Gate-Induced Superconductor

In materials science, two-dimensional electron systems (2DES) realized <u>at the oxide</u> <u>surface</u> or interface are a promising candidate to achieve novel physical properties and functionalities in a rapidly emerging quantum field. [35]

At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. [34]

The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures. [33]

University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties. [32]

Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity. [31]

A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30]

Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29]

A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28]

Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27]

This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only

the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories.

The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like

Cooper Pairs or other entanglements, as strongly correlated materials and Excitonmediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

Contents

The Qu	uest of Superconductivity 3
Experie	ences and Theories
Sup 3	erconductivity research reveals potential new state of matter
Sup 4	erconductivity seen in a new light
C(oexistence rather than competition
A ne	ew dimension to high-temperature superconductivity discovered
'T 5	otally Unexpected' Physics
TI 5	he New Wave in Superconductivity
A 6	Powerful Blend of Magnetism and Light
In 6	n Search of Common Links
Scie 7	entists Discover Hidden Magnetic Waves in High-Temperature Superconductors
Con 7	ventional superconductivity
Sup	erconductivity and magnetic fields

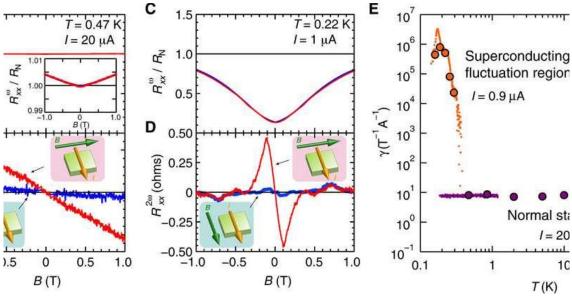
Room-temperature superconductivity	
Exciton-mediated electron pairing	
8 Resonating valence bond theory	
8	
Strongly correlated materials9	
New superconductor theory may revolutionize electrical engineering	9
Unconventional superconductivity in ${\sf Ba^{0.6}K^{0.4}Fe^2As^2}$ from inelastic neutron scattering 1	.0
A grand unified theory of exotic superconductivity?)
The role of magnetism10	
Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlate superconductivity	èd
Superconductivity's third side unmasked	
strongly correlated materials	<u>.</u>
ermions and Bosons	
The General Weak Interaction	
13	
liggs Field and Superconductivity	
Superconductivity and Quantum Entanglement	ŝ
Conclusions	
References:	

Author: George Rajna

The Quest of Superconductivity

Superconductivity seems to contradict the theory of accelerating charges in the static electric current, caused by the electric force as a result of the electric potential difference, since a closed circle wire no potential difference at all. [1]

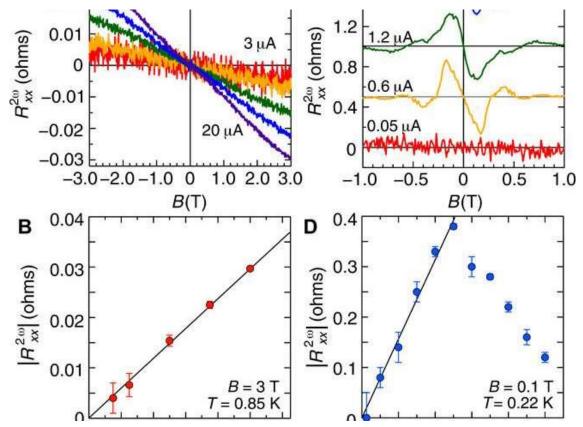
On the other hand the electron in the atom also moving in a circle around the proton with a constant velocity and constant impulse momentum with a constant magnetic field. This gives the idea of the centripetal acceleration of the moving charge in the closed circle wire as this is the case


in the atomic electron attracted by the proton. Because of this we can think about superconductivity as a quantum phenomenon. [2]

Experiences and Theories

Nonreciprocal transport in the gate-induced strontium titanate polar superconductor

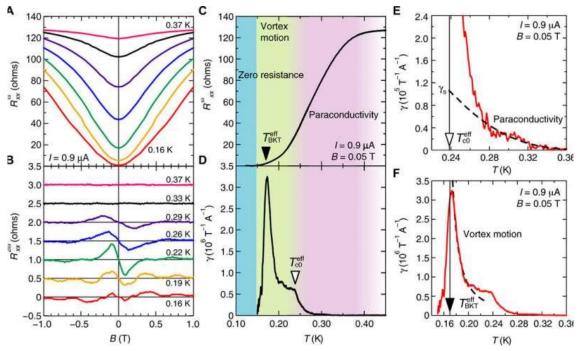
In materials science, two-dimensional electron systems (2DES) realized at the oxide SUFFACE or interface are a promising candidate to achieve novel physical properties and functionalities in a rapidly emerging quantum field. While 2-DES provides an important platform for exotic quantum events including the quantum Hall effect and superconductivity, the effect of symmetry breaking; transition from a disorderly state in to a more definite state, on such quantum phases remain elusive. Nonreciprocal electrical transport or Current-direction-dependent resistance is a probe for broken inversion symmetry (presence of a dipole), as observed on several noncentrosymmetric crystals and interfaces. In a new report, Yuki M. Itahashi and a team of scientists in applied physics, nanosystems and materials science in Japan and the U.S. reported nonreciprocal transport at the surface of a 2-D superconductor made of the superconducting material Strontium titanate (SrTiO₃). The team observed gigantic enhancement of the nonreciprocal region in the superconducting fluctuation region—at six orders of magnitude larger compared to its normal state. The results are now published on Science Advances and demonstrate unprecedented characteristics of the 2-D polar superconductor.


Polar conductors or SUPERCONDUCTORS are potential material platforms for quantum $\underline{transport}$ and $\underline{spintronic}$ functionalities, with inherent nonreciprocal transport that reflects the elusive property of timereversal symmetry breaking (i.e. breaking conservation of entropy). Recent experiments have extended to the superconducting state to observe a large nonreciprocal response and physicists are keen to examine the nonreciprocity around superconducting transition in a simple electron system. For this, Itahashi et al. engineered chromium/gold (Cr/Au) electrodes on the atomically flat surface of SrTiO₃ and placed ionic liquid on the top to form an electric double layer transistor (EDLT) to realize a Rashba superconductor; based on the Rashba effect, with an ion-gating technique on the SrTiO₃ material surface. The scientists then measured the first and second harmonic electronic transport using a standard lock-in technique to measure nonreciprocal charge transport and quantify timereversal symmetry breaking in the system. Nonreciprocal transport is also an effective tool to identify Cooper pairs, where a pair of electrons overcome their usual repulsion to share a quantum state for nonreciprocal paraconductivity in superconductors, which Itahashi et al. also intended to quantify in the Rashba superconductor.

Magnetotransport of gate-induced 2D SrTiO3 for both the normal and superconducting states and enhancement of the nonreciprocal transport in the superconducting fluctuation region. (A) First and (B) second harmonic magnetoresistance (R ω xx and R2 ω xx, respectively) above TcO (normal state, T = 0.47 K and I = 20 μ A) as a function of in-plane magnetic field B perpendicular (red) or parallel (blue) to I. Insets in (A) and (B) show the magnified view of R ω xx(B) and schematics of the measurement configuration (directions of B and I), respectively. (C) R ω xx and (D) R2 ω xx below TcO (superconducting fluctuation region, T = 0.22 K and I = 1 μ A) as a function of in-plane B perpendicular (red) or parallel (blue) to I. In (A) to (D), R ω xx is normalized by the normal-state resistance RN = 128 ohms, and R ω xx/R2 ω xx is symmetrized/anti-symmetrized as a function of B. (E) Temperature dependence of γ =2R2 ω xxR ω xxBI in the normal state (I = 20 μ A) and superconducting fluctuation region (I = 0.9 μ A). Purple (normal state) and orange (superconducting fluctuation region) circles were extracted from the measurement of magnetic field scan of R2 ω xx at low B below 0.1 T, while purple (normal state) and orange (superconducting fluctuation region) dots were plotted from the temperature scan of R2 ω xx under B = 3 and 0.05 T, respectively. Credit: Science Advances, doi: 10.1126/sciadv.aay9120

The scientists initially detailed the first harmonic resistance (FHR) corresponding to linear resistance near superconducting transition for a <u>gate voltage</u> of 5.0 V. The results showed a temperature dependence at the low current limit (I = 0.05 μ A). Then they focused on second harmonic resistance (SHR) and credited nonreciprocal charge transport observed at the surface of SrTiO₃ to the <u>polar symmetry</u> within the superconducting fluctuation region and in the normal state. The team observed magneto-transport in gate induced 2-D SrTiO₃ within a <u>magnetic field</u> (B) perpendicular to the current (I) for normal and superconducting states—with enhanced nonreciprocal transport in the superconducting fluctuation region. To compare the magnitude of nonreciprocity between the normal state and region of superconductivity fluctuation, they calculated the coefficient of nonreciprocal magnetoresistance (y), which depended on the temperature within the regions.

The team subsequently measured the dependence of the second harmonic signals on current (I), in the normal state and in the superconducting fluctuation region. In the normal state, the SHR showed an almost linear dependence on the current. In the superconductivity fluctuation region at a magnetic field of 0.1 Tesla, the SHR increased linearly, reached a maximum at around 1 μ A and suppressed—to indicate suppression of superconductivity by the high current.



Current dependence of the second harmonic magnetoresistance in the normal and the superconducting fluctuation region. (A) Second harmonic magnetoresistance R2 ω xx at T = 0.85 K under I = 3 μ A (red), 5 μ A (orange), 10 μ A (green), 15 μ A (blue), and 20 μ A (purple). R2 ω xx is antisymmetrized as a function of B. (B) ||R2 ω xx|| at B = 3 T as a function of I, which is extracted from (A). Black solid line shows linear fitting as a function of I. (C) Magnetic field dependence of ||R2 ω xx|| at T = 0.22 K under I = 0.05 μ A (red), 0.6 μ A (orange), 1.2 μ A (green), and 1.8 μ A (blue). Each curve is shifted vertically by 0.5 ohms and antisymmetrized as a function of B. (D) Current dependence of ||R2 ω xx|| at B = 0.1 T, where R2 ω xx is regarded as a linear function of B. In low-current region (I \leq 1 μ A), ||R2 ω xx|| linearly increases (black solid line) with I. Credit: Science Advances, doi: 10.1126/sciadv.aay9120

To further investigate the possible origin of nonreciprocal superconducting transport in the system, the scientists measured the <u>temperature dependence</u> of FHR and SHR during the transition. To accomplish this, they noted magnetic field dependence of FHR and SHR at various temperatures and specifically observed SHR to be largely enhanced during superconducting transport. Although Itahashi et al. applied a relatively large current and inplane magnetic field, they recorded zero-resistance state at the lowest temperature. The results

implied the existence of the Berenzinskii-Kosterlitz-Thouless

<u>transition</u> (BKT transition), named after a team of Nobel prize-winning condensed matter physicists. It describes phase transitions in 2-D systems in condensed matter physics approximated by a XY model in order to understand unusual phases or states of matter in superconductors.

Temperature dependence of the magnetoresistance and the nonreciprocal transport. Magnetic field dependence of (A) the first (R ω xx) and (B) the second (R2 ω xx) harmonic magnetoresistance at T = 0.16 K (red), 0.19 K (orange), 0.22 K (green), 0.26 K (blue), 0.29 K (purple), 0.33 K (black), and 0.37 K (pink), respectively. In (B), each curve is shifted vertically by 0.5 ohms. R ω xx/R2 ω xx is symmetrized/antisymmetrized as a function of B. Temperature variation of (C) R ω xx and (D) γ under B = 0.05 T and I = 0.9 μ A. In this region, R2 ω xx is linear as a function of B and I. R ω xx/ γ is symmetrized/antisymmetrized as a function of B. Characteristic structure (kink structure around T = 0.24 K and peak structure around T = 0.17 K) appears in (D), according to which we can identify two regions of the nonreciprocal transport of different origins, i.e., paraconductivity region and vortex region. At the lowest temperature, zero-resistance state is observed, where R ω xx and γ becomes negligibly small. Magnification of γ in (E) paraconductivity region and (F) vortex region. Black dashed line in (E) shows fitting curve by γ (T)= γ s(1-R(T)RN)2, and black dashed line in (F) indicates fitting curve by γ (T)= γ (T-TeffBKT)-3/2. Normal-state resistance RN = 128 ohms is defined as R ω xx at T = 1.0 K. Credit: Science Advances, doi: 10.1126/sciadv.aay9120

In this way, Yuki M. Itahashi and colleagues proposed nonreciprocal

transport in noncentrosymmetric (without inversion symmetry) 2-D superconductors within a magnetic field. The nonreciprocal transport originated from amplitude fluctuation from the normal to the superconducting state. Temperature dependence of the coefficient of nonreciprocal magnetoresistance (γ) observed in the experiments agreed well with the microscopic theoretical picture of free motion for thermally excited vortices and antivortices in

polar 2-D superconductors. The nonreciprocal response is therefore a powerful tool to understand the nature of noncentrosymmetric superconductors.

Itahashi et al. believe that nonreciprocal transport could <u>appear universally</u> for different materials at interfacial superconducting systems with polar symmetry. The results provide information on previously unknown functions of superconductivity and important information on the electronic state and pairing mechanisms in noncentrosymmetric superconductors—as an important topic for further investigation. The work highlighted nonreciprocal transport in interfacial superconducting systems such as gate-induced 2-D superconductor SrTiO₃. The team probed the marked jump of nonreciprocal transport from the normal to superconducting states as direct evidence for giant enhancement of nonreciprocal transport in the system. The results offer important insight into polar superconductors and pave a new way to search for hitherto unknown emergent properties and functionalities at 2-D oxide interfaces and **SUPErconductors**. [35]

Modified superconductor synapse reveals exotic electron behavior

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will interact in unusual ways, causing strange quantum entities to emerge.

At the Joint Quantum Institute (JQI), a group, led by Jimmy Williams, is working to develop new circuitry that could host such exotic states. "In our lab, we want to combine materials in just the right way so that suddenly, the electrons don't really act like electrons at all," says Williams, a JQI Fellow and an assistant professor in the University of Maryland Department of Physics. "Instead the surface electrons move together to reveal interesting quantum states that collectively can behave like new particles."

These states have a feature that may make them useful in future quantum computers: They appear to be inherently protected from the destructive but unavoidable imperfections found in fabricated circuits. As described recently in *Physical Review Letters*, Williams and his team have reconfigured one workhorse superconductor circuit—a Josephson junction—to include a material suspected of hosting quantum states with boosted immunity.

Josephson junctions are electrical synapses comprised of two superconductors separated by a thin strip of a second material. The electron movement across the strip, which is usually made from an insulator, is sensitive to the underlying material characteristics as well as the surroundings. Scientists can use this sensitivity to detect faint signals, such as tiny magnetic fields. In this new study, the researchers replaced the insulator with a sliver of topological crystalline insulator (TCI) and detected signs of exotic quantum states lurking on the circuit's surface.

Physics graduate student Rodney Snyder, lead author on the new study, says this area of research is full of unanswered questions, down to the actual process for integrating these materials into circuits. In the case of this new device, the research team found that beyond the normal level of sophisticated material science, they needed a bit of luck.

"I'd make like 16 to 25 circuits at a time. Then, we checked a bunch of those and they would all fail, meaning they wouldn't even act like a basic Josephson junction," says Snyder. "We eventually found that the way to make them work was to heat the sample during the fabrication process. And we only discovered this critical heating step because one batch was accidentally heated on a fluke, basically when the system was broken."

Once they overcame the technical challenges, the team went hunting for the strange quantum states. They examined the current through the TCI region and saw dramatic differences when compared to an ordinary insulator. In conventional junctions, the electrons are like cars haphazardly trying to cross a single lane bridge. The TCI appeared to organize the transit by opening up directional traffic lanes between the two locations.

The experiments also indicated that the lanes were helical, meaning that the electron's quantum spin, which can be oriented either up or down, sets its travel direction. So in the TCI strip, up and down spins move in opposite directions. This is analogous to a bridge that restricts traffic according to vehicle colors—blue cars drive east and red cars head west. These kinds of lanes, when present, are indicative of exotic electron behaviors.

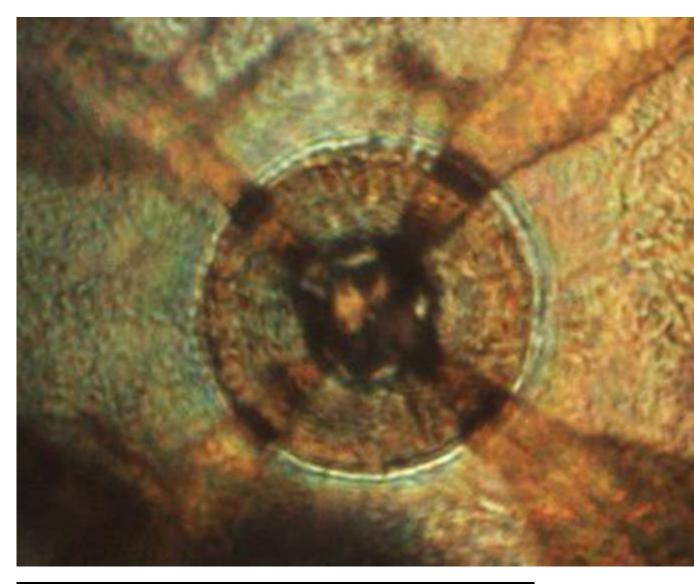
Just as the careful design of a bridge ensures safe passage, the TCI structure played a crucial role in electron transit. Here, the material's symmetry, a property that is determined by the underlying atom arrangement, guaranteed that the two-way traffic lanes stayed open. "The symmetry acts like a bodyguard for the surface states, meaning that the crystal can have imperfections and still the quantum states survive, as long as the overall symmetry doesn't change," says Williams.

Physicists at JQI and elsewhere have previously proposed that built-in bodyguards could shield delicate quantum information. According to Williams, implementing such protections would be a significant step forward for quantum circuits, which are susceptible to failure due to environmental interference.

In recent years, physicists have uncovered many promising materials with protected travel lanes, and researchers have begun to implement some of the theoretical proposals. TCIs are an appealing option because, unlike more conventional topological insulators where the travel lanes are often given by nature, these materials allow for some lane customization. Currently, Williams is working with materials scientists at the Army Research Laboratory to tailor the travel lanes during the manufacturing process. This may enable researchers to position and manipulate the quantum states, a step that would be necessary for building a quantum computer based on topological materials.

In addition to quantum computing, Williams is driven by the exploration of basic physics questions. "We really don't know yet what kind of quantum matter you get from collections of

these more exotic states," Williams says. "And I think, quantum computation aside, there is a lot of interesting physics happening when you are dealing with these oddball states." [34]


A new hydrogen-rich compound may be a record-breaking superconductor

Superconductors are heating up, and a world record-holder may have just been dethroned.

Two studies report evidence of superconductivity — the transmission of electricity without resistance — at temperatures higher than seen before. The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures.

All known superconductors must be chilled to function, which makes them difficult to use in real-world applications. If scientists found a superconductor that worked at room temperature, the material could be integrated into electronic devices and transmission wires, potentially saving vast amounts of energy currently lost to electrical resistance. So scientists are constantly on the lookout for higher-temperature superconductors. The <u>current record-holder</u>, <u>hydrogen sulfide</u>, which also must be compressed, works below 203 kelvins, or about –70° Celsius (*SN*: 12/26/15, p. 25).

The new evidence for superconductivity is based on a dramatic drop in the resistance of the lanthanum-hydrogen compounds when cooled below a certain temperature. One team of physicists found that their compound's resistance plummeted at a temperature of 260 kelvins (–13° C), the temperature of a very cold winter day. The purported superconductivity occurred when the material had been crushed with almost 2 million times the pressure of Earth's atmosphere by squeezing it between two diamonds. Some samples even showed signs of superconductivity at higher temperatures, up to 280 kelvins (about 7° C), physicist Russell Hemley of George Washington University in Washington, D.C., and colleagues report in a study posted online August 23 at arXiv.org. Hemley first reported signs of the compound's superconductivity in May in Madrid at a symposium on superconductivity and pressure.

TAKE THE PRESSURE When crushed between two diamonds and cooled, a purported superconductor (shown here in a view through the diamonds) appears.

A.P. DROZDOV *ET AL*/ARXIV.ORG 2018

Another group found evidence of superconductivity in a lanthanum-hydrogen compound under chillier, but still record-breaking, conditions. The researchers crushed lanthanum and hydrogen in a diamond press to about 1.5 million times Earth's atmospheric pressure. When cooled to about 215 kelvins (–58° C), the compound's <u>resistance falls sharply</u>, physicist Mikhail Eremets of the Max Planck Institute for Chemistry in Mainz and colleagues report in a paper posted online August 21 at arXiv.org.

It's not clear what the exact structures of the chemical compounds are and whether the two groups are studying identical materials. Differences between the two teams' samples might explain the temperature discrepancy. By scattering X-rays from the compound, Hemley and colleagues showed that the material's structure was consistent with LaH₁₀, which contains 10

hydrogen atoms for every lanthanum atom. Hemley's team had previously predicted that LaH_{10} would be superconducting at a relatively high temperature.

The results are "very exciting," says theoretical chemist Eva Zurek of the University at Buffalo in New York. However, the studies are not conclusive: They have not been peer reviewed and do not yet show an essential hallmark of superconductivity called the Meissner effect, in which magnetic fields are expelled from the superconducting material (SN: 8/8/15, p. 12). But the results agree with the previous theoretical predictions made by Hemley and colleagues. So, Zurek says, "I would hope and suspect that this is indeed ... correct."

The researchers are now working on bolstering their evidence for superconductivity. "Both groups should make more efforts to convince people," Eremets says.

The requirement of ultrahigh pressures makes the materials unlikely to be useful for applications, but better understanding of high-temperature superconductivity could lead scientists to other, more practical superconductors.

The potential new superconductor and the previous record-holder are both chock-full of hydrogen. Scientists are looking for superconductivity in such hydrogen-rich materials based on the prediction that pure hydrogen, when squeezed to immensely high pressures, will become a metal that is superconducting at room temperature (SN: 8/20/16, p. 18). But metallic hydrogen has proven difficult to produce, requiring pressures even higher than those needed for hydrogen-rich compounds. So scientists are looking for superconductivity in hydrogen-mimicking compounds that are easier to create.

"The picture is very bright for looking at more and more of these materials and finding these astonishingly high superconducting transition temperatures," Hemley says. [33]

Strained materials make cooler superconductors

University of Wisconsin-Madison engineers have added a new dimension to our understanding of why straining a particular group of materials, called Ruddlesden-Popper oxides, tampers with their superconducting properties.

The findings, published in the journal *Nature Communications*, could help pave the way toward new advanced electronics.

"Strain is one of the knobs we can turn to create materials with desirable properties, so it is important to learn to manipulate its effects," says Dane Morgan, the Harvey D. Spangler Professor of materials science and engineering at UW-Madison and a senior author on the paper. "These findings might also help explain some puzzling results in strained materials."

Superconducting materials could make the nation's power grid much more efficient, thanks to their ability to conduct electricity with zero resistance. The substances also enable MRI machines to see inside patients' bodies and levitate bullet trains above the tracks because of the Meissner effect.

"This work is a good example of how basic research can influence developing transformative technologies through systematic understanding of material behaviors by close interaction between theory and experiment," says Ho Nyung Lee, a distinguished scientist at the Department of Energy's Oak Ridge National Laboratory who led the research.

Most materials only become superconductors when they are very cold—below a specific point called the <u>critical temperature</u>. For superconductors composed of thin films of the Ruddlesden-Popper material La1.85Sr0.15CuO4, that critical temperature varies substantially depending on the conditions under which the films were grown.

"The prevailing opinion has been that strain makes it thermodynamically easier for <u>oxygen</u> defects that destroy the superconducting properties to form in the material, but we have shown that differences in the kinetic time scales of oxygen-defect formation between tensile and compressive strain is a key mechanism," says Ryan Jacobs, a staff scientist in Morgan's laboratory and a co-first author on the paper.

Oxygen defects are important because the amount of oxygen contained within a material can alter its critical temperature. The most obvious idea was that strain might impact properties by adjusting how much energy is needed for oxygen defects to appear.

While this effect does occur, Jacobs and colleagues at Oak Ridge National Laboratory demonstrated that strain doesn't just affect how easily defects form, but also the rate at which oxygen moves in and out of the material. These results suggest that some of the most important strain responses may be a result of changes in kinetic effects.

"Recognizing that kinetics plays a key role is very important for how you create the material," says Morgan.

The scientists created the materials they studied by growing crystalline thin films on top of two different supporting surfaces—one compressed the resulting thin films while the other stretched them out to cause tensile strain.

Strikingly, the tensile-strained materials needed much colder temperatures than the compressed films to become superconductors. Additionally, <u>tensile strain</u> caused the materials to lose their superconducting properties more quickly than the compressed materials.

After extensive calculations, the scientists concluded that thermodynamic effects (via the defect formation energy) alone couldn't explain the dramatic results they observed. By applying their expertise in computational simulation and the computational modeling method known as density functional theory, the researchers narrowed in on kinetics as playing a dominant role.

"This is the first window on strain altering how oxygen moves in and out of these materials," says Morgan.

Currently, the researchers are exploring other methods to optimize Ruddlesden-Popper oxides for possible use in superconducting-based devices, fuel cells, oxygen sensors and electronic devices such as memristors. They are also investigating how the findings might be applied to a

closely related group of <u>materials</u> called perovskites, which are an active research area for the Morgan group.

The paper was also featured as a Nature Communications Editor's Highlight. [32]

Nuclear techniques unlock the structure of a rare type of superconducting intermetallic alloy

Nuclear techniques have played an important role in determining the crystal structure of a rare type of intermetallic alloy that exhibits superconductivity.

The research, which was recently published in the *Accounts of Chemical Research*, was a undertaking led by researchers from the Max Planck Institute for Chemical Physics of Solids, with the collaboration of the Ivan-Franko National University of Lviv, the Technical University Freiberg, the Helmholtz-Zentrum Dresden-Rossendorf, and ANSTO.

Complex metallic alloys (CMAs) have the potential to act as catalysts and serve as materials for devices that covert heat into energy (thermoelectric generators) or use magnetic refrigeration to improve the energy efficiency of cooling and temperature control systems.

Thermoelectric generators are used for low power remote applications or where bulkier but more efficient heat engines would not be possible.

The unique properties of CMAs stem from their intricate superstructure, with each repeating unit cell comprising hundreds or thousands of <u>atoms</u>.

The study focused on a phase of beryllium and platinum, Be21Pt5. The low X-ray scattering power of beryllium atoms had previously posed a barrier to researchers attempting to resolve the <u>structure</u> of beryllium-rich CMAs, such as Be21Pt5, by using X-ray powder diffraction techniques.

To locate the beryllium atoms, researchers used the ECHIDNA neutron powder diffractometer at the Australian Centre for Neutron Scattering.

Dr. Maxim Avdeev, an instrument scientist, noted that the use of <u>neutron</u> beams in combination with X-ray data was key to solving the structure.

"Since beryllium is a light element, it will scatter neutrons further than X-rays by a factor of approximately 20. It was not possible to locate the beryllium atoms in the crystal using X-rays, but with <u>neutron diffraction</u> we found them easily."

"Since beryllium is a light element, it scatters X-rays weakly. Compared to platinum, the contrast is about 1-to-20. Using neutrons changes the ratio to approximately 16-to-20 which allowed to find beryllium atoms in the crystal structure easily."

Data from X-ray and <u>neutron powder diffraction</u> was complemented with quantum mechanical calculations to determine electron density distribution which defines electronic properties of the material.

The diffraction data indicated that the crystal structure of Be21Pt5 was built up from four types of nested polyhedral units or clusters. Each cluster contained four shells comprising 26 atoms with a unique distribution of defects, places where an atom is missing or irregularly placed in the lattice structure.

Neutron diffraction experiments at ANSTO helped determine the crystal structure determine the structure of Be21Pt5, which consisted of four unique clusters (colour-coded above in image), each containing 26 atoms.

The collaborative nature of the study was also pivotal to solving the structure.

"The physical sample was synthesised in Germany and sent to Australia for analysis. Once we sent the <u>diffraction data</u> back to our collaborators, they were able to solve the structure at their home institutions."

Having resolved the <u>crystal structure</u>, the research team also turned their attention to the physical properties of Be21Pt5 and made an unexpected discovery. At temperatures below 2 K, Be21Pt5 was found to exhibit superconductivity.

"It's quite unusual case for this family of intermetallic compounds to undergo a superconducting phase. Further studies are necessary to understand what makes this system special and <u>neutron</u> <u>scattering</u> experiments will play an important role in the process." [31]

Superconductivity research reveals potential new state of matter

A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. The ability to find similarities and differences among classes of materials with phenomena such as this helps researchers establish the essential ingredients that cause novel functionalities such as superconductivity.

The high-magnetic-field state of the heavy fermion superconductor CeRhIn5 revealed a so-called electronic nematic state, in which the material's electrons aligned in a way to reduce the symmetry of the original crystal, something that now appears to be universal among unconventional superconductors. Unconventional superconductivity develops near a phase boundary separating magnetically ordered and magnetically disordered phases of a material.

"The appearance of the electronic alignment, called nematic behavior, in a prototypical heavyfermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated superconducting

materials," said Filip Ronning of Los Alamos National Laboratory, lead author on the paper. Heavy fermions are intermetallic compounds, containing rare earth or actinide elements.

"These heavy fermion materials have a different hierarchy of energy scales than is found in transition metal and organic materials, but they often have similar complex and intertwined physics coupling spin, charge and lattice degrees of freedom," he said.

The work was reported in Nature by staff from the Los Alamos Condensed Matter and Magnet Science group and collaborators.

Using transport measurements near the field-tuned quantum critical point of CeRhIn5 at 50 Tesla, the researchers observed a fluctuating nematic-like state. A nematic state is most well known in liquid crystals, wherein the molecules of the liquid are parallel but not arranged in a periodic array. Nematic-like states have been observed in transition metal systems near magnetic and superconducting phase transitions. The occurrence of this property points to nematicity's correlation with unconventional superconductivity. The difference, however, of the new nematic state found in CeRhIn5 relative to other systems is that it can be easily rotated by the magnetic field direction.

The use of the National High Magnetic Field Laboratory's pulsed field magnet facility at Los Alamos was essential, Ronning noted, due to the large magnetic fields required to access this state. In addition, another essential contribution was the fabrication of micron-sized devices using focused ion-beam milling performed in Germany, which enabled the transport measurements in large magnetic fields.

Superconductivity is extensively used in magnetic resonance imaging (MRI) and in particle accelerators, magnetic fusion devices, and RF and microwave filters, among other uses. [30]

Superconductivity seen in a new light

Superconducting materials have the characteristic of letting an electric current flow without resistance. The study of superconductors with a high critical temperature discovered in the 1980s remains a very attractive research subject for physicists. Indeed, many experimental observations still lack an adequate theoretical description. Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity.

Below a certain temperature, a superconducting material loses all electrical resistance (equal to zero). When immersed in a magnetic field, high-temperature superconductors (high-Tc) allow this field to penetrate in the form of filamentary regions, called vortices, a condition in which the material is no longer superconducting. Each vortex is a whirl of electronic currents generating their own magnetic fields and in which the electronic structure is different from the rest of the material.

Coexistence rather than competition

Some theoretical models describe high-Tc superconductors as a competition between two fundamental states, each developing its own spectral signature. The first is characterized by an ordered spatial arrangement of electrons. The second, corresponding to the superconducting phase, is characterized by electrons assembled in pairs.

"However, by measuring the density of electronic states with local tunneling spectroscopy, we discovered that the spectra that were attributed solely to the core of a vortex, where the material is not in the superconducting state, are also present elsewhere—that is to say, in areas where the superconducting state exists. This implies that these spectroscopic signatures do not originate in the vortex cores and cannot be in competition with the superconducting state," explains Christoph Renner, professor in the Department of Quantum Matter Physics of the Faculty of Science at UNIGE. "This study therefore questions the view that these two states are in competition, as largely assumed until now. Instead, they turn out to be two coexisting states that together contribute to the measured spectra," professor Renner says. Indeed, physicists from UNIGE using theoretical simulation tools have shown that the experimental spectra can be reproduced perfectly by considering the superposition of the spectroscopic signature of a superconductor and this other electronic signature, brought to light through this new research.

This discovery is a breakthrough toward understanding the nature of the high-temperature superconducting state. It challenges some theoretical models based on the competition of the two states mentioned above. It also sheds new light on the electronic nature of the vortex cores, which potentially has an impact on their dynamics. Mastery of these dynamics, and particularly of the anchoring of vortices that depend on their electronic nature, is critical for many applications such as high-field electromagnets. [29]

A new dimension to high-temperature superconductivity discovered

A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity.

This unexpected twist marks an important milestone in the 30-year journey to better understand how materials known as high-temperature superconductors conduct electricity with no resistance at temperatures hundreds of degrees Fahrenheit above those of conventional metal superconductors but still hundreds of degrees below freezing. The study was published today in Science.

The study also resolves an apparent mismatch in data from previous experiments and charts a new course for fully mapping the behaviors of electrons in these exotic materials under different conditions. Researchers have an ultimate goal to aid the design and development of new superconductors that work at warmer temperatures.

'Totally Unexpected' Physics

"This was totally unexpected, and also very exciting. This experiment has identified a new ingredient to consider in this field of study. Nobody had seen this 3-D picture before," said Jun-Sik Lee, a SLAC staff scientist and one of the leaders of the experiment conducted at SLAC's Linac

Coherent Light Source (LCLS) X-ray laser. "This is an important step in understanding the physics of hightemperature superconductors."

The dream is to push the operating temperature for superconductors to room temperature, he added, which could lead to advances in computing, electronics and power grid technologies.

There are already many uses for standard superconducting technology, from MRI machines that diagnose brain tumors to a prototype levitating train, the CERN particle collider that enabled the Nobel Prize-winning discovery of the Higgs boson and ultrasensitive detectors used to hunt for dark matter, the invisible constituent believed to make up most of the mass of the universe. A planned upgrade to the LCLS, known as LCLS-II, will include a superconducting particle accelerator.

The New Wave in Superconductivity

The 3-D effect that scientists observed in the LCLS experiment, which occurs in a superconducting material known as YBCO (yttrium barium copper oxide), is a newly discovered type of 'charge density wave.' This wave does not have the oscillating motion of a light wave or a sound wave; it describes a static, ordered arrangement of clumps of electrons in a superconducting material. Its coexistence with superconductivity is perplexing to researchers because it seems to conflict with the freely moving electron pairs that define superconductivity.

The 2-D version of this wave was first seen in 2012 and has been studied extensively. The LCLS experiment revealed a separate 3-D version that appears stronger than the 2-D form and closely tied to both the 2-D behavior and the material's superconductivity.

The experiment was several years in the making and required international expertise to prepare the specialized samples and construct a powerful customized magnet that produced magnetic pulses compressed to thousandths of a second. Each pulse was 10-20 times stronger than those from the magnets in a typical medical MRI machine.

A Powerful Blend of Magnetism and Light

Those short but intense magnetic pulses suppressed the superconductivity of the YBCO samples and provided a clearer view of the charge density wave effects.

They were immediately followed at precisely timed intervals by ultrabright LCLS X-ray laser pulses, which allowed scientists to measure the wave effects.

"This experiment is a completely new way of using LCLS that opens up the door for a whole new class of future experiments," said Mike Dunne, LCLS director.

Researchers conducted many preparatory experiments at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL), which also produces X-rays for research.

LCLS and SSRL are DOE Office of Science User Facilities. Scientists from SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC, and SSRL and LCLS were a part of the study.

"I've been excited about this experiment for a long time," said Steven Kivelson, a Stanford University physics professor who contributed to the study and has researched high-temperature superconductors since 1987.

Kivelson said the experiment sets very clear boundaries on the temperature and strength of the magnetic field at which the newly observed 3-D effect emerges.

"There is nothing vague about this," he said. "You can now make a definitive statement: In this material a new phase exists."

The experiment also adds weight to the growing evidence that charge density waves and superconductivity "can be thought of as two sides of the same coin," he added.

In Search of Common Links

But it is also clear that YBCO is incredibly complex, and a more complete map of all of its properties is required to reach any conclusions about what matters most to its superconductivity, said Simon Gerber of SIMES and Hoyoung Jang of SSRL, the lead authors of the study.

Follow-up experiments are needed to provide a detailed visualization of the 3-D effect, and to learn whether the effect is universal across all types of high-temperature superconductors, said SLAC staff scientist and SIMES investigator Wei-Sheng Lee, who co-led the study with Jun-Sik Lee of SSRL and Diling Zhu of LCLS. "The properties of this material are much richer than we thought," Lee said.

"We continue to make new and surprising observations as we develop new experimental tools," Zhu added. [28]

Scientists Discover Hidden Magnetic Waves in High-Temperature Superconductors

Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity UPTON, NY—Intrinsic inefficiencies plague current systems for the generation and delivery of electricity, with significant energy lost in transit. High-temperature superconductors (HTS)—uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures—could revolutionize the planet's aging and imperfect energy infrastructure, but the remarkable materials remain fundamentally puzzling to physicists. To unlock the true potential of HTS technology, scientists must navigate a quantum-scale labyrinth and pin down the phenomenon's source.

Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and other collaborating institutions have discovered a surprising twist in the magnetic properties of HTS, challenging some of the leading theories. In a new study, published online in the journal Nature Materials on August 4, 2013, scientists found that unexpected magnetic excitations—quantum waves believed by many to regulate HTS—exist in both non-superconducting and superconducting materials.

"This is a major experimental clue about which magnetic excitations are important for hightemperature superconductivity," said Mark Dean, a physicist at Brookhaven Lab and lead author on the new paper. "Cutting-edge x-ray scattering techniques allowed us to see excitations in samples previously thought to be essentially non-magnetic."

On the atomic scale, electron spins—a bit like tiny bar magnets pointed in specific directions—rapidly interact with each other throughout magnetic materials. When one spin rotates, this disturbance can propagate through the material as a wave, tipping and aligning the spins of

neighboring electrons. Many researchers believe that this subtle excitation wave may bind electrons together to create the perfect current conveyance of HTS, which operates at slightly warmer temperatures than traditional superconductivity.

The research was funded through Brookhaven Lab's Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Science to seek understanding of the underlying nature of superconductivity in complex materials. [27]

Conventional superconductivity

Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper and Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called Cooper pairs, which are able to move through the crystal lattice without resistance when an electric voltage is applied. Even when the voltage is removed, the current continues to flow indefinitely, the most remarkable property of superconductivity, and one that explains the keen interest in their technological potential. [3]

High-temperature superconductivity

In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play. These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials. [8]

Superconductivity and magnetic fields

Superconductivity and magnetic fields are normally seen as rivals – very strong magnetic fields normally destroy the superconducting state. Physicists at the Paul Scherer Institute have now demonstrated that a novel superconducting state is only created in the material CeCoIn₅ when there are strong external magnetic fields. This state can then be manipulated by modifying the field direction. The material is already superconducting in weaker fields, too. In strong fields, however, an additional second superconducting state is created which means that there are two different superconducting states at the same time in the same material. The new state is coupled with an anti-ferromagnetic order that appears simultaneously with the field. The anti-ferromagnetic order from whose properties the researchers have deduced the existence of the superconducting state was detected with neutrons at PSI and at the Institute Laue-Langevin in Grenoble. [6]

Room-temperature superconductivity

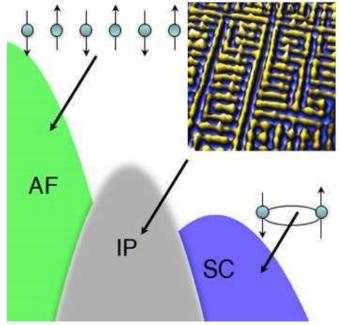
After more than twenty years of intensive research the origin of high-temperature superconductivity is still not clear, but it seems that instead of *electron-phonon* attraction mechanisms, as in conventional superconductivity, one is dealing with genuine *electronic* mechanisms (e.g. by antiferromagnetic correlations), and instead of s-wave pairing, d-waves are substantial. One goal of all this research is room-temperature superconductivity. [9]

Exciton-mediated electron pairing

Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure (~500 GPa) should become superconducting at approximately room-temperature because of its extremely high speed of sound and expected strong coupling between the conduction electrons and the lattice vibrations (phonons). This prediction is yet to be experimentally verified, as yet the pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa. In 1964, William A. Little proposed the possibility of high temperature superconductivity in organic polymers. This proposal is based on the exciton-mediated electron pairing, as opposed to phonon-mediated pairing in BCS theory. [9]

Resonating valence bond theory

In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that attempts to describe high temperature superconductivity, and in particular the superconductivity in cuprate compounds. It was first proposed by American physicist P. W. Anderson and the Indian theoretical physicist Ganapathy Baskaran in 1987. The theory states that in copper oxide lattices, electrons from neighboring copper atoms interact to form a valence bond, which locks them in place. However, with doping, these electrons can act as mobile Cooper pairs and are able to superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped cuprates was in the Mott insulator nature of crystalline copper oxide. RVB builds on the Hubbard and t-J models used in the study of strongly correlated materials. [10]


Strongly correlated materials

[11]

Strongly correlated materials are a wide class of electronic materials that show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions or half-metallicity. The essential feature that defines these materials is that the behavior of their electrons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic structure of strongly correlated materials must include electronic correlation to be accurate. Many transition metal oxides belong into this class which may be subdivided according to their behavior, *e.g.* high-T_c, spintronic materials, Mott insulators, spin Peierls materials, heavy fermion materials, quasi-low-dimensional materials, etc. The single most intensively studied effect is probably high-temperature superconductivity in doped cuprates, e.g. La_{2-x}Sr_xCuO₄. Other ordering or magnetic phenomena and temperature-induced phase transitions in many transition-metal oxides are also gathered under the term "strongly correlated materials." Typically, strongly correlated materials have incompletely filled *d*- or *f*-electron shells with narrow energy bands. One can no longer consider any electron in the material as being in a "sea" of the averaged motion of the others (also known as mean field theory). Each single electron has a complex influence on its neighbors.

New superconductor theory may revolutionize electrical engineering

High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically around atoms. Now two physicists propose that such behaviors – and superconductivity itself – can all be traced to a single starting point, and they explain why there are so many variations.

An "antiferromagnetic" state, where the magnetic moments of electrons are opposed, can lead to a variety of unexpected arrangements of electrons in a high-temperature superconductor, then finally to the formation of "Cooper pairs" that conduct without resistance, according to a new theory. [22]

Unconventional superconductivity in Ba^{0.6}K^{0.4}Fe²As² from inelastic neutron scattering

In BCS superconductors, the energy gap between the superconducting and normal electronic states is constant, but in unconventional superconductors the gap varies with the direction the electrons are moving. In some directions, the gap may be zero. The puzzle is that the gap does not seem to vary with direction in the iron arsenides. Theorists have argued that, while the size of the gap shows no directional dependence in these new compounds, the sign of the gap is opposite for different electronic states. The standard techniques to measure the gap, such as photoemission, are not sensitive to this change in sign.

But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan Rosenkranz, led an international collaboration to perform neutron experiments using samples of the new compounds made in Argonne's Materials Science Division, and discovered a magnetic excitation in the superconducting state that can only exist if the energy gap changes sign from one electron orbital to another.

"Our results suggest that the mechanism that makes electrons pair together could be provided by antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives direct evidence that the superconductivity is unconventional."

Inelastic neutron scattering continues to be an important tool in identifying unconventional superconductivity, not only in the iron arsenides, but also in new families of superconductors that may be discovered in the future. [23]

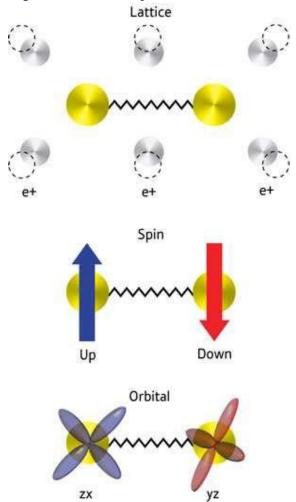
A grand unified theory of exotic superconductivity?

The role of magnetism

In all known types of high-Tc superconductors—copper-based (cuprate), iron-based, and so-called heavy fermion compounds—superconductivity emerges from the "extinction" of antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.

However if the interactions between electrons that cause antiferromagnetic order can be maintained while the actual order itself is prevented, then superconductivity can appear. "In this situation, whenever one electron approaches another electron, it tries to anti-align its magnetic state," Davis said. Even if the electrons never achieve antiferromagnetic order, these antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This antiferromagnetic influence is universal across all these types of materials," Davis said.

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of electrons to eventually pair up with anti-aligned spins—a condition necessary for them to carry current with no resistance. The complicating factor has been the existence of many different types of "intertwined" electronic phases that also emerge in the different types of high-Tc superconductors—sometimes appearing to compete with superconductivity and sometimes coexisting with it. [24]


Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron—electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron—electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron—electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copperbased, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

Significance

This study describes a unified theory explaining the rich ordering phenomena, each associated with a different symmetry breaking, that often accompany high-temperature superconductivity. The essence of this theory is an "antiferromagnetic interaction," the interaction that favors the development of magnetic order where the magnetic moments reverse direction from one crystal unit cell to the next. We apply this theory to explain the superconductivity, as well as all observed accompanying ordering phenomena in the copper-oxide superconductors, the iron-based superconductors, and the heavy fermion superconductors. [25]

Superconductivity's third side unmasked

Shimojima and colleagues were surprised to discover that interactions between electron spins do not cause the electrons to form Cooper pairs in the pnictides. Instead, the coupling is mediated by the electron clouds surrounding the atomic cores. Some of these so-called orbitals have the same energy, which causes interactions and electron fluctuations that are sufficiently strong to mediate superconductivity.

This could spur the discovery of new superconductors based on this mechanism. "Our work establishes the electron orbitals as a third kind of pairing glue for electron pairs in superconductors, next to lattice vibrations and electron spins," explains Shimojima. "We believe

that this finding is a step towards the dream of achieving room-temperature superconductivity," he concludes. [17]

Strongly correlated materials

Strongly correlated materials give us the idea of diffraction patterns explaining the electron-proton mass rate. [13]

This explains the theories relating the superconductivity with the strong interaction. [14]

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing. We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. [18] One of these new matter formulas is the superconducting matter.

Higgs Field and Superconductivity

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The specific spontaneous symmetry breaking of the underlying local symmetry, which is similar to that one appearing in the theory of superconductivity, triggers conversion of the longitudinal field component to the Higgs boson, which interacts with itself and (at least of part of) the other fields in the theory, so as to produce mass terms for the above-mentioned three gauge bosons, and also to the above-mentioned fermions (see below). [16]

The Higgs mechanism occurs whenever a charged field has a vacuum expectation value. In the nonrelativistic context, this is the Landau model of a charged Bose–Einstein condensate, also known as a superconductor. In the relativistic condensate, the condensate is a scalar field, and is relativistically invariant.

The Higgs mechanism is a type of superconductivity which occurs in the vacuum. It occurs when all of space is filled with a sea of particles which are charged, or, in field language, when a charged field has a nonzero vacuum expectation value. Interaction with the quantum fluid filling the space prevents certain forces from propagating over long distances (as it does in a superconducting medium; e.g., in the Ginzburg–Landau theory).

A superconductor expels all magnetic fields from its interior, a phenomenon known as the Meissner effect. This was mysterious for a long time, because it implies that electromagnetic forces somehow become short-range inside the superconductor. Contrast this with the behavior of an ordinary metal. In a metal, the conductivity shields electric fields by rearranging charges on the surface until the total field cancels in the interior. But magnetic fields can penetrate to any distance, and if a magnetic monopole (an isolated magnetic pole) is surrounded by a metal the field can escape without collimating into a string. In a superconductor, however, electric charges move with no dissipation, and this allows for permanent surface currents, not just surface charges. When magnetic fields are introduced at the boundary of a superconductor, they produce surface currents which exactly

neutralize them. The Meissner effect is due to currents in a thin surface layer, whose thickness, the London penetration depth, can be calculated from a simple model (the Ginzburg–Landau theory).

This simple model treats superconductivity as a charged Bose–Einstein condensate. Suppose that a superconductor contains bosons with charge q. The wavefunction of the bosons can be described by introducing a quantum field, ψ , which obeys the Schrödinger equation as a field equation (in units where the reduced Planck constant, \hbar , is set to 1):

$$i\frac{\partial}{\partial t}\psi = \frac{(\nabla - iqA)^2}{2m}\psi.$$

The operator $\psi(x)$ annihilates a boson at the point x, while its adjoint ψ^{\dagger} creates a new boson at the same point. The wavefunction of the Bose–Einstein condensate is then the expectation value ψ of $\psi(x)$, which is a classical function that obeys the same equation. The interpretation of the expectation value is that it is the phase that one should give to a newly created boson so that it will coherently superpose with all the other bosons already in the condensate.

When there is a charged condensate, the electromagnetic interactions are screened. To see this, consider the effect of a gauge transformation on the field. A gauge transformation rotates the phase of the condensate by an amount which changes from point to point, and shifts the vector potential by a gradient:

$$\psi \to e^{iq\phi(x)}\psi$$

$$A \to A + \nabla \phi$$
.

When there is no condensate, this transformation only changes the definition of the phase of ψ at every point. But when there is a condensate, the phase of the condensate defines a preferred choice of phase.

The condensate wave function can be written as

$$\psi(x) = \rho(x) e^{i\theta(x)},$$

where ρ is real amplitude, which determines the local density of the condensate. If the condensate were neutral, the flow would be along the gradients of θ , the direction in which the phase of the Schrödinger field changes. If the phase θ changes slowly, the flow is slow and has very little energy.

But now θ can be made equal to zero just by making a gauge transformation to rotate the phase of the field.

The energy of slow changes of phase can be calculated from the Schrödinger kinetic energy,

$$H = \frac{1}{2m} |(qA + \nabla)\psi|^2,$$

and taking the density of the condensate ρ to be constant,

$$H \approx \frac{\rho^2}{2m} (qA + \nabla \theta)^2.$$

Fixing the choice of gauge so that the condensate has the same phase everywhere, the electromagnetic field energy has an extra term,

$$\frac{q^2\rho^2}{2m}A^2.$$

When this term is present, electromagnetic interactions become short-ranged. Every field mode, no matter how long the wavelength, oscillates with a nonzero frequency. The lowest frequency can be read off from the energy of a long wavelength A mode,

$$E \approx \frac{\dot{A}^2}{2} + \frac{q^2 \rho^2}{2m} A^2.$$

This is a harmonic oscillator with frequency

$$\sqrt{\frac{1}{m}q^2\rho^2}$$
.

The quantity $|\psi|^2$ (= ρ^2) is the density of the condensate of superconducting particles.

In an actual superconductor, the charged particles are electrons, which are fermions not bosons. So in order to have superconductivity, the electrons need to somehow bind into Cooper pairs. [12]

The charge of the condensate q is therefore twice the electron charge e. The pairing in a normal superconductor is due to lattice vibrations, and is in fact very weak; this means that the pairs are very loosely bound. The description of a Bose–Einstein condensate of loosely bound pairs is actually more difficult than the description of a condensate of elementary particles, and was only worked out in 1957 by Bardeen, Cooper and Schrieffer in the famous BCS theory. [3]

Superconductivity and Quantum Entanglement

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing. [26]

Conclusions

On the atomic scale, electron spins—a bit like tiny bar magnets pointed in specific directions—rapidly interact with each other throughout magnetic materials. When one spin rotates, this disturbance can propagate through the material as a wave, tipping and aligning the spins of neighboring electrons. Many researchers believe that this subtle excitation wave may bind electrons

together to create the perfect current conveyance of HTS, which operates at slightly warmer temperatures than traditional superconductivity. [27]

Probably in the superconductivity there is no electric current at all, but a permanent magnetic field as the result of the electron's spin in the same direction in the case of the circular wire on a low temperature. [6]

We think that there is an electric current since we measure a magnetic field. Because of this saying that the superconductivity is a quantum mechanical phenomenon.

Since the acceleration of the electrons is centripetal in a circular wire, in the atom or in the spin, there is a steady current and no electromagnetic induction. This way there is no changing in the Higgs field, since it needs a changing acceleration. [18]

The superconductivity is temperature dependent; it means that the General Weak Interaction is very relevant to create this quantum state of the matter. [19]

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements. [26]

References:

- [1] https://www.academia.edu/3833335/The Magnetic field of the Electric current
- [2] https://www.academia.edu/4239860/The Bridge between Classical and Quantum Mechanics
- [3] http://en.wikipedia.org/wiki/BCS theory
- [4] http://en.wikipedia.org/wiki/Meissner-effect#cite-note-3
- [5] http://en.wikipedia.org/wiki/London_equations

- [6] Superconductivity switched on by magnetic field http://phys.org/news/2013-12-superconductivity-magnetic-field.html#jCp
- [7] http://en.wikipedia.org/wiki/Superconductivity
- [8] http://en.wikipedia.org/wiki/High-temperature superconductivity
- [9] http://en.wikipedia.org/wiki/Room-temperature superconductor
- [10] http://en.wikipedia.org/wiki/Resonating valence bond theory
- [11] http://en.wikipedia.org/wiki/Strongly_correlated_material
- [12] http://en.wikipedia.org/wiki/Cooper pair
- [13] https://www.academia.edu/3834454/3 Dimensional String Theory
- [14] http://en.wikipedia.org/wiki/Color_superconductivity
- [15] http://en.wikipedia.org/wiki/Fermi_surface
- [16] http://en.wikipedia.org/wiki/Higgs mechanism
- [17] Superconductivity's third side unmasked http://phys.org/news/2011-06-superconductivity-side-unmasked.html#nRlv
- [18] https://www.academia.edu/4158863/Higgs Field and Quantum Gravity
- [19] https://www.academia.edu/4221717/General Weak Interaction
- [20] Einstein on Superconductivity http://arxiv.org/pdf/physics/0510251/
- [21] Conventional Superconductivity http://phys.org/news150729937.html#jCp
- [22] http://phys.org/news/2013-12-superconductor-theory-revolutionize-electrical.html#jCp
- [23] http://phys.org/news150729937.html#jCp
- [24] http://phys.org/news/2013-10-grand-theory-exotic-superconductivity.html#jCp
- [25] http://www.pnas.org/content/early/2013/10/09/1316512110.full.pdf+html
- [26] The Secret of Quantum Entanglement

https://www.academia.edu/7229968/The Secret of Quantum Entanglement [27] Scientists

Discover Hidden Magnetic Waves in High-Temperature Superconductors

http://www.bnl.gov/newsroom/news.php?a=11564

[28] A new dimension to high-temperature superconductivity discovered

http://phys.org/news/2015-11-dimension-high-temperature-superconductivity.html

[29] Superconductivity seen in a new light http://phys.org/news/2016-03-

superconductivity.html

[30] Superconductivity research reveals potential new state of matter

https://phys.org/news/2017-08-superconductivity-reveals-potential-state.html

[31] Nuclear techniques unlock the structure of a rare type of superconducting intermetallic alloy

https://phys.org/news/2018-04-nuclear-techniques-rare-superconducting-intermetallic.html

[32] Strained materials make cooler superconductors

https://phys.org/news/2018-04-strained-materials-cooler-superconductors.html

[33] A new hydrogen-rich compound may be a record-breaking superconductor

https://www.sciencenews.org/article/new-hydrogen-rich-compound-may-be-record-breaking-superconductor

[34] Modified superconductor synapse reveals exotic electron behavior

https://phys.org/news/2018-09-superconductor-synapse-reveals-exotic-electron.html

[35] Nonreciprocal transport in the gate-induced strontium titanate polar superconductor

https://phys.org/news/2020-04-nonreciprocal-gate-induced-strontium-titanate-polar.html