
Spatial-temporal oscillations in boundary problems of

quantum mechanics

Igor B. Krasnyuk

Institute Physics and Technology NAS Ukraine

January 5, 2020

Abstract

We consider the Schrödinger equation with nonlinear boundary conditions and ini-

tial conditions. It is shown that attractor of the problem contains periodic piecewise

constant function with �nite, countable or uncountable points of discontinuities on a

period. Solutions exists for a special class of initial data which are small perturbations

of invariant solutions of dynamical system. The problem is considered with accuracy

O(h2), where h is a small parameter of the problem. Applications to optical resonators

with nonlinear feedback has been considered.

Keywords: The Schrȯdinger equation • The functional two points boundary conditions
• asymptotic periodic piecewise constant distributions of relaxation type

1 Introduction

In last years, in physics studied the nonlinear interaction of light which can mimic the physics
at so called an event horizon. As shown in [5] � This analogue arises when a weak probe
wave is unable to pass through an intense soliton, despite propagating at a di�erent velocity�.
These dynamics arises as a soliton-induced refractive index barrier. In all paper this barrier
characterize the volume optic properties of a �bre with linear boundary conditions. In
this paper, we consider the opposite problem when an optical medium is ideal or linear,
but boundaries of the medium have nonlinear optic properties. These surface properties
can be modeled by optical transistor or diode [3]. It can be also possible a case a bright
soliton is passing through the black soliton. In this case, the intensity of light depends
on a �bre refractive index, describing, for example, the well-known Kerr e�ect. Thus the
soliton creates the moving refractive surface perturbations which passage through the another
soliton [6, 8, 11]. These nonlinear interactions between such surface waves produce volume
waves in a medium. Thus interactions between linear volume perturbations and nonlinear
surface perturbations leads to appearing volume waves which represent asymptotic periodic
piecewise impulses with �nite or in�nite points of discontinuities. These distributions are
elements of attractors of an initial value boundary problem. From physical point of view,
these solutions can be called by asymptotic 'black and white' solitons.

In paper ([5],Figure 2), it has been mimicked two spectral modes of solitons when
the mode-locked laser diode generate picosecond solitons. This generation mathematically
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can be described as functional or di�erential nonlinear boundary conditions, which will be
represented below, and the propagation of light can be described by the Schrödinger type.
In this paper, the corresponding mathematical model will be considered. The representation
of such modes has the WKB - form u(z, t) = A(z, t)e

i
h
S(z,t), where A(z, t) is the amplitude

of electric �eld [12], S(x, t) is a phase and h is a small dimensionless parameter.
The problem of the coherent interaction of light impulses in nonlinear mediums is well-

known: as noted in [13], �an interaction may be utilized for the transmission of information,
for frequency conversion, and for the description of processes which proceed in more intensive
�elds and at times shorter than to relaxation time� (see, [15]).

Thus we consider an initial boundary value problem for the linear Schrödinger equa-
tion with nonlinear functional 'two-point' boundary conditions or the so-called integrable
boundary conditions and some initial conditions. The Hamilton formalism will be applied
to the study of structure of attractor of the boundary problem. Solutions will be �nd in
the the WKB - form (8) with accuracy O(h2). We use the well-known methods of the an-
alytical mechanics in order to de�ne a phase and an amplitude of a wave function from
the Hamilton-Jacobi equation and a transport equation. Indeed, for equations of quantum
mechanics, this method of reduction of the quantum equation to a connected system of two
equations for functions A(z, t) and S(z, t) has been developed by Maslov (see, [23]. But it has
been applied only for the study of initial boundary value problems. Of course in this case,
the selection correct boundary conditions is the main mathematical and physical problem.
It will be shown that, for some class of boundary conditions and a special class of initial
conditions, the problem is solvable.

The paper is constructed as follows. In section 2 the problem will be formulated, and
it will be shown how the original problem can be reduced to the Hamilton-Jacoby equation
with nonlinear two-point boundary conditions for the phase. Further we obtain, for the
phase, a di�erence equation with continuous time. It must be noted that we consider only
boundary conditions, for the Schrödinger equation, which can be decomposed on correspond-
ing boundary conditions for solutions of the Hamilton-Jacoby equation and solutions of the
transport equation, correspondingly. Such solutions describes asymptotic periodic 'white
and black' solitons in optical resonator with feedback or likewise constant spatial temporal
impulses in electrical circuits with nonlinear �lter and ampli�er [1, 2].

In section 3, we consider a boundary problem for the transport equation with known
the phase, which can be �nd as a solution of the boundary problem the Hamilton-Jacoby
equation. Since the phase S(x, t) → p1(t − x/p) ∈ P+ as t → ∞, where p1 is a periodic
piecewise constant function with �nite or in�nite points of discontinuities Γ on a period,
the transport equation has simple asymptotic as t → ∞. Indeed, it is shown that this
transport boundary problem can be reduced to an integro-di�erence equation with known
phase. Then, at a neighbourhood of the set P+ - invariant solutions - the equation can be
linearised. Is a result, the problem admits reduction to an autonomic di�erence equation.
This equation has the 'Poincare' map Φ : R3 → R3. We assume that this map is hyperbolic
and structural stable. It means that the map has �nite number of �xed points P which
can be organised into circles. For the hyperbolic map, P = P+

⋃
P−

⋃
P±, where P+ is a

set of attractive �xed points of the map, P− is a set of repelling �xed points, and P± is a
set of saddle points. As a result, there is a separatrix, which divides a regions of attraction
to �xed points of trajectories. The separatrix plays role a set Γ in 1D case. A set of such
separatrix can be of form of parabola for non-autonomous logistic map and their number can
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be countable (see, [9], p.183). Additionally, a structure of these limit distributions depends
on structure of initial data of the original problem.

To be more concrete, we consider only 'quasi-invariant' solutions of the original prob-
lem, which are small perturbations of solutions ψ(x, t) = p1(t − x/p), p2(t − x/p), where
H(p) = 1

2
p2 is the hamiltonian of the system, and ψ := (p1(t − x/p), p2(t − x/p)) is the

limit periodic solution for phase and amplitude in the distribution ψ := eiS|ψ|. It will be
shown that all perturbation of the function ψ := ψ(p1, p2) at the point (p1, p2) ∈ R2 are
asymptotically stable. The prove is following: the integro-di�erence equation is reduced to
ordinary di�erence equation (ODE) with delay argument p/l, where l is a size of the system.
Further, the ODE is integrable and, hence, can be reduced to a family of non-autonomous
di�erence equations as we discussed above.

In section 4-6 we consider the asymptotic properties of nonlinear di�erence equations in
the Hausdor� and Schorohod metric. The Hausdor� metric describes deterministic solutions
at a neighbourhood of points Γ - characteristic of the Hamilton equation of the dynamical
system. The Schorohod metric describes random solutions which produce the so called
deterministic chaos in di�erence equation (see, [24]). In section 7 we consider application of
the mathematical method for optical resonators with feedback.

2 Formulation of IVBP for Schrödinger equation

Let us consider the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
(1)

where ψ is a wave function, ~ is the Planck constant. Let us reduce this equation to a
dimensionless form. Let us divide the two parts of equation on mv2, where m is the mass of
particles and v is their velocity. We obtain

i
~
mv2

∂ψ

∂t
= −1

2

~2

m2v2

∂2ψ

∂x2
. (2)

Then from λ̂ = ~/mv, where λ is a length of the de Broil wave, it follows that (3) can be
written as

i
λ

vτ

∂ψ

∂t̄
= −1

2
λ2∂

2ψ

∂x2
(3)

where t̄ = t/τ and τ is a relaxation time of the wave function to some equilibrium state.
Now we introduce the dimensionless constant h = λ

vτ
and rewrite the last equation in the

form:

λ

vτ

∂ψ

∂t̄
= −1

2
h2

(
v2τ 2

l2

)
∂2ψ

∂x2
(4)

where l is a size of the system. Thus we choose v2τ2

l2
= 1 so that τ = L/v, and substituting

this value into the above equation, we obtain the dimensionless equation

ih
∂ψ

∂t̄
= −1

2
h2∂

2ψ

∂x2
(5)
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where h is a small dimensionless parameter.
Let us consider liner two points boundary conditions

ψ(0, t) = θψ(l, t), t > 0, (6)

initial conditions

ψ(x, 0) = h1(x), 0 < x < l (7)

where h1(x) is a given function, and θ ∈ R is a parameter. Such problem has been considered
in [19] for generalizes Shrödinger equation, where the theorem of existence of solutions has
been proved.

Let
ψ1,2(x, t) = eiS1,2(x,t)/hϕ1,2(x, t) (8)

where S1,2 is a phase and ϕ1,2 is an amplitude. Then, substituting (8) in the Shrödinger
equation), we obtain that

(
∂S

∂t
+

1

2
(∇S)2

)
ϕ− ih

(
∂S

∂x

∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ4S

)
+

(−ih)2

2
4ϕ = 0. (9)

We �nd solutions with accuracy O(h2) so that

(
∂S

∂t
+

1

2
(∇S)2

)
ϕ = 0, (10)

(
∂S

∂x

∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ4S

)
= 0. (11)

Let us consider the two-point nonlinear boundary conditions

ψ(0, t) = Φ[ψ(l, t)] (12)

or the boundary conditions of special form

ψ|x=0 = Ψ[|ψ|2]f

(
|ψ|
ψ

)
|x=l

(13)

where Φ, Ψ, and f are given function from open bounded interval I into itself.
Now, we go back to equations (10),(11). These equations satis�es to the two-point

boundary conditions. For the Hamilton-Jacobi equation with Hamiltonian H(p) = 1
2
p2, we

consider the Hamilton system of ODE

dx

dt
=
∂H

∂p
= p,

dp

dt
=
∂H

∂x
= 0 (14)
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with the initial conditions

x(0) = x0, p(0) =
∂S

∂x
(x0). (15)

System (14 has solutions

x− x0 = p(t− t0). (16)

Then about of trajectories of Hamilton system dx/dt = p solutions of Hamilton-Jacobi
equations can be written as

dS(x(t), t)

dt
= ∂S∂t+

∂S

∂x

∂x(t)

∂t
= −H(p) +

∂S

∂x
p. (17)

We can �nd a solution S(x, t) on a surface L so that a function x(p, t) is a solution of equation

p− ∂S(x, t)

∂x
= 0. (18)

Here, p(x, t) is a solution of this equation. We recall that the function of the action S(q, t)
is the integral

Sq0,t0(q, t) =

∫
$

Ldt (19)

along the extremal $, connecting points q0, t0 and q, t, where L = pq̇−H is the Lagrangian of
a dynamical system. Thus the Lagrangian is the Legendre transformation of the hamiltonian
H (see, [21], p.210).

We consider the Hamilton system in a space R1
x

⊕
R1p

⊕
R1
t . Let x(x0, t), p(x0, t) be

solutions of the Hamilton system. Then equations

x = x(x0, t), p = p(x0, t) (20)

determines a manifold L of dimension n = 2 in the R1
x

⊕
R1p

⊕
R1
t with boundary {t = 0}.

We can prove that on this manifold the form

−H(x, p, t)dt+ pdx = Ω (21)

is closed. The form is closed if dΩ = 0. If the manifold L is connected, then the form Ω is
exact. Then, by de�nition, Ω = dΛ, where Λ is a di�erential form.

Interpreting Hamiltonian system as a vector �eld (dynamic system) on a symplectic
manifold M, we can consider the solutions of the Hamiltonian system as the integral trajec-
tories of the vector �eld. The important question of solvability of equation Ω = dΛ (with
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respect Λ) is connected with the topological structure of the manifold M. It is known that
there is a solution os problem

dS ′ = ΩL′ , S ′t=0 = S0(x). (22)

Let U is an open neighbourhood in the space R1
x

⊕
R1
t of the set {t = 0}. We assume that

U is the projection of the manifold L such that equation x = x(x0, t) is solvable with respect
x0. It means that x0 = x0(x, t). Then the function

S(x, t) = S ′(x0 = x0(x, t), t) = (π−1
x )∗S ′(x0, t), (23)

where πx : L→ R1
x

⊕
R1
t is the projection, is a solution in a region U of the initial problem

for Hamilton-Jacobi equations (see, [22], p.25).
A function S at surface L satis�es to the relation

dŜ = −Hdt+ pdx. (24)

Then from (17),(18 it follows that

S(x(t), t) = S0(x(t0), t0) +

∫ t

t0

(−Hdt+ pẋdt) (25)

where x0(x, t) is determined by relation (16). From (25) it follows that

S(l, t) = S(x(0), 0)−Ht+ p(l − x(0)) = h1(t), t ∈ [0, l/p) (26)

where x(0) = x.
Now, we return to boundary conditions (??) and assume that Ŝ(S) := Φ1(S) : I ← I,

where I is some bounded open interval. Then S(0, t) = Φ1(S(l, t)) = h1(t), t ∈ [0, l/p). It is
easy to see that

dS = −Hdt+
dx

dt
dt. (27)

Then

S(l, t+ l/p) = S(0, t)−Hl/p+ pl. (28)

Then from boundary conditions

S(0, t) = Φ1[S(l, t)], t > 0, (29)

and from (28) it follows that
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S(l, t+ l/p) = Φ1[S(l, t)] + pl/2. (30)

Equation (30) can be solved, step by step, if we know the initial function h(t) on the interval
t ∈ [0, l/p). This function can be �nd by the formula

S(l, t) = S(x, 0)−Ht+ px, t ∈ [0, l/p). (31)

We assume that Φ1 is structural stable, and Φ1 ∈ C2. Then a set PerΦ1 of periodic
points of Φ1 is PerΦ1 = P+

⋃
P−, where a set P+ is �nite, and P− is �nite or countable.

Separator D of the map Φ1 is determined by formula

D =
⋃
n≥0

h−n(P̄−)z (32)

where P̄− is closer of P−. It is uncountable nowhere dense closed set on I of measure zero
which is �nite, countable or uncountable (see,[9],p.234).

Now, we consider the a Γ = h−1(D). Then the set Γ has the same properties as the set D
if the transversal condition ḣ 6= 0, t ∈ Γ is satis�ed. Then each solution of di�erence equation
(30) is 2N l/p - asymptotic periodic piecewise constant function with �nite, countable or
uncountable points of discontinuities on a period, where N is least common multiple of
periods of attractive circles of the map Φ1. A number pl/2 is a parameter of bifurcations of
limit solutions.

Further,

S(x, t) = S(0, t− x/p) +

∫ t

t−x/p
(−Hdt+ pdx), (33)

where (0, t− x/p) = Φ1[S(0, t− x/p)].
Then

S(x, t) = Φ1[S(0, t− x/p)]− H

p
+ px. (34)

If ζ = t− x/p→ +∞, then

S(x, t) = Φ1[P+(ζ)]− H

p
x+ px (35)

where P+(ζ) ∈ P+ for almost all point ζ ∈ [−l/p,∞).
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3 Boundary problem for transport equation

As above,

S(l, t+ p/l) = S(0, t)−Hp/l + pl = Φ1[S(l, t)]−Hp/l + pl, t ∈ [0, l/p). (36)

Let us denote µ = −Hp/l + pl. Then we obtain the di�erence equation

S(l, t+ p/l) = Φ1[S(l, t)] + µ (37)

with the initial condition

S(l, t) = h1(t), t ∈ [0, l/p). (38)

Then solutions of di�erence equation can be �nd step by step by iterations of initial function
h1(t) with help of the map Φ1.

This equation has asymptotic periodic piecewise constant solutions P (t) with �nite or
in�nite points of discontinuities on a period [9]. Since the solutions are constant about the
characteristic dx(t)/dt = p the same property has the function u2(ζ) where ζ = t−x/p. Then
∂S
∂x

(x, t) = ∂S
∂ζ

(ζ) → P (ζ) for almost all points ζ ∈ R. From the last equality it follows that

the phase S(ζ) is asymptotic piecewise constant function with accuracy to some constant.
Such type solutions known for Burgers equation with viscosity γ as γ → 0 ([18] p.190).
Such type solutions has been obtained for the boundary problem for the Ginzburg-Landau
equation by computer simulation ([20] p.270).

An amplitude ϕ(x, t) is a solution of the transport equation

∂S

∂x

∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ4S = 0. (39)

On the lagrange surface L we have that ∂S/∂x = p and, hence, a function ϕ(x, t) satis�es
to the transport equation:

p
∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ
∂2S

∂x2
= 0. (40)

This equation can be written as

dϕ

dt
(x(t), t) = −1

2
ϕ
∂2S

∂x2
(41)

as dx(t)/dt = p. Then from (41) it follows that

ϕ(l, t0 + l/p) = ϕ(0, t0)− 1

2

∫ t0+l/p

t0

ϕ(p(t− t0, t)
∂2S

∂x2
(p(t− t0, t)dt. (42)
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From the boundary conditions

ϕ(0, t) = Φ2[ϕ(l, t)] (43)

it follows that equation (42) can be written as

ϕ(l, t0 + l/p) = Φ2[ϕ(l, t)]− 1

2

∫ t0+l/p

t0

ϕ(p(t− t0, t)
∂2S

∂x2
(p(t− t0, t)dt. (44)

Now we see that

∂S

∂x
(x, t) = Φ′1[S(l, t− x/p)]∂S

∂ζ
(l, ζ)(−p−1)− H

p
+ p. (45)

From (45) it follows that

∂2S

∂x2
(x, t) = Φ′′1[S(l, ζ)]

∂S

∂ζ
(l, ζ)(−p−1) + Φ′1[S(l, ζ)]

∂2S

∂ζ2
(l, ζ)(−p−2). (46)

Let P+
1 are attractive points of the map Φ1. Then perturbations of phase at a neighbourhood

of a �xed point Φ1,µ satis�es to the linear di�erence equation

S ′(l, t+ l/p) = Φ′1(S(l, t))S ′(l, ζ), ζ ∈ [−p/l, 0), (47)

S ′′(l, ζ + l/p) = Φ′′1(S(l, ζ))(S ′(l, ζ))2 + Φ′1(S(l, ζ))S ′(l, ζ), ζ ∈ [−p/l, 0), (48)

At a �xed points we have that

S ′(l, ζ + l/p) = Φ′1(P+
1 )S ′(l, ζ), ζ ∈ [−p/l, 0). (49)

Solutions of this equation have the form S ′(l, ζ) = ek1ζ where k1 = p
l

ln |Φ′1,µ(P+
1,µ)| where

|Φ′1,µ(P+
1,µ)| < 1 and, hence, k1 < 0. Then from (50) we obtain that |S ′(ζ)| → 0 as ζ → ∞,

and from (50) it follows that |S ′′(ζ)| → 0 as ζ →∞. As a result, we get that

S ′′(l, ζ + l/p) = 2Φ′1,µ(P+
1,µ)e2k1ζ . (50)

Note that from (50) it follows the relation

∂2S

∂x2
(x, t) = Φ′′1(S(P+

1 )e2k1(t−x/p) + Φ′1(S(P+
1 )ek1(t−x/p). (51)

From (52) it follows that
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∂2S

∂x2
(p(t− t0, t) = Φ′′1(S(P+

1 )e2k1t0 + Φ′1(S(P+
1 )ek1(t0) (52)

along each line t− x/p = t0. Then the integro-di�erence equation can be rewritten as

ϕ(l, t0 + l/p) = Φ2[ϕ(l, t)]− 1

2
(Φ′′1(S(P+

1 )e2k1t0 + Φ′1(S(P+
1 )ek1(t0))

∫ t0+l/p

t0

ϕ(p(t− t0, t)dt.(53)

Di�erentiating this equation on t0, we obtain the equation

ϕ′(l, t0 + l/p) = Φ′2[ϕ(l, t)]ϕ′(l, t)− 1

2
(Φ′′1(S(P+

1 )e2k1t0 + Φ′1(S(P+
1 )ek1(t0))(ϕ(l, t0)− ϕ(0, t0)).(54)

Since,

ϕ(l, t0) = Φ2[ϕ(0, t0 + l/p)], (55)

equation (54) can be written as

y′(t0) = a(t0)y′(t0) (56)

where

y(t0) = ϕ(l, t0 + l/p)− Φ2[ϕ(0, t0)], (57)

a(t0) =
1

2
(Φ′′1(S(P+

1 )e2k1t0 + Φ′1(S(P+
1 )ek1(t0)). (58)

Solutions of equation (56) are

y(t) = y(0)
(
e
− 1
k1 e

1
k1
ek1t

+ e
− 2
k1 e

2
k1
e2k1t

)
(59)

where y(0) = ϕ(l, l/p)− Φ2[ϕ(0, 0)]. For each solution ϕ(l, t) of equation (54) its restriction
ϕ(l, t))|t∈[0,l/p) belong to one and only one of classes of initial functions

Φ :=
⋃

Φλ where Φλ := {ϕ(l, t) ∈ Φ : ϕ(l, l/p)− Φ2[ϕ(0, 0)] = λ} (60)

where λ = y(0). Any solution of equation (54) such that ϕ(l, t))|t∈[0,l/p) ∈ Φλ is a solution of
di�erence equation (56) with y(0) = λ (see, [9], p.178).

Let us de�ne y1(t) = e
1
k1
ek1t

, and
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y1(t) = e
1
k1
ek1t

, y2(t) = e
1
k2
ek2t

. (61)

Then

ϕ(l, t0 + l/p) = Φ2[P+]ϕ(l, t)− 1

2
(Φ′′1(S(P+

1 )y2(t) + Φ′1(S(P+
1 )y1(t)) (62)

y1(t+ l/p) = e
1
k1 y1(t) (63)

y2(t+ l/p) = e
1

2k1 y1(t) (64)

These equations produce the G : R3 → R3 which has a �xed point z∗ = (P+, 0, 0). The
Jacobi matrixes TG of the map is

 Φ′2[P+]− κ 1
2
Φ′1(S(P+

1 ) 1
2
Φ′′1(S(P+

1 )

0 e
1

2k1 − κ 0

0 0 e
1

2k2 − κ

 (65)

Then the eigenvalues of the equation TG = κG are κ1 = Φ′2[P+], κ2 = e
1
k1 , κ3 = e

1
2k2 e

1
2k2 ,

where |Φ′2[P+]| < 1 and k1, k1 < 0. For a repelling point, we have |Φ′2[P−]| > 1.
Let P = P+

⋃
P−, where P+ is a �nite set, and P− is a �nite or countable set. Then

the map G contains contains a �nite number of attractive �xed points A+ = (P+, 0, 0) and
�nite or countable set of saddle point A± = (P+, 0, 0). Let us assume that the map Φ2 is
is monotone increasing function for each ϕ ∈ I which has two attractive �xed points a1, a3

and one repelling �xed point a2. Then the behaviour of phase trajectories can be described
as projection on a plane (ϕ, y1) ⊂ R2 or on a plane (ϕ, y2) ⊂ R2. The trajectories will be
topologically equivalent. We see that each curve ν(t) = ν−(t)

⋃
ν+(t), t ∈ [0, p) is such that

the part ν−(t) is attracted by a point a1, and the part ν+(t) is attracted by a point a3. Of
course, this curve depends on the initial values of the boundary problem. Lines y1 = 0 and
y2 = 0 represents separatrixe in R2 for trajectories of dynamical system. As a result, we
get that amplitudes ϕ(l, t) tends to a piecewise constant asymptotic 2l/p - periodic function
p(t), where p(t ∈ a1

⋃
a3 (see, Fig.2).

Further

S(x, t) = S(0, t− x/p) +

∫ t0−x/p

t0

(−Hdt+ pdx(t)) = Φ1[S(l, t− x/p)]−Hx+ px. (66)

As a result,

S(x, t) = Φ1[p1(t− x/p)]−Hx+ px+ o(t0) (67)

where o(t0) → 0 as t0 → ∞. Here p1(t − x/p) is 2N1l/p - periodic function on the variable
t− x/p, where N1 ∈ Z+, as t→∞.
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Further

ϕ(x, t0) = ϕ(0, t0 − x/p) +

∫ t0−x/p

t0

ϕ(p(t− t0 + x/p, t)
∂2S

∂x2
(p(t− t0 + x/p, t)dt. (68)

But from (66) it follows that

S(x, t0)→ Φ1[p1(t0 − x/p)]−Hx+ px. (69)

Then

ϕ(x, t0)→ ϕ(0, t0 − x/p) + (Φ1[p1(t0 − x/p)]−Hx+ px)

∫ t0−x/p

t0

ϕ(p(t− t0 + x/p, t)dt (70)

as t0 →∞. Then

ϕ(x, t0)′ → ϕ′(0, t0 − x/p) + (Φ1[p1(t0 − x/p)]−Hx+ px)′(ϕ(0, t0 − x/p)− ϕ(x, t0). (71)

Let

z(t0) = ϕ(x, t0)− ϕ(0, t0 − x/p). (72)

Then equation (71) can be written as

z′(x, t0) = −(Φ′1[p1(t0 − x/p)]p′1(t0 − x/p)z(t0) (73)

where x can be considered as a parameter. The function p′1(t0 − x/p) → 0 as t0 → ∞ for
almost all points ζ ∈ R+. From (71) it follows that

1

2
[z2(x, t0)]′ = −(Φ′1[p1(t0 − x/p)]p′1(t0 − x/p)z2(x, t0). (74)

It is easy to prove that if the function Φ′1[p1(t0−x/p)] is positive(negative) at a neighborhood
of some �xed point, then the function p′1(t0 − x/p) is also positive (negative). Then from
(74) it follows that z2(x, t0)→ 0 as t0 →∞ for almost each 0 < x < l. As a result,

ϕ(x, t0)→ ϕ(0, t0 − x/p) = Φ2(ϕ(l, t0 − x/p)→ p2(l, t0 − x/p) (75)

where p2(ζ) is asymptotic periodic 2N2 - periodic function, n2 ∈ Z+.
Thus the solutions of the origin initial boundary value problem are as

ψ(x, t) = e
i
h
p1(l,t0−x/p)p2(l, t0 − x/p) (76)

where p1(ζ) and p2(ζ) have �nite, countable or uncountable �points� of discontinuities on a
periods. We call these solutions by solution of relaxation, pre-turbulent or turbulent type,
correspondingly (see, Fig.1-3).
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4 Properties of asymptotic solutions of di�erence equa-

tions

Thus, the problem can be reduced to di�erence equations

u(t) = f [u(t− l/p) (77)

with continuous time. Indeed, we consider, as example, an unimodal map f ∈ C2(I → I)
and suppose that f has one unique critical point (a maximum). The map f is regular if there
is a quadratic critical point, the map is hyperbolic, and its critical point is not periodic or
pre-periodic. A point u0 such that f ′(u0) = 0 is critical. If f ′′(u0) 6= 0, we have the quadratic
critical point. The set of regular maps coincide with the set of structurally stable unimodal
maps f ∈ C2(I → I), which are structurally stable, and open, and dense in all smooth
topologies. Hence, the set of regular maps is open and dense in all smooth topologies. As
a result, we can reduce the study of unimodal maps to the special case of unimodal maps
which are quasiquadratic or topologically conjugate to quadratic maps (see, [9]).

Let us assume that a solution satis�es to the initial conditions

u0(t) = (ϕ1(−t), t ∈ [−l/p, 0), ϕ2(t), t ∈ [0, l/p)). (78)

If f ∈ C2(I → I) is an unimodal and structurally stable map (in C2 structurally stable maps
form an form an open dense subset), then the set Per f = P+

⋃
P−, where P+ is �nite,

and P− is �nite or countable. If f ∈ C0(X → X), where X is a topological or metrical
space, the map u → f(u) produce on X the semigroup of continuous maps fnn=∞

n=0 of the
dynamical system. We consider dynamical systems which are given by the continuous maps
f ∈ C0(I → I), where I is a closed interval. It is known the classi�cation of the dynamical
systems with periodic points of the periods 2il/p, i = 0, 1, 2, ... . Such systems are called
systems of the type 2∞. These systems form in the space C0(I → I) nowhere dense set.A
dynamical system is said to be simple if the periods of cycles are limited. If the map contains
a periodic point, then the dynamical system is complex. Complex systems have cycles of
any periods.

Next, let us consider a di�erence equation with initial data

u(t) = ϕ(t), t ∈ [0, l/p], (79)

and assume that

f ∈ C0(I, I), ϕ ∈ C0([0, 1], I), (80)

and

ϕ(1) = f(ϕ(0). (81)
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Then a solution u(t) of initial problem for di�erence equation, which is produced by the map
f , is unique and can be represent in the form

u(t+ nl/p) = fn(ϕ(t)), t ∈ [0, l/p], n ∈ Z+, Z+ = {0, 1, ...}, (82)

where fn is n− th iteration of f . We have that u(t) ∈ C0(R+, I). So we got continuous and
bounded solutions of the the di�erence equation.

However, the space C0([0, l/p], I) is not compact. Therefore, the trajectory of the dy-
namical system does not even have a partial limits. However, there are di�erence equations
for which the path is still compact in C0([0, l/p], I) (see examples, [9]). Let's consider a
compact space C∆([0,∆], I) upper semi-continuous functions ψ : [0,∆]→ 2I , where 2I is set
of closed intervals on I with topology

dist [ψ1, ψ2] := max [ sup
z∈gr ψ2

%(z, gr ψ1), sup
z∈gr ψ1

%(z, gr ψ2)], (83)

where gr ψk is the graphic of a function ψk, k = 1, 2 as t ∈ [0,∆], and % (z, graphψk) is the
distance in R2 from a point z to the set gr ψk. The phase space C

∆ is compact and, hence,
completely contains the limit set each trajectory of the dynamical system.

In typical situations, there are asymptotically periodic piecewise constant solutions with
�nite or in�nite points Γρ, where values of limit functions equal Iρ. Here the index may
be �nite, in�nite countable, or in�nite uncountable. Excluding the set Γρ, values of limit
function belong to a set P+(f), where P+ is the set of attractive �xed points of the map f . If
Γρ is �nite, we have the solutions of relaxation type. If Γρ is in�nite and countable, we have
the solutions of preturbulent type. If Γρ is in�nite and uncountable, we have the solutions of
turbulent type. Thus, we have shown that the linear system of Schrodinger equations with
nonlinear boundary conditions allow oscillating solutions with non-decreasing amplitude.

Here, the map Φ ∈ C2(I, I) is structural stable and hyperbolic. Then the set of periodic
points PerΦ := Φ1 ◦ Φ2, where ◦ is the superposition of corresponding functions, splits on
the union of attractive periodic points P+ and repelling periodic points P−, which organize
circles in the following ordering [9]:

3, 5, 7, 9, 11, ..., 2× 3, 2× 5, ..., 22 × 3, 22 × 5, ..., 23, 22, 2, 1. (84)

If map has the circle of the period k, then the map has the circle of the period k′, which
follows after k as shown by the sequences (84). Each trajectory asymptotically tends to a
circle if (and only if) the set of points of circles is closed. There are conditions when this
set of the circles is not closed. For example, when the dynamical system contains a circle of
period 6= 2i, i = 0, 1, 2, ... .

Two subsets A and B of a topological space X is called a functional separable if there
is de�ned on the whole space X limited continuous real-valued function which takes in all
the points of the set A one value (set, a) at all points of the set B- the value b 6= a . There
is always can be assumed that a = 0, b = 1 and 0 < f(x) < 1 for all x ∈ X. The Urysohn
lemma claims that in normal space any two disjoint closed sets are functional separable. The
solutions of the di�erence equations contains a family of such functions f(x) on periodically
repeated sets of type A

⋃
B. The problem of determining all the general spaces with compact

Hausdor� extension was solved by Tichono� (see, [10].
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The set of attractive circles P+ is �nite for the structural stable maps, but the set
of repelling circles is �nite or countable. To characterize the set of �discontinuities� of
limit solutions of di�erence equation, which are, as t → +∞, piecewise constant functions,
satisfying to the Urysohn lemma, we must introduced the set of points

D =
⋃
n≥0

h−nP̄−, (85)

which called by the separator of the map. he set D is nowhere dense on I closed set of
measure zero: empty, countable or uncountable; and P̄− is the closure of the set P−.

The separator D is uncountable if (and only if) the map has circles of periods 6= 2i, i =
0, 1, 2, ... . If the map has circles of periods 6= 1, 2 and not has circles of periods 6= 2i, i =
0, 1, 2, ... ., the set D is uncountable [9].

Now, we can construct the set

Γ = h−1(D). (86)

Suppouse that h(t) satis�es to the transversal condition

h(t) 6= 0, t ∈ Γ. (87)

Then the set Γ is closed and nowhere dense on [0, 1], and the Lebesgue measure mesΓ = 0.
From these properties it follows that the transversal condition is satis�es for an open dense
set of functions h ∈ C2([0, 1], I).

Let

Πβ
α = [0, 1]× [α, β], −∞ ≤ α < β ≤ +∞ (88)

(in particular, Π∞0 = Π). For any α, β, we consider the space C∆(Πβ
α, I) upper semicontinu-

ous functions ψ : Πβ
α 7→ 2I with topology, which is given by the Hausdor� metric

∆Πβα
(ψ1, ψ2) = max{ sup

z∈grψ1

ρ(z, grψ2); sup
z∈grψ2

ρ(z, grψ1)} (89)

where grψ is the graphic of function ψ(x, t) at (x, t) ∈ Πβ
α; ρ(z, grψ) is the metric in R2 from

a point z to the set grψ. Similarly we can determine the set C∆(Πβ
α, I × I). The set C∆

contains as subset the space C0, but C0 is not compact, while C∆ is compact and contains
functions, which belong to the attractor of the considered problem.

Now, we consider the locally maximal ω - limit set (or the basic set). F is a locally
maximal set if there is a neighbourhood which not contain larger ω - limit set F ′ ⊃ F . If
a map f ∈ C0(I, I) contains a circle of the period 6= 2i, i = 0, 1, 2, ..., then the map has
maximal ω - limit set Fmax, containing circle. Fmax is Cantor set or it consists of multiple
intervals. In the �rst case there are solutions of pre-turbulent type. In the second case there
are random solutions of the di�erence equation. Hence, the same type of solution can be
found for the original quantum problem in the zero approximation.

Thus with accuracy o(h2) the quantum boundary problem is reduced in WKB - ap-
proximation to the di�erence equations. In particular, for such equations, in book [9] has
been proved the asymptotic stability of solutions in the Skorokhod metric and the Hausdor�
metric for classical problem. Hence the same result holds for quantum problem. Indeed,
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a solution of the problem v = (v1, v2) call stable to perturbations of initial and boundary
conditions if arbitrarily small C2 - perturbation of the functions Φ and hi, i = 1, 2 lead to
arbitrarily small variations of the functions v in the Hausdor� metric (Skorokhod metric).

Recall that the Skorokhod metric is de�ned as [9]:

s(v, ṽ) = sup
α∈Λ
{||v ◦ α− ṽ||C0(Π,I×I) + ||α− Id||C0(Π,Π)} (90)

where Λ is set of homeomorphisms Π 7→ Π, Id ∈ Λ is identical homeomorphism.
Let us say that a function ψ ∈ C∆(Π, I) tends, as t→∞, to the function ψ̃ ∈ C∆(Π.I)

if

∆Π∞
T

(ψ, ψ̃)→ 0, t→∞. (91)

Similarly, the convergence is determined for functions from C∆(Π, I× I). Denote by m - the
least common multiple of the periods of attractive circles P+ and consider the Φ∆ ∈ C∆(I, I).
De�ne the map Φ∆ : I 7→ 2I as [9]

Φ∆ = lim
n→∞

Φn!, (92)

where the symbol lim is de�ned as the limit in C∆, and consider the sequences of maps
Φn◦Φ∆ ∈ C∆(2I , 2I), n = 0, 1, .... Then from [9] it follows that the map Φ∆ exists, commutes
with Φ and satis�es to the relation Φ∆ ◦ Φ∆ = Φ∆. Then {Φ∆ ◦ Φ∆} is semigroup of maps.

Thus, solutions y(t) tends, as t→∞, to 4m - periodic distribution in Hausdor� metric
so that

p(t) = Φ4m−1 ◦ Φ∆ ◦ h(t− 2(2m− 1)), t ∈ [4m− 3, 4m− 1), m = 1, 2, ... (93)

with points of discontinuities ΓR+ =
⋃∞
n=1{t : t − 2n ∈ Γ}. At these points derivatives of

smooth solutions of the di�erence equation tends to in�nity as t→∞. Then, as follows from
[9], solution of Sharkovsky initial boundary value problem (v0

1, v
0
2) is stable in the space C2

in Hausdor� and Skorokhod metrics and tends, as t→∞ to a 4m - periodic on t distribution
p0.

4.1 Remark

We again consider solutions of di�erence equation of the form

u(t+ 1) = f [u(t)], t > 0, (94)

where f ∈ C2(I, I) is a given function, and we assume, for simplicity, that the delay argument
is 1. Then from (97) it follows that

u′(t+ 1) = f ′[u(t)]u′(t). (95)

If |f ′[u]| < 1 for some u ∈ I, then u′(t) → 0 as t → ∞. Indeed, let β1, ..., βm ∈ I. Let
f(βi) = βi+1, i = 1, ...,m− 1, f(βm) = β1. We will continue a function f(u) in a continuous
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manner. Then the map u→ f(u) has periodic trajectory β1, ..., βm, β1, ... of period m. At a
neighbourhood of each point βi we have

|f(u)− βi+1| ≈≈ |f ′(βi||u− βi|. (96)

As a result

|fm(u)− βi| ≈
m∏
j=1

|f ′(βj||u− βi|. (97)

If

m∏
j=1

|f ′(βj| < 1 (98)

and a point u0 ∈ Oδ(βi, then a trajectory fn(u0) → (β1, ..., βm), where Oδ(a) is a neigh-
bourhood of a point a, and δ > 0 is small enough. Since in previews sections we use
inequality (98), we assume that, for di�erence equations, the initial data u0(t) ∈ Oδ(βi,
where t ∈ [−l/p, 0). The same is true for the initial data of the initial boundary value prob-
lem. Then convergence of solutions to piecewise constant periodic distributions follows from
the structural stability of the map f or the corresponding map in the nonlinear boundary
conditions.

Further,

u′′(t+ 1) = f ′′[u(t)][u′(t)]2 + f ′[u(t)]u′′(t). (99)

Hence,

u′′(t+ 1) = f ′′[u(t)][u′(t)]2 + f ′[u(t)]u′′(t). (100)

Hence,

|u′′(t+ 1)| ≤ ν|u′′(t)|+O(1/t), (101)

where 0 < ν < 1. Hence, |u′′(t)| → 0 as t→∞.
For solutions of di�erence equations, points of discontinuities of a limit solution are

produced by repelling �xed points u− ∈ A− of a map f , where |f ′(u−)| > 1 and by pre-
images U = f−n(u−), n = 1, 2, 3, ... of the repelling points. If f is a monotone and this map
has one repelling point, then the set U is empty and we obtain solutions of relaxation type
with one point of discontinuities on a period. If set U is countable, we have solutions of
pre-turbulent type. If set U is uncountable, we have solutions of turbulent type.

Suppose that X is a locally compact topological space. We say that Λ is a mixing set, if
for each set W ⊂ Λ, which is open in Λ, and for each �nite open set Σ = {σj, 1 ≤ j ≤ n} of
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the set Λ there are m and s, depending on W and Σ, such that f i(
⋃s−q
q=0

⋂
nσj 6= ∅ as i ≥ m

and 1 ≤ j ≤ n.
From the de�nition of mixing set it follows that there are points a ∈ Λ such that

trajectories f i(u)∞i=0 dense on Λ. Since the trajectories on Λ are unstable, the set Λ is stable
and attracts all trajectories. If there is a neighbourhood U ⊂ Λ such that

⋂
i>0 f

i(U) = Λ,
then Λ is a mixing attractor. Indeed, let us introduce

B(A) = {u ∈ E|A(u) = A(u)} (102)

where A(u) is an attractor of a trajectory.
If a mixing set Λ has a neighbourhood U such that all points on U Λ go out from U , then

Λ is mixing repeller. Mixing repeller may include mixing attractor. If a map f ∈ Cr(R →
R), r ≥ 1, then the mixing attractor is interval or several intervals, cyclically transformed
into each other under iterations of f . The mixing repeller is a set which is homeomorphic to
the Cantor set or interval or several intervals. For example, the map f : u→ λu(1− u) has
a repeller. If λ = 4, then repeller is interval [0, 1]. If λ3 − 2λ2 − 4λ− 8 = 0, then λ = 3.678

and the map f has attractor which is interval

[
λ2

4

(
1− λ

4

)
, λ

4

]
. There are mixing repellers

or mixing attractors if and only if there are circles of periods 6= 2i, i = 0, 1, 2, ....
Whether attracted to the attractions almost all points in space by the Lebesgue measure?

If repeller contains an interval, then the answer is negative. If repeller is the Cantor, set
then the answer is positive. Indeed, if f ∈ C2 and on a repeller Λ hyperbolic conditions
are satis�ed, then measure Λ is zero. It means that there is N ≥ 1 and o > 1 such that
if |dfN(u)/du| ≥ o for u ∈ Λ, then measure Λ = 0. These statement follows from [?, ?].
Almost all points x ∈ Λ form on Λ a dense set of type Gσ that is these points are represented
as the intersection of a countable number of open sets. For example, the derivative Cantor
staircase is de�ned and equal to zero at all points except for the Cantor set.

Below this observation will be used to prove existence of the Lebesgue integral for
solutions of turbulent type for integro-di�erence equations for which an origin initial value
boundary problem (IVBP) may be reduced. This allows us to prove the convergence of these
equations to the piecewise constant asymptotic periodic functions P1,h, P2,h ( for h < h0 as
t→∞) with �nite, in�nite countable or in�nite uncountable points of discontinuities �h on
a period where Γh → Γ0 as h→ 0.

Solutions on Fig.1 and Fig.2 are similar to solutions which has been obtained in ([9],
p.209, Fig.78), as the solutions of the di�erential-di�erence equation

hu′(t) = −u(t) + f(u(t− 1)). (103)

5 The structural stability and the stability of perturba-

tions of invariant solutions with respect of initial data

Since W := Φ′2 is structural stable, a set P+ of points of stable circles has the following
property of the local attraction: there is δ1 > 0 such that for each small enough δ > 0

W (Oδ(P
+)) ⊂ O(1−δ1)δ(P

+) (104)
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Figure 1: The trajectories of hyperbolic dynamical systems with attractive and saddle points in a plane.

(see, [9],p.242)).
On the other hand, the so called separator D :=

⋃
n≥0 S

−nP− of the map S has the
similar property of the local repulsion: there is µ1 > 0 such that for each small enough µ > 0

W (I\Oµ(D)) ⊂ I\O(1+µ1)µ(D). (105)

Besides, the map W has the following property: for all δ, µ > 0 there is N = N(δ, µ) < +∞
such that

WN(I\Oµ(D)) ⊂ I\Oδ(P
+). (106)

The last inclusion means that all points, which do not belong to the µ - neighbourhood of
the set D, fall into the δ - neighborhood of the set P+ by N iterations. This properties
allows to prove asymptotic stability of solutions of the initial boundary value problem with
respect to perturbations of the boundary conditions and the initial data in the metric C2

almost all points. For chaotic solutions the stability can be proved in Schorohod metric [10].

6 Applications to incoherent optical solitons

Below we consider the example of applications the formulated results in the linear optic
median with the Kerr type nonlinear boundary conditions. The similar problem has been
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Figure 2: Limit distributions of turbulent type with uncountable points of discontinuities on a period.

considered in [14], where was analyzed �the dynamics of modulation instability and periodic
waves in the coupled nonlinear Schrodinger equations describing light propagation in bire-
fringent dispersive Kerr media� [14]. But the di�erence is in the formulation of the problem
because we consider opposite problem: a linear medium with nonlinear boundary conditions.
The asymptotic spatial temporal surface-induced oscillations may be interpreted as �white
and black� solutions on the language of optic. The phenomenon of the emergence of optical
(space) solitons is determined by a dynamic balance between the two competing factors: 1)
by the tendentious of the optical beam to expand its own support by the di�raction; 2) by
the tendentious of the optical beam to minimise its own support by the self-focusing. The
experiments [17] shows the possibility of existence of solitons which are spatially incoherent
and quasi-monochromatic; 3) the solitons are incoherent simultaneously on the space and
time variables. These experiments subsequently initiated many theoretical works on the
noncoherent solitons [16, 17]. However, these papers limited by the case 3) and, hence, the
corresponding theory could not model, for example, incoherent white light that is to study
spatiotemporal coherence properties of solitons and the further evolution of the spectral
density.

In this section, we consider the spatiotemporal (in the two variables) light. We suppose
that: 4)the spatial pro�le of the light belongs to the interval of frequencies [ω, ω + dω]; 5)
the spatial correlation length (across the soliton) is greater at low frequencies and smaller
at high frequencies.

We begin our exploration with the following equation:

i

(
∂fω

∂z
+ θ

∂fω

∂x

)
+

1

2kω

∂2fω

∂x2
+
kω
n0

δn(I)fω(x, z, θ) = 0 (107)

where fω is the coherent density on the given frequency of the optical beam; kω = n0ω/c,
where n0 is the refractive index, ω is the frequency, c is a velocity of the light; the parameter
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Figure 3: Limit distributions of relaxation type with �nite points of discontinuities on a period.

θ determines an angle between vector of propagation of a line (in a plane (z, x)) and the
axes Oz. We assume that θ = 0.

Spatial and temporal coherence properties of the beam can be explored in terms of the
spectral density so that

Bω(x1, x2, z) =

∫ +∞

−∞
dθ exp [ikω(x1 − x2)]fω(x1, z, θ)f

ω(x2, z, θ). (108)

Note that equation (107) is equivalent to the corresponding equation for the spectral density
(108).

We assume that the optical medium is dispersed. Assuming that ∂δn(I)/∂t ≡ 0, the
dispersion can be included in the consideration with the help of the dependence n0 = n0(ω).
Instead of equation (107) we consider the Schrodinger equation with optical with the optical
source. For simplicity we restrict ourselves to one-dimensional rod. The equation has the
form

ih

(
∂f

∂t
+ θ

∂f

∂x

)
+
h2

2k

∂2f

∂x2
+

k

n0

δn(I)f = 0, (109)

where index ω was omitted.

6.1 Solutions of problem

The state of the system is described by the mutual spectral density Bω(x1, x2, t), where x is
the spectral coordinate, t denotes propagation axis coordinate. The mutual spectral density
Jω(x, t) = Bω(x1, x2, t). The total intensity is J(x, t) =

∫
dωBω(x1, x2, t). In general, the

function Bω(x1, x2, t) is expressed in terms of modes ψω,m(x, t) and their modal weights dω,m
so that
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Figure 4: Limit distributions of pre-turbulent type uncountable type with �nite points of discontinuities on

a period.

Bω(x1, x2, t) =
∑
m

dω,mψω,m(x2, t)
∗ψω,m(x1, t). (110)

We consider the evolution only one mode ψω,m(x, t) for �xed values ω and m. As a result,
the correlation function Bω(x1, x2, t) along the t axis can be described by the equation [17]:

ih
∂ϕ

∂t
+ +

h2

2k
h2∂

2ϕ

∂x2
− kω
n0

V ψ = 0. (111)

Here, the potential V (x, t) = δn(Jω(x, t)), where Jω(x, t) =
∑

m dω,m|ψω,m(x2, t)|2 is the in-
tensity structure at frequency ω. Particulary, for self0focusing media we have ∂δn(J, ω)/∂J >
0(see, [17]).

Let us consider the boundary conditions

ψψ∗|x=0 = F1(ψψ∗)|x=l, (112)

ψ|ψ|−1
|x=0 = F2[ψ|ψ|−1]|x=l (113)

where F1, F2 are given functions. Here, |ψ|2 is the density of probability in quantum me-
chanics, and ψψ∗ is the mouser in classical mechanics. Relation (112) can be written also
as

ϕ2
|x=0 = F1(ϕ2)|x=l (114)

where ϕ2 = |ψ|. Relation (115) can be written also as

eiS|x=0 = F2[eiS]|x=l (115)

where S → S/h.
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Now, we assume that the map F2(t) := eiS(0,t) has angle function for each t ∈ A ⊂ R.
This function is determined with accuracy 2πk, k ∈ Z. It is known that continuous map
f : I → S1, where S1 is a circle, has angle function S such that S(0) = α is given argument
of number f(0) (see, [7],p.60). Thus if we assume that F2(0) = α, then S(l, t) is the angle
function. Then from the known topological theorem (see, [7],p.60) it follows that

F2(eiS) = eiF2(S). (116)

From (116), (115) it follows the two-points boundary conditions:

S|x=0 = F2(S)|x=l. (117)

The boundary conditions have a simple physical meaning. We can use the device which
has been considered for the phase observation of the Mandelbrot set [1]. There is the elec-
tronic device which models the of the complex map z → z2 +c, where z ∈ C and a parameter
c ∈ C. The device contains the multiplier N which produce the nonlinear connection be-
tween input and output impulse, and the resistor R, which is connected to the ampli�er I,
allows to change the some parameter λ. In works [1, 2] also obtained piecewise constant
periodic on time impulses, which are produced by the transformation between input and
output impulses. Here, the multiplier N transforms, for example, the phase S into the phase
2S, and ampli�er I transforms the amplitude ϕ into the ϕ2. As a result, the parameter
c ∈ C is described by the the Mandelbrot set. Of course, these method can be prolonged on
the map of interval into itself or the map from R2 into R2.

The method, which is developed in [2], reduce the problem to the coupled systems. As a
result, we obtain a system of two coupled di�erence equations. But this method, in our case,
can be applied only to the the Schrödinger equation with boundary conditions (6) which in
this paper is not considered

As a result, boundary conditions (115) can be written as

eiS|x=0 = F1[eiS]|x=l (118)

ih
∂ϕ

∂t
+ +

h2

2k
h2∂

2ϕ

∂x2
− k

n0

δn(J)f = 0, (119)

Let be x̄ =
√
kx. Then equation can be written as

−ih∂ϕ
∂t

+ +
h2

2

∂2ϕ

∂ζ2
− k

n0

δn(dϕ2)ϕ = 0 (120)

where for one mode J = dϕ2.
The boundary conditions can be written as

∂ϕ

∂t
= G1[δn1(d1ϕ

2)]ϕ at x = 0, (121)

∂ϕ

∂t
= G2[δn2(d2ϕ

2)]ϕ at x =
√
kl, (122)

where G1, G2 are given functions. The boundary conditions describes injection of photons
input (or output) the optical medium. We assume that system of ordinary di�erential
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equations is integrable. It means that there is an integral Q[ϕ(0,
√
kt), ϕ(

√
k(l, t)] = γ,

where γ ∈ R. We assume that this functional equation is globally solvable such that for each
z1, z2 ∈ I from the relation W (z1, z2) = 0 it follows that z1 = Υγ(z2). It means that the
boundary conditions can be written as the family of two-points boundary conditions:

ϕ(0, t) = Υγ[ϕ(0,
√
kt)], (123)

where ν = ϕ(0, 0) − Υγ[ϕ(0, 0). Thus a problem is reduced to the problem which has been
considered in previous sections.

As a result, the problem can be reduced to the di�erence equations

S(
√
kl, t) = F1[S(l, t−

√
kl)/p], (124)

ϕ(
√
kl, t) = Υγ[

√
kϕ(l, t−

√
kl)/p)], (125)

where F1, Υ : I → I. The limit solution of the �rst equation is p1(
√
kl, t) is 2N1

√
kl)/p

- periodic piecewise constant distribution, and the limit solution of the second equation is
p2(
√
kl, t) is 2N2

√
kl)/p - periodic piecewise constant distribution, where N1, N2 ∈ Z. Then,

as indicated above, p1(
√
kx, t) = p1(l, t −

√
kl)/p) and p2(

√
kx, t) = p1(l, t −

√
kl)/p). The

limit functions depends also of parameters δn1, δn1 and d1, d2. There are regions of these
parameters, where we obtain limit solutions of relaxation, pre-turbulent and turbulent type.

7 Deterministic chaos in quantum boundary problem

Deterministic chaos is the existence of continuous solutions of di�erence equation which de-
scribes the asymptotic behavior of these equations with help of stochastic processes. More
precisely, attractor of solutions of di�erence equations can be composed from random func-
tions. A special role is played separator of a map f that is the set D(f) such that y ∈ I and
trajectories fn(y), n = 0, 1, ... are Lyapunov's unstable. Points of the set D(f) divide basins
of attraction of attractive cycles of the map f . For points y∗ ∈ D(f) arbitrarily small error
y − y∗ in the de�nition of exact value leads to arbitrarily large error between values fn(y)
and fn(y∗). Therefore it is impossible to determine what values decides at large t. So that

sup
t∈Dn(f,ϕ)

|x1
ϕ − x2

ϕ| ≥ L as n > N∗ (126)

where ϕ is an initial function for di�erence equation and Dn(f, ϕ) = {t ∈ (n, n + 1) :
ϕ(t− n) ∈ Dsen. Here Dsen(f) ⊂ D(f) is a set where trajectories are divided.

Indeed, for any point y∗ ∈ D(f) exists a number d > 0 such that for any ε > 0 there is
a point ỹ ∈ y∗ − ε, y∗ + ε)

⋂
I and a number m such that

|fm(y)− fm(ỹ)| > d. (127)

This situation has principal character if D(f) contains a set Dsen(f) of additional meager
such that

L := inf y ∈ Dsen(f)d(y) > 0. (128)

24



Then

|fn(y)− fn(ỹ)|ỹ:|y−ỹ|<ε;n>N ≥ L as ε > 0, N > 0. (129)

As a result, arbitrarily small errors in the quantities of the order L leads to the fact that the
solution is on the horizon of predictability. Such solutions are similar to random process.
Consequently, approximate solutions xϕ1(t) and xϕ2(t) can be considered as analog of real-
izations of random process. The set of initial functions, producing such solutions, is open
subset in C0 metric.

7.1 Example

Let us consider the map h̃

x(t+ 1) = 1− 2|x(t)− 1/2| (130)

that is the �tent�- map. This map is stretching so that

|h(y′)− h(y′′)| = 2|y′ − y′′| (131)

as y′, y′′ ∈ [0, 1/2]
⋃

[1/2, 1]. As a result, D(h̃) = [0, 1] and each interval J ⊂ [0, 1]] of the
length ε, after n > lg 1/ε/ lg 2 iterations, contains [0, 1] so that h̃n(J) = [0, 1]. Then for the
initial functions ϕ(t)

sup |xϕ(t+ n)− xϕ(t̃+ n)| = 1 (132)

as n > lg 1/ε/ lg 2. It means that with an accuracy ε = 10−20 of computer simulation we can
not say what is a value of a solution if t > t0, where t0 = 20/ lg 2 ≈ 70. However, we can
determine the probability of whether the solution falls to a speci�ed interval [a, b].

Let h = χ/l, where χ is the length of wave of particle. Here χ = ~/
√

2mE, where m is
the mass, E is

surface energy of interactions between the two particles. Let L = 1 and h = ε. Then as
t > lg 1/h/ lg 2, trajectories of particle are �non-observable� and we enter in the regions of
�quantum mechanics�.

8 Conclusion

Thus the initial boundary value problem for the Schrödinger equation with two-points non-
linear boundary conditions has been considered. The problem describes the formation of
surface-induced wave structure in con�ned resonators with feedback which have the form
of asymptotic periodic piecewise constant impulses with �nite or in�nite points of disconti-
nuities on a period. It is shown that the problem can be reduced to the integro-di�erence
equation which can be reduced to the family of integrable di�erential-di�erence equation.
The solution of these equations are solutions of relaxation, pre-turbulent and turbulent type.
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linear Schrȯdinger Equation, Justi�cation of Two-Step Algorithm, Nonlinear Analysis:
Modelling and Control, 7, 2, 69-104, 2002.

[20] G.F. Gharkov and A.M. Gulian,Superconductors in external �elds, Nauka (1990) [In
Russian].

[21] V.I. Arnold, Mathematical methods of classical mechanics, (1979) [In Russian].

[22] A.S. Mishenko, B.Yu. Sternin, V.E. Shatalov, Lagrangian manifolds and the canonical
operator method, Nauka, (1978) [In Russian].

[23] V.P. Maslov, Complex WKB - method in nonlinear equations, Nauka, (1977) [In Rus-
sian].

[24] A.N. Sharkovsky and E.Yu. Romanenko, Ideal turbulence: Attractors of deterministic
systems may lie in the space of random �elds, Intern. J. Bifurcation and Chaos, 2, 1,
31-36, 1992.

27


