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Quantum Field Theory as Manifestation of Self-Organized Criticality 

Ervin Goldfain 

Abstract 

Self-organized criticality (SOC) reflects the ability of many complex dynamical systems to self-sustain 

critical behavior outside equilibrium. Here we provide analytic evidence that quantum field propagators 

and the probability distribution of SOC share a common foundation. In particular, we find that the formal 

structure of quantum propagators replicates the finite scaling ansatz (FSS) of SOC, which is a generic 

paradigm for the emergence of complexity in Nature.  
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1. SOC and the FSS ansatz 

Consider a large-scale system of size L  undergoing a second-order phase transition. The 

transition is driven by the control parameter   as it approaches the critical value c . Near 

the critical point and for systems of infinite extent ( L ), the correlation length   

diverges as [1-3] 

   ~ ( )c

    ;  , cL      (1) 

In the transition region, a relevant variable of the system is also a diverging quantity 

which scales as  
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 ( )A   ~ c


 


 ; , cL       (2) 

where   is a critical exponent. In what follows, we introduce the notation  

 ( )s




    (3) 

There are two distinct cases associated with the power-law (2). If the size of the system 

greatly exceeds the correlation length, L  , by (1) and (2) we write   

 ( )LA   ~ s   ;  ( , cL     )  (4) 

In the opposite case, L  , the system size takes over the scaling behavior and (2) turns 

into    

 ( )LA   ~ sL
  ;   ( , cL     )  (5) 

Taken together, (4) and (5) define the finite-size scaling (FSS) ansatz [1-2] 

 ( ) ( )s

L
LA

 



   ;   ( , cL    )  (6) 

where the scaling function controls the finite-size effects of critical behavior and is defined 

as  

 
; 1

( )
; 0s

const x
x

x x



  


  (7) 
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To transition from the framework of critical phenomena to SOC, one simply identifies the 

correlation length with the concept of avalanche-size, i.e.,  

 s   ;    
crs L   (8) 

The probability distribution defining the FSS ansatz in SOC is a natural extrapolation of 

(6) and takes the form of a probability distribution [2]   

 ( , )P s L  ~ ( )s

cr

ss
s


  for 1, 1s L    (9a) 

 ( )crs L  ~ 0D
L  for 1L     (9b) 

in which 
s  and 

0D  are called the avalanche-size exponent and the avalanche dimension, 

respectively. Quite generally, (9) shows that, for a system of finite extent and large size 

avalanches, the avalanche-size probability behaves as a fractal function times a generic 

scaling function. To enable all moments of (9) to exist, the scaling function must decay 

sufficiently fast. One obtains the following representation of the scaling function upon 

power expanding it around zero,      

 ( )x  ~ 
21

(0) '(0) "(0) ..., 1
2

0, 1

x x x

x


     

  

  (10) 

The avalanche-size probability must be normalized to unity and its average be diverging 

along with L , which leads to the following constraints     
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1

( ; ) 1
s

P s L




              for L   , (11) 

 
1

( ; )
s

s sP s L




   for L   (12) 

Under the assumption that (0) 0  , the behavior of (9) for an infinite system size may 

be approximated as  

 lim ( ; )
L

P s L


 ~ (0)ss

   (13) 

Furthermore, to comply with (11) and (12), the avalanche-size exponent must fall in the 

range 

 1 2s    (14) 

We proceed next to the analysis of four examples linking the FSS ansatz to the formalism 

of quantum propagators. Before doing so, it is worth emphasizing that SOC and the FSS 

ansatz are deeply linked to multifractals [14-15], which, in turn, are tied to the path 

integral approach to quantum theory [16].   

2. Case #1: free scalar relativistic particle  

Let us begin by recalling the Klein-Gordon (KG) description of a relativistic particle of 

mass m  in 3+1 spacetime dimensions. It is known that the perturbative treatment of the 

KG theory may be built by analogy with the Gaussian random walk (RW) model [4]. In 

the Euclidean version of this theory, ordinary time is analytically continued to t i  and 

the momentum-space propagator takes the form  
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 2 2 2

02 2 2 0
0

1
( , ) exp( )exp[ ( )]G r p dr rm r p

p m



    
   p

p
  (15) 

where 0( , )p p  p , with the energy analytically continued to 0p iE  . Fourier 

transforming the second integrand in (15) gives the probability distribution of Gaussian 

random walks of step length r ,  

 2( , ) (4 ) exp[ ( )]p r r r      (16) 

in which 

 

2 22

( )
4 4

r
r r

 
  

x
  (17) 

Since r  has units of inverse mass squared,  
22[ ] Lr M   , it is convenient to normalize 

(16) through the substitution 

 0 2r rm   (18) 

which turns (16) into  

 
2 2

0 0 0 2

4 2

( , )
( , ) (4 ) exp( )

4

p r m
p r r

m rm


 

      (19) 

or, 

 
2 2

0 0 0 2 0 2

0
( , ) (4 ) exp( ) (4 ) exp[ ( )]

4

m
p r r r r

r


         (20) 

Comparing (20) and (17) with the FSS ansatz (9) gives 
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02, 2s D     (21) 

under the following assumptions: 

a) the RW step length 0r  is the analogue of the avalanche size s  introduced in (9), 

b) the scaling dimension of 2 in (17) is  
22 L    , which implies 

0 2D  .   

3. Case #2: harmonic oscillator 

Consider now the general case of an anharmonic oscillator in 1+1 dimensions with 

Euclidean Lagrangian 

 
2 2 2

( ) ( )
2 2

E E

mx m x
L V x L V x


       (22) 

where 
EL  denotes the unperturbed Lagrangian and ( )V x  a small perturbation to the 

dynamics of 
EL . Assuming natural units throughout ( 1k  ), the path integral for the 

propagator is given by [5] 

 [ , ] exp[ ( )] [ , ]
( )

E EK J d V K J
J


  

 
     (23) 

where ( , )EK J  represents the path integral of the harmonic oscillator, whose Euclidean 

Lagrangian 
EL assumes the form  

 
2 2 2

2 2
E

mx m x
L


    (24) 
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In (23), t i   is the expression of time as function of the reduced temperature 

parameter of statistical mechanics ( 1T  ) and it   is the Euclidean time. 

Furthermore, ( , )EK J is the Gaussian integral representing the Euclidean harmonic 

oscillator driven by the forcing function J . It can be shown that ( , )EK J  amounts to [5]  

 
1
2( , ) [ ] exp( )

2 sinh( )
E D

m
K J J G J




 
     (25) 

in which 
1 2( , )DG    stands for the Green function of the harmonic oscillator, computed 

between the initial 1( )  and final 2( )  times. For , ( 0)T    the Green function 

reduces to  

 1 2

1
lim exp( )

2
DG

m
  


     (26) 

if one of these two conditions are satisfied 

 
1 2   <<    (27a) 

 
1,2

2


   <<    (27b) 

The transition probability between the initial and final times is the square of (26), that is, 

 2 2

(1,2) 1

1 2

1 2
( ) exp( )
2

D DP G
m



  


  


  (28) 

To express (28) in a normalized form, we introduce the dimensionless parameter 
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 0 2r m   (29) 

which turns the propagator (26) and transition probability (28) into, respectively, 

 
0

0

1 2 1 22 0 0 2

1 1
exp( ) exp( )

2 2

D
D

G r
G

r r m
    

 
         (30) 

 
0

2 2

(1,2) 1 20 2

1 2
( ) exp( )
2

D

r
P

r m
 


     (31) 

Since the scaling dimension of the Euclidean time and of the reduced temperature 

parameter is      
11[ ]L M 


   , by (9) and (31) we obtain 

 
02, 1s D     (32) 

4. Case #3: oscillator with quartic interaction  

Let us look next at the case of a massless scalar field with quartic self-interaction, coupled 

to an external current J  [6]. The generating functional and propagator are respectively 

given by 

 
4

4 2 41
[ ] [ ]exp{ [ ( ) ]}

2 4
Z J d i d x J


          (33) 

 14

1 2 1 2( ) ( ) ( 2 ) ( , )G t t t t f t         (34) 

 
4

( , ) ( )
2

snf t t


     (35) 
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where ( )t is the time-ordering operator,   an arbitrary constant with the dimension of a 

mass (that is, 1[ ]M ) and ...)sn( stands for the Jacobi elliptic function. The dimensionless 

version of (34) reads 

 0 141 2
1 2 1 2

( )
( ) ( ) ( 2 ) ( , )

G t t
G t t t t f t   




      (36) 

Note that, because   is a real number, it can be presented as power of another arbitrary 

real number, which indicates that the value of the avalanche-size exponent is 

undetermined. In line with previous arguments, since time t  and energy scale    entering 

(36) have scaling dimension 1 , the oscillator with quartic interaction is characterized by  

 s  undetermined, 
0 1D    (37) 

5. Case #4: Dirac theory in 1+1 dimensions  

In this last example we bring up the fundamental solution of the Dirac equation in 1+1 

dimensions, which can be written as ( 1c   ) [7] 

 
1

2

0
m i t i x

i t i x m





        
  

        
  (38) 

The corresponding propagator evaluated inside the future light cone t x  assumes the 

form 
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 ( , )K x t   

2 2 2 2

1 0
2 2

2 2 2 2

0 1
2 2

( ) ( )

2
( ) ( )

t x
J m t x i J m t x

m t x

t x
i J m t x J m t x

t x

 
   

 
  

  
 

  (39) 

where each matrix entry includes the Bessel functions 
0 (...)J  and 

1(...)J . Analysis shows 

that the factor multiplying the Bessel functions in (39) has dimension 
1 1[ ]L M

  , hence 

normalizing the propagator using a large scale 
0M m  yields  

 0

0

( , )
( , )

K x t
K x t

M
   (40) 

Squaring (40) and repeating the previous line of arguments leads to 

 
02, 1s D     (41) 

The next section attempts to bridge the gap between SOC and the minimal fractality of 

spacetime geometry near or above the Fermi scale.  

6. From SOC to the minimal fractality of spacetime 

We have extensively discussed in [8 - 11] the physical significance of the minimal fractal 

manifold (MFM), a spacetime continuum characterized by arbitrarily small and scale-

dependent deviations from four dimensions ( 4 1D    ). The MFM reflects an 

evolving setting that starts far-from-equilibrium and gradually reaches the equilibrium 

conditions mandated by field theory in the limit of four-dimensional spacetime ( 0  ). 

There are well-motivated reasons to believe that dimensional fluctuations driven by   are 
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asymptotically compatible with the internal structure and dynamics of the Standard 

Model of particle physics [8-11]. 

Based on these premises, we introduce the hypothesis that the dimensional deviation   

and the avalanche-size s  are interchangeable concepts via   

 14 1D s       (42) 

Furthermore, since   flows with the energy scale, it likely reaches its uppermost 

observable value close to the formation of the cosmic microwave background (CMB) [12]. 

The maximal dimensional deviation is therefore set to  

 5

max 10cr     ;  cr    (43) 

which turns (9) into 

 ( , )crP   ~ ( )s cr 
   , 1    (44a) 

 ( )cr   ~ 0D , 1     (44b) 

where   is the dimensionless Renormalization Group scale. Using (44) as a baseline, a 

planned extension of this work will explore the non-equilibrium regime of vacuum 

fluctuations, beyond the boundaries of perturbative Quantum Field Theory [13].  
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