
About boundary conditions for kinetic equations in
metal

Fahriddin Karimov1 and Alexander Yushkanov2

Moscow Region State University
141014 Mytishi, Russia

1 faha−rtsu−2003@mail.ru, 2 yushkanov@inbox.ru

Abstract—Were analyzed boundary conditions for kinetic
equations describing the dynamics of electrons in the metal.
Boundary condition of the Fuchs and boundary condition of
Soffer are considered. Were taken into account the Andreev
conditions for almost tangential moving electrons. It is shown that
the Soffer boundary condition does not satisfy this condition. It
was proposed the boundary condition that satisfies the Andreev
condition. It is shown that this boundary condition in the limiting
case passes into the mirror–diffuse Fuchs boundary condition.
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I. INTRODUCTION

To describe the dynamics of electrons in the metal along
with the kinetic equation one requires boundary conditions.
These boundary conditions determine the nature of the
interaction of electrons with the metal surface. Most often
the mirror–diffuse Fuchs boundary condition are used. This
condition implies that q–part of the electrons are reflected
from the surface in the mirror manner. The remaining
electrons are diffuse reflected. Then the electron distribution
function f on the surface changes as follows [1]— [3]

f(v) = qf(v′) + (1− q)f0(v), v′ = v − 2n(nv). (1)

Here v – the electron velocity before the collision with surface,
v′ – the electron velocity after collision with the surface, n – a
unit normal to the surface. The function f0(v) - the equilibrium
distribution function. For the degenerate electron gas in the
metal it has the following form

f0(v) = Θ(EF − E), E =
mv2

2
.

Here E – electron energy, EF – the Fermi energy. Θ(x) -
the Heaviside step function. It is equal to zero when x < 0.
In other cases it is equal to one.

II. FORMULATION OF GENERALIZED BOUNDARY
CONDITIONS

In the Fuchs boundary conditions (1), the value of q is
considered constant. However the coefficient of reflectivity q
should depend on the angle of incidence of electrons on the
metal surface.

In the work [4], it is shown that the reflectivity coefficient
q = q(θ) (θ - the angle of incidence of the electron on the
border) tends to one when the angle of incidence θ tends

to π/2. From this it follows that the reflectivity coefficient
q = q(θ) at θ → π/2 can be represented as the following
decomposition

q(θ) = 1− a1 cos θ − a2 cos2 θ − a3 cos3 θ + · · · . (2)

Here an — some coefficients depending on the properties
of metal surface.

It was proposed the model describing the dependence of the
reflectivity coefficient on the angle of incidence of electrons
on metal surface [5]

q(θ) = exp
[− (4πG cos θ)2

]
, G =

hs

λF
. (3)

In equation (3) value hs — the mean-squared height of the
surface relief, λF — the wavelength of an electron on the
Fermi surface.

This dependence of the reflectivity coefficient on the inci-
dence angle of electrons on the metal surface (3) has been
used in several papers [6]– [8].
Consider the behavior of the reflectivity coefficient q with
almost tangential fall of the electron on the metal surface in the
model of Soffer (3). Then θ → π/2 and cos θ → 0. Therefore

q(θ) ' 1− (4πG)2(cos θ)2. (4)

Hence q(θ) ∼ 1−A(cos θ)2 in this limit.
This contradicts Andreev condition (2). In the Soffer model
the reflectivity coefficient q tends to one too fast at θ → π/2.

Consider the model boundary conditions. These boundary
conditions have to meet the Andreev condition (2). In addition
they have under certain parameter values to go into Fuchs
boundary conditions. And at certain angles of incidence of
electrons on the metal surface with the appropriate parameters
boundary conditions must reproduce the Soffer boundary
conditions (3).

The following expression satisfies these conditions

q(θ) = q0 + (1− q0) exp(−b1 cos θ − b2 cos2 θ). (5)

In this expression there are 3 parameters: q0, b1, b2. These
parameters are non-negative.

Then, when θ → π/2 (cos θ → 0) the value q(θ) → 1.
In the linear approximation for cos θ we have



q(θ) = 1− (1− q0)b1 cos θ.

Therefore, there is the following relation with the expression
(2)

a1 = (1− q0)b1.

The parameter b2 is necessary to account for the Soffer
boundary conditions [5], which can be implemented at inter-
mediate values of the angle θ.

If the parameters b1, b2 are large, then when the angle θ not
too close to π/2, the value q(θ) is almost constant and close
to q0. Then the case of an ordinary mirror–diffuse boundary
conditions [1] is implemented.

In the case b1 = 0 and the angles θ close to π/2 we get

q ' 1− b2(cos θ)2.

This relation coincides with the Soffer result (4) if b2 =
(4πG)2.

For metal

cos θ =
|vn|
vF

.

Here vn — component of electron velocity perpendicular
to the surface, vF — the Fermi velocity.

Then the expression (2) can be rewritten in the form

q(θ) = q0 + (1− q0) exp(−β1|vz| − β2|vz|2). (6)

β1 =
b1

vF
, β2 =

b2

vF
.
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Fig. 1. The dependence of the reflectivity coefficient on the
angle θ. Value q0 = 0.5, and value b1 = 1.
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Fig. 2. The dependence of the reflectivity coefficient on the
angle θ. Value q0 = 0.5, and b1 = 3. Curve 1 corresponds
to the value of b2 = 10. Curve 2 corresponds to the value of
b2 = 5. Curve 3 corresponds to the value of b2 = 2. Curve 4
corresponds to the value of b2 = 0.

From figures 1 and 2 we see that for large values of
b1 and b2, the reflectivity coefficient q0 for most angles of
incidence remains constant. In this case the condition q = q0

is satisfied. With the decrease of the coefficients b1 and
b2 are deviations from the Fuchs boundary conditions (1)
with constant reflectivity coefficient becomes evident. These
deviations are particularly significant when the angle θ close
to π/2.

Conclusion

The paper considers a boundary condition to the kinetic
equation for the electrons in the metal. This boundary con-
dition is a generalization of the Fuchs and Soffer boundary
conditions. In limit cases it goes into these boundary condi-
tions. In addition it satisfies the Andreev condition.The Fuchs
and Soffer boundary conditions this condition not satisfy. The
considered boundary condition can be used to describe the
electron kinetics in thin films and wires. It is possible to use
this boundary condition for describing the kinetics of electrons
in small metal particles.



REFERENCES

[1] K. Fuchs, “The conductivity of thin metallic films according to the
electron theory of metals,” Proc. Cambridge Phil. Soc., Vol. 34, no. 1,
pp. 100-108, 1938.

[2] A. A. Abrikosov, Fundamentals of the Theory of Metals North–Holland,
Amsterdam, 1998.

[3] E.H. Sondheimer, “The mean free path of electrons in metals Advances
in Physics”, 2001, Vol. 50, no. 6, 499-537.

[4] A. F. Andreev, “Interaction of conduction electrons with a Metal
surface,” Sov. Phys. Usp. 1972. Vol. 14. pp. 609615.

[5] S.B. Soffer, “Statistical Model for the Size Effect in Electrical Con-
duction,” J. Appl. Phys., Vol., 38, no. 4, pp. 1710-1715, 1967.

[6] R. Dimmich and F. Warkusz, “Electrical conductivity of thin wires,”
Active and Passive Elec. Comp., Vol. 12, pp. 103-109, 1986.

[7] A. A. Yushkanov, O. V. Savenko and I. A. Kuznetsova,
“Electromagnetic-Radiation Absorption by a Small Conducting
Cylindrical Particle with the Mechanism of the Surface Scattering of
Charge Carriers Taken into Account,” Journal of Surface Investigation.
X-ray, Synchrotron and Neutron Techniques, Vol. 10, no. 3, pp.
663671, 2016.

[8] I. A. Kuznetsova, M.E. Lebedev and A. A. Yushkanov, “The effect
of electron surface scattering on fine metal particle electromagnetic
radiation absorption,” Condensed Matter Physics, Vol. 17, No 1, 13802:
pp. 19, 2014.


