αr are highly
restricted by the antisymmetry and by the Lorenz gauges. The antisymmetry imposes the
restriction r ≤ 4.

• r = 4: The only degree of freedom is lost by any of the Lorenz gauge conditions.

• r = 3: We start with 4 degrees of freedom. From the antisymmetry, the 3 innermost Lorenz
gauge conditions are equivalent and are covered by ∇αϕAαβγ = 0 which at once removes all

degrees of freedom (the system is overdetermined).

• r = 2: We start with 6 degrees of freedom. The innermost Lorenz gauge condition
∇αϕAαβ = 0 removes 4 degrees of freedom. The next outer Lorenz gauge condition

∇γ∇[αϕ
A
β]γ = 0 removes the remaining degrees of freedom (the system is overdetermined).

• r = 1 for comparison: In the well-known vector field case, we start with 4 degrees of freedom.
There is only 1 level of Lorenz condition which removes 1 degree of freedom, and 3 degrees
of freedom (polarisations) remain, which can be further restricted in the case V2 = 0.

Since no degree of freedom is available for the polarisation tensors of the field types with r ≥ 2,
the case k = 1, r ≥ 2 must be excluded.

The n = 2, k = 0, r ≥ 2 case can be treated in a similar way as in Subsection 2.4:

σ = −κ 1
ϕa1...arαa1...ar⊥b1...br

2
ϕb1...br . (79)

To obtain the Lagrangian, we must let all Christoffel symbols cancel; this requires total
antisymmetrization of any differentiated fields or, equivalently, that αα1...αrγβ1...βr be totally
antisymmetric, and L has the form

L = κ[λ
1
ϕα1...αrαα1...αrγβ1...βr∇γ

2
ϕβ1...βr + µ(∇γ 1

ϕα1...αr)αα1...αrγβ1...βr
2
ϕβ1...βr ]− V. (80)

Varying (80) with respect to
1
ϕα1...αr and following the same procedure as in Subsection 2.4

leads to the ELE in momentum space (gαβ → ηαβ) and to the corresponding Clifford



algebra with bracket [α µβ1...βr
α1...αr , α ν

β1...βr γ1...γr
]. As in Subsection 2.4, σ is invariant

with respect to (i) U(1) and (ii) a group of transformations
1
ϕα1...αr → 1

ϕβ1...βr [exp(iδ
1
χ)]α1...αr

β1...βr
,

2
ϕα1...αr → [exp(iδ

2
χ)]α1...αr

β1...βr

2
ϕβ1...βr , satisfying δ

1
χδ1...δrα1...αrαδ1...δrγβ1...βr + αα1...αrγδ1...δrδ

2
χδ1...δrβ1...βr

= 0.

As in Subsection 2.4, (ii) would require a third order term coupling to a tensor field ξα1...αrβ1...βrγ

(i.e. r ≥ 5) which is not available according to the previous paragraph. Therefore, L fails to
satisfy invariance (ii), and we must exclude the case n = 2, k = 0, r ≥ 2.

2.6. Consequences of our investigations
Following the above investigations, when constraining the boundary term of gravity via an
extra term with arbitrary dependence on field functions ϕ as “parameters”, it is only possible
to reproduce three types of particle field functions (i.e. distinct forms of matter equations of
motion), namely scalar, fermion (Dirac) and spin 1 type fields, in conformity to the observations,
in the low gravity regime, to first order in the derivative of fields and to second order in the
field power. By starting from the boundary, the form of dependence on the derivative of ϕ
in the kinetic term of L is dramatically restricted. This is in contrast to the larger freedom
in the choice of the field dependence of the potential term where restrictions only come from
gauge conditions (and renormalizability when being quantised). The restriction for the kinetic
term and its allowed field structures could hardly be explained from a bulk concept. Moreover,
constraining the boundary term of gravity naturally causes the variation principles (boundary
and bulk) to be extended to the matter fields: the variation also must be performed with respect
to the emerging “parameters” ϕ. Finally, our procedure automatically leads to the concept of
gauge invariance for particle fields. The form of admissible fields and the form of the potential
terms are restricted by the requirement that the bulk gauge symmetries properly match the
symmetries of the boundary term. We do not know about any alternative mechanism capable
of reproducing each one of these results with comparable thoroughness. Taking this matter of
fact seriously has crucial implications, not only on the suggested viable fields, but also on the
properties of gravity on the quantum level as shown below.

3. Implications of quantised gravity on emergent matter and vice versa
We are now able to investigate immediate implications of the constraint mechanism described
in Section 2:

(i) If the gravitational field within some region of space is primarily determined by a source
of quantum matter, it is not possible to apply a theory of gravity of classical type, e.g.
GR. The reason is: If a given quantisation mechanism is required for matter, the constraint
mechanism will necessarily force gravity to be quantised as well.

(ii) The properties of quantum matter in the low gravity regime drastically restrict what the
properties of quantum gravity are allowed to be.

For simplicity, we shall examine the implication (ii) for the field ϕ of a single species, primarily
focusing on metric-dependent gravity, for weak gravity, gαβ ≈ ηαβ in cartesian coordinates. We
assume |ϕ〉 to be some superposition of number eigenstates |np〉 of ϕ-particles with momentum
p. Incrementing the particle number, |np〉 → |np + 1〉, causes an increase of the Hamiltonian
∆H and of the 3-momentum ∆Pi, i.e. an increase of the 4-momentum ∆Pα:

∆Pα = ∆

∫
d3x
√
−g T p0α = ~ckα (81)

with the stress tensor computed according to QFT (from the translation invariance of L):



T pαβ =
∑
i

∂L

∂∇α iϕ
∇β

i
ϕ− Lgαβ, (82)

where
i
ϕ is a scalar (

i
ϕ) or spin 1 (

i
ϕν) type field. (81) reflects the eigenvalues of the operator

P̂α which is diagonal in the number eigenstate basis. A first idea would be to identify
T pαβ → Tαβ = (2/

√
−g)δ(

√
−gL)/δgαβ and to relate (81) to the gravitational field equations

δ(
√
−gLg)
δgαβ

= −
√
−gTαβ, (83)

where Lg is the gravitational Lagrangian and (83) tends, for torsionless weak gravity, to

Einstein’s Equations coupled to
i
ϕ:

Gαβ + Λgαβ = −8πG

c4
Tαβ. (84)

We shall keep in mind that T pαβ and Tαβ are computed from different concepts. Merely

approximating Λ ≈ 0 and linearizing (84) using gαβ = ηαβ + hαβ or qαβ = hαβ −
hµµ
2 ηαβ,

and the gauge condition

2hαβ,α = hαα,β, (85)

we have:

�qαβ = −8πG

c4
Tαβ. (86)

(86) reminds us how, for weak gravity, metric fluctuations around vacuum are linearly related to
matter density fluctuations (81). Assuming Tαβ ≈ T pαβ and setting the vacuum state momentum

Pα to zero (which corresponds to normal ordering of the fields in P̂α), we can describe the increase
from the vacuum to the one-particle state as (dropping the “∆”)

−
∫
d3x
√
−g�qαβ ≈

8πG

c4

∫
d3x
√
−g T0α ≈ 8πL2

pkα, L2
p =

~G
c3
. (87)

Expression (87) is not an invariant and therefore no longer can be used as a quantum constant
for a non-perturbative general relativistic treatment. To obtain an invariant, it is necessary to
multiply (87) by kα/(kµk

µ). On the other hand, (87) represents the quanta of gravity in the
low gravity limit. To avoid the frame dependence problematic on this level, we strive to express
the quantum counter 8πL2

pkα in terms of S∂V . To achieve this, we integrate (82) over space,

assuming
1
ϕ 6= 2

ϕ and that the potential term satisfies

V = (∂V/∂
i
ϕ)

i
ϕ. (88)

Even for cases for which (88) is not strictly satisfied, e.g. ϕ4-theory, the correction is small in
the weak gravity limit and hardly observable. Writing L = K − V with the kinetic term K for
the scalar or spin 1 type field, we use the ELE to eliminate V ,

∂V

∂
i
ϕ

= −∇µ
∂K

∂∇µ
i
ϕ
, (89)

and K can be written as



K =
∂K

∂∇µ
i
ϕ
∇µ

i
ϕ, (90)

so that

L = ∇µ(
∂K

∂∇µ
i
ϕ

i
ϕ). (91)

We are free to choose g0α = η0α as our preferred gauge ((85) is not used here) and obtain:

8πG

c4

∫
d3x
√
−g T p0α

=
8πG

c4

∫
d3x
√
−g [(

∑
i

∂L

∂∇0 iϕ
∇α

i
ϕ)−∇µ(

∂K

∂∇µ
i
ϕ

i
ϕ)η0α] = 8πL2

pkα. (92)

Considering the transition from vacuum to a single particle state, ϕ shall be the plane wave
approximation of the one particle field, ϕ = ϕ0 exp(ikµx

µ). The second term of (92) is a
divergence term and can be converted into a boundary term when integrated in 4 dimensions.
Consider a space-time section V delimited by ∂V consisting of the flat time-slices Σ− at time t−
and Σ+ at t+ = t− + (2π)/(k0c) (Σ− translated by one period). When (92) is integrated over
V , the resulting boundary term vanishes. Taking ϕ,ϕ† as independent field variables, we have

8πG

c4

∫
d4x
√
−g [

∂L
∂∇0ϕ

∇αϕ+
∂L

∂∇0ϕ†
∇αϕ†]

= −8πG

c4

∫
d3x
√
−g σkα

2π

k0c
= 8πL2

pkα
2π

k0c
, (93)

where ∇αϕ = kαϕ and ∂V has a time-like normal vector, na = δa⊥ = δa0 . Multiplying (93) by
k0ck

α/(2πkµk
µ) finally leads to the desired invariant result for one quantum unit:

−8πG

c4

∫
d3x
√
−g 2σ = 8πL2

p = /A = 6.564 · 10−69 m2. (94)

From (7), we conclude that, for on-shell values, any increase of the number of quanta of matter
occurs at the expense of the number of gravitational quanta, i.e. quanta of gravity can be
“booked” for matter. The sum (8πG/c4)

∫
d3x
√
−g (σg + 2σ) must thus represent the total

amount of available quanta (up to an irrelevant offset), part of which is assigned to matter
fields.

For a fermion field, the same computations can be performed while eIα replaces gαβ and the
stress tensor is replaced by the one-form T Iα = Tαβg

βγeIγ . In case of torsion, a corresponding
expression for the quanta of spin would have to be supplemented.

(94) fixes the quantum constant as measured “in units of boundary term”. At this stage, we
observe that

(i) the quantum constant for gravity is also the quantum constant for general relativistic matter,

(ii) it is given in units of boundary term for gravity or matter,



(iii) the quantum constant should be of the dimension of an area as suggested from Bekenstein
entropy, this is already satisfied by /A,

(iv) integrating σ and σg over the boundary of any space-time region V yields a suitable quantity
to count quanta in a general relativistic frame-work, at least in the low-gravity regime.

From the Gibbons-Hawking-York term as a suitable expression in the torsion-less low gravity
regime, it is the appropriately contracted connection integrated over the 3-volume which provides
the quantum constant of gravity, and /A is equal to the area of a sphere of radius

√
2Lp.

To investigate how the quantum properties of matter reflect those of gravity, we consider
|ϕ〉 as a true mixture of number eigenstates |np〉 for weak gravity and in the GR limit, while
ignoring here the role of the cosmological constant, Λ ≈ 0. Integrating Einstein’s Equations
with Uαβ =

∫
d3x Gαβ, we have

U0α = −8πG

c4
Pα (95)

and see that Uαβ no longer has sharp values since Pα is not sharp for a mixed number state.
Therefore, both sides must be replaced by quantum operators,

Û0α = −8πG

c4
P̂α. (96)

Û0α is determined by its eigenvalues,

Û0α|np〉 = U0α|np〉 = −8πG

c4
Pα|np〉. (97)

For the vacuum state, (97) suggests U0α ≈ 0. This can be achieved by normal-ordering of the

expression for P̂α, in order to avoid a non-zero vacuum energy. (If we had chosen Λ 6= 0 and
then perturbed gαβ around vacuum, this would have forced a non-zero vacuum energy.)

(97) only holds for weak gravity, gαβ ≈ ηαβ. If this condition is dropped, gαβ must be treated
as an operator due to the quantisation of gravity via (94). Pα (which counts the particle number
in QFT) cannot be the eigenvalue of a quantum number operator for gravity since a change of
frame, determined by gαβ, would cause a change of the quantum number. Only multiplication
by gαβk

β would produce a gravitational invariant, as needed. It is therefore rather S∂V which is
suitable to count the quanta of gravity. In the strong gravity regime, the particle eigenstates |np〉
lose their outstanding role in favour of the eigenstates of Ŝ∂V , i.e. the concept of Hamiltonian
is replaced by the concept of boundary term.

To obtain the quantisation prescription of gravity in the weak gravity limit, we start from the
canonical quantisation prescription of QFT in flat space-time and use the quantum version of
(84). We exemplarily consider the case of a real single-component scalar quantum field,

[π̂(xa, t), ϕ̂(ya, t)] = i~δ(xa − ya), (98)

where xa is space-like on the time-slice at time t, and π̂ = (∂σ/∂ϕ)̂ is the momentum
operator canonically conjugate to ϕ̂. Expanding ϕ̂ = ϕ0[exp(−ikµxµ)â+ exp(ikµx

µ)â†], with

ϕ0 =
√
~c2/(2V ωk) (V is the 3-volume for the scalar field), with the bosonic ladder operators

â, â†, Λ = 0, ϕ̂ monochromatic and for one species), yields the lowest order equation:



− c4

8πG
R̂αβ = ϕ2

0[(kαkβ +
kµk

µηαβ
2

)(e−2ikµxµ â2 + e2ikµxµ â†2)

−(kαkβ −
kµk

µηαβ
2

)[â, â†]+], (99)

where no normal ordering has been performed yet (it should eventually be performed for Λ = 0),
and we anticipate (8πG/c4)ϕ2

0 = /A/(2V k0). For linearized gravity, we have (without gauge)

R̂αβ ≈ ĝαβ,µ,µ + ĝµν,α,βη
µν − ĝµα,ν,βηµν − ĝµβ,ν,αηµν . (100)

The ansatz for the metric operator ĝαβ must be â, â†-dependent to be consistent
with (99). Besides the leading order term ηαβ, the ĝαβ must contain a term

b̂αβ ∼ â2 exp(−2ikµx
µ) + â†2 exp(2ikµx

µ), while integration of the last term of (99) yields a

term quadratic in xµ which is ∼ [â, â†]+, and the integration constants yield one term ĥ1αβ ∼ xµ

and one constant ĥ0αβ. Since we have approximated gαβ ≈ ηαβ in (99) and we can choose the

coordinates and frame so that, locally, xµ ≈ 0 and ĝαβ can be a superposition of b̂αβ and a local

inertial frame, we set ĥ1αβ = 0 = ĥ0αβ. We therefore find

ĝαβ(xµ) = ηαβ + b̂αβ(xµ) + fαβ(xµ)[â, â†]+,

ĝαβ(xµ) = ηαβ − ˆ̄bαβ(xµ)− f̄αβ(xµ)[â, â†]+, (101)

with

b̂αβ = h2αβ(kν)[e−2ikµxµ â2 + e2ikµxµ â†2],

ˆ̄bαβ = h̄ αβ
2 (kν)[e−2ikµxµ â2 + e2ikµxµ â†2]. (102)

In (101–102), the orders of magnitude are b̂αβ ∼ n−1
p n−1

w and fαβ ∼ n−1
p nw, where

np ∼ V/( /Ax0)� nw is the number of Planck areas contained in a 2d-section of the wave packet
of (time-like) spread ∼ x0, and nw ∼ k0x

0 � 1 is the wave number of the wave packet. The ĝαβ
and ĝαβ must satisfy ĝαβ ĝβγ = δαγ = ĝγβ ĝ

βα at the order of the scale ∼ n−1
p n−1

w , whence:

h̄ αβ
2 = h2γδη

αγηβδ, f̄αβ = fγδη
αγηβδ, f̄αβfβγ ≈ 0. (103)

ĝαβ and hence h2αβ and fαβ are symmetric in their indices. Since ĝαβ = ĝαβ(â, â†, xµ), the left-
and right-derivatives of ĝαβ have the same value,

ĝαβ,ρ = b̂αβ,ρ + fαβ,ρ[â, â
†]+,

b̂αβ,ρ = 2ikρh2αβ(kν)(− exp(−2ikµx
µ)â2 + exp(2ikµx

µ)â†2). (104)

Expressions like ĝαβ,ρĝ
αβ are insensitive to operator ordering at order ∼ n−1

p n−1
w . (99) yields:

kγ(kβh2γα + kαh2γβ)− kγkγh2αβ − kαkβh γ
2γ ≈

/A

8V k0
(kαkβ +

kγk
γηαβ
2

), (105)

fαβ,µ,
µ + fµν,α,βη

µν − fµα,ν,βηµν − fµβ,ν,α ≈
/A

2V k0
(−kαkβ +

kµk
µηαβ
2

). (106)



Due to its ab initio (approximate) independence from where the inertial frame is being located

in space, b̂αβ is of primary physical interest. (105) yields

h2αβ ≈ −
/A

16V k0
ηαβ. (107)

Together with (104), we obtain a monochromatic quantisation prescription for ĝαβ at the origin:

[
ĝαβ(k1

i ;x
µ), ĝγδ,ρ(k

2
i ;x

µ)
]
xµ≈0

≈ i
/A

2

16V 2k02 ηαβηγδkρ[â, â
†]+δk1i k2i

. (108)

(108) depends on the state it acts on; it would be preferable to find a state-independent
prescription and to get rid of the monochromaticity condition. This requires the bilinear notation

ĝαβ(xµ) = ηαβ + ĥIαηIJ ĥ
J
β + ĥ0αβ, (109)

where ĥ0αβ 6= 0 must be reintroduced, so that

ĥIα ≈ i
√

/A

16V k0
δIα

(
∓e−ikµxµ â+ eikµx

µ
â†
)
, ĥ0αβ ≈ ±2i

√
/A

16V k0
ηαβ[â, â†]+. (110)

We have [ĥIα(k1
i ;x

µ), ĥJβ(k2
i ;x

µ)] ∼ δki,k′i . Also introducing distinct coordinate variables and

summing (or integrating) over all ki, k′i finally yields the equal-time quantisation prescription
with general real scalar field content:[

ĥIα(xi, t), ĥJβ,0(x′i, t)
]
≈ i

/A

16
δIαδ

J
β δ(x

i − x′i), (111)

where the δ-function is restricted to 3 dimensions due to the 3-dimensional integration over ki.
(111) can also be formulated as a (space-like) boundary space quantisation prescription:

[
γ̂ab(xc), K̂ab(x

′c)
]

= −
[
ĥaI (x

c),L⊥ĥIa(x′c)
]

+O(
1

n2
pn

2
w

)

∼
[
ĥaI (x

c), ĥIa,0(x′c)
]
≈ i /A

4
δ(xc − x′c), (112)

This is precesily the kind of prescription we expect from (7) since Kab ∼ ∂σg/∂γab, i.e. the pairs
of generalised “coordinates” and “momenta” (ϕ,π) and (γab,Kab) necessarily satisfy the same
kind of uncertainty relation since they reflect the joint gravitational and matter quantisation of
the total boundary term.

Prescriptions like (111–112) or the vielbein version thereof can be used as a constraint for
quantum gravity model constructions, possibly after having been generalised to include torsion
and paired with a quantisation prescription for torsion. In order for a theory to be compatible
with the concept of gravity constrained by generic matter, its quantisation prescription must
recover each of these field-dependent prescriptions (scalar, fermion-Dirac and spin 1 fields) in
the weak gravity limit.



4. Conclusions
Our detailed investigations of the possible generic expressions for constraining the boundary
term of the gravitational action have shown that, at least in the weak gravity regime, namely up
to the order of the first coordinate derivative and second order in the field power, all non-trivial,
not explicitly coordinate-dependent and local realisations with distinct form of matter equations
of motion correspond to the formal expressions of the boundary term of the matter field actions
for scalar, fermion (Dirac) and spin 1 fields, so as to cover the standard model field types,
allowing the fields to have couplings and mass within the potential terms, and automatically
providing the expected gauge symmetries. Since, to our knowledge, this is the only mechanism
capable of explaining to such a large extent the mathematical form of the observed matter fields
including the gauge mechanisms, it seems unlikely that this result is only a coincidence. Rather,
it could have to be regarded as a fundamental principle. It indicates that the role of matter is
to restrict the locally available space-time configurations. This interpretation does not depend
on the specific theory of gravity as long as its torsion-less weak field limit is General Relativity.
As a consequence, quantum matter can only exist if gravity itself is quantised, and the quantum
operators of gravity are largely determined by those of quantum matter for weak gravity. The
fundamental quanta of matter are not independent, they are bound to the quanta of gravity.
In the strong gravity regime, the fundamental states are not the eigenstates of the Hamilton
operator, but rather the eigenstates of the boundary term operator. Finally, the fundamental
gravitational quantum constant /A = 6.564 · 10−69 m2 is predicted, in terms of boundary term
content, thus making the approach falsifiable via elementary observations.
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