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Abstract—The kinetic equation for electrons in polycrystalline
metal has been considered. This kinetic equation takes into
account, along with collisions of electrons with impurities the
collisions of electrons with the boundaries of the grains. We an-
alyze the influence of a scattering of electrons on the boundaries
of the grains on his electric properties.
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I. INTRODUCTION

In the granular conductor electron scattering at grain bound-
aries leads to that they are scattered mainly backward. Thus
some of the electrons acquire the velocity the opposite original
one.

Up to now this was considered by a formal summation of
the contribution to the electrical resistance of the conductor
caused by electron scattering on the surface and by lattice
defects (and phonons) and the contribution due to electron
scattering at the grain boundaries [1]. Such an approach would
not be quite satisfactory. It is obvious that the contributions
of these processes in the electrical resistance of the conductor
are not independent.

For correct accounting of contributions of these processes is
necessary to use the unified kinetic approach to the problem.
This approach must account for all phenomena in a unified
way. Up to now such a kinetic approach was absent.

Scattered at the interface between the grains, the electrons
will have a speed mainly directed in the opposite direction
from the initial velocity. Therefore, the equilibrium electron
velocity after the collision will be nonzero, because of the
scattering on impurities and defects. And the sign of the
average speed of the electrons after the collision with the grain
boundaries will be the opposite of the original average speed
of electrons.

KINETIC EQUATION

Kinetic equation with the relaxation type collision integral
for electrons will be as follows [2]— [4]

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= ν(f0 − f), (1)

where feq - the equilibrium Fermi distribution for electrons in
a solid plasma.

f0 =
[
1 + exp

E0 − µ

kBT

]−1

.

Here E0 — equilibrium electron energy after scattering, µ
— chemical potential, T – temperature, kB – Boltzmann’s
constant, e – the charge of the electron. The value ν = 1/τ –
the rate of collision of electrons, τ – the average time between
two successive collisions of an electron.

We assume that the conducting medium has a spherical
symmetry. In this case for energy of electrons E0 we have

E0 =
mv2

2
.

Here m — the effective mass of the electron.
However, in General, after scattering, the average speed

of the electron will be nonzero. That is, the electron will
”remember” the velocity, which had before the scattering. In
the case when the electron–electron scattering is dominant,
electron after scattering partially retains the original velocity.

The average speed of the electrons after scattering, we
denote u. We assume that the magnitude of u is connected
to the average electron velocity u0 by the following relation

u = αu0. (2)

Here α — some coefficient.
Then we get the following relationship

Eeq =
m(v − u)2

2
. (3)

We assume that the velocity u is much less than the
thermal velocity of electrons (or Fermi velocity for the case
of degenerate Fermi–gas). Then the value of Eeq (3) can be
linearized

Eeq ' mv2

2
−mvu = E0 −mvu.

Through appropriate linearization for the locally equilibrium
functions feq , we obtain the following expression

feq = f0 − ∂f0

∂E mvu. (4)

Similarly, in the linear case, the term with the electric field
in the kinetic equation (1) takes the following form

eE
∂f

∂p
' eEv

∂f0

∂E . (5)



The magnitude of u0 is defined through the distribution
function

u0 =
1
n

∫
fvd3p

2d3p

(2π~)3
.

Here n — concentration of electrons.

n =
∫

fd3p
2d3p

(2π~)3
.

Note that the current density j can be represented in the
form

j = neu0.

The linearized distribution function has the form [2]

f = f0 + f1.

For a function f1 in the works [5]— [7] has been pro-
posed model equation taking into account the contribution
of electron-electron collisions in the kinetic processes. For
a degenerate Fermi gas of electrons this equation has the
following form
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v
∂f0

∂ε

∫
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)
.

The integral term corresponds to the taking into account the
value u0.

Here vF – the Fermi velocity, vF = pF /m, pF – the Fermi
momentum.

The function f1 comfortably search in the form

f1 = −∂f0

∂E ψ. (6)

Here ψ is a new unknown function. For an electron degen-
erate Fermi gas we have

∂f0

∂E = −δ(E − EF ),

f1 = δ(E − EF )ψ.

Here δ(x) – the Dirac Delta function EF – Fermi energy,
EF = mv2

F /2.
In this case
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Or
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Therefore
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F
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.

We have the following relation

p2
F /m = EF = µ0.

Then
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We assume that the field E ∼ exp(−iωt). Then ψ ∼
exp(−iωt).

Taking into account the relations (4), (5) and (6), the kinetic
equation (1) can be written as follows for the function ψ [2]

−iωψ + v
∂ψ

∂r
− evE = ν(αmvu0 − ψ). (8)

The value u is related to the average velocity of the electron
before collision. In the case of electron-electron collisions the
electrons partially retain the initial impulse and the initial
velocity. In this case, the coefficient α is positive, α > 0.
In the case of scattering by grain boundaries the situation
is the opposite. Thus , the electrons after scattering by the
grain boundaries have a velocity opposite to the initial one.
Therefore, the sign α in the equation (8) is negative.

Equation (8) can be rewritten in the following form

−iωψ + v
∂ψ

∂r
+ νψ = v(eE + ναmu0). (9)

Consider the one-dimensional problem, when the function ψ
depends only on the spatial variable x. Axis y will direct along
a direction of the electric field E. Thus E = Ey exp(−iωt).
Then the equation (9) will be of the form

−iωψ + vx
∂ψ

∂x
+ νψ = vy(eEy + ναmu0). (10)

We introduce a new function h by using the relation

ψ = mvyvF h. (11)

The function h is dimensionless.
Let’s introduce the designation

µ = cos θ.

It is convenient to introduce the following dimensionless
variables

z0 = τ(ν − iω)vF .

µ =
vx

vF
, x′ =

x

τvF
.

Then the kinetic equation takes the form



µ
∂h

∂x′
+z0h(x′, µ) = E0 +

3
4
α

1∫

−1

(1−µ′2)h(x′, µ′) dµ′. (12)

Here

E0 =
eEyτ

mvF
.

In the future, the variable x′ will be written without dash
for short.

Let’s calculate the current density jy

jy = neu0x =
3vF ne

4

1∫

−1

(1− µ2)hdµ.

Consider the case of not varying in space electric field. Then
∂h

∂x
= 0.

Then the function h(x, µ) is a constant. We denote this using
a constant H , i.e. h(x, µ) = H . From equation (1.10) we find
this constant

z0H = E0 +
3
4
α

1∫

−1

(1− µ′2)H dµ′.

Or

z0H = E0 + αH.

Therefore

H =
E0

z0 − α
.

Calculate the current density jy

jy =
3vF ne

4

1∫

−1

(1− µ2)hdµ =
vF neE0

z0 − α
.

The expression for the electrical conductivity σ has the
following form

σ =
jy

Ey
=

ne2

m(ν − iω − αν)
.

When ω = 0, α = 0 we get the classical expression for
static conductivity

σ0 =
ne2

mν
.

In the general case for the electrical conductivity we have

σ =
σ0

1− α− iω/ν
.

When ω = 0, α → 1 the value σ → ∞. This case
corresponds to the fact that in the scattering of electrons their
momentum is conserved. So the friction of the electron gas

on a lattice is missing.
When α → −∞ we get σ → 0. That is, in this case scattering
at grain boundaries dominates. Moreover, the grain boundaries
become impermeable for the electrons.

CONCLUSION

We have considered the kinetic equation for electrons in
polycrystalline conductor (metal). The influence of scattering
electrons at the boundaries of the crystallites on the kinetic
the processes have been analyzed. We showed how these
processes affect the value of electric conductivity. The
considered kinetic equation can be used to study the electrical
conductivity of thin metal polycrystalline films. It is possible
to use this kinetic equation for the analysis of skin–effect in
polycrystalline metal.
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