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Abstract

The bremsstrahlung is calculated in case that electron current is realized
by the RLC circuit. We determine the bremsstrahlung energy caused by
the uniform oscillation of the RLC circuit.

1 Introduction

An RLC circuit is an electrical circuit consisting of a resistor (R), an
inductor (L), and a capacitor (C), connected in series or in parallel (Nillson
et al. 2008). The circuit forms a harmonic oscillator for current.

The three circuit elements, R,L and C can be combined in a number
of different topologies. All three elements in series or all three elements
in parallel are the simplest in concept and the most straightforward to
analysis. There are, however, other arrangements, some with practical
importance in real circuits. One issue often encountered is the need to
take into account inductor resistance. Inductors are typically constructed
from coils of wire, the resistance of which is not usually desirable, but it
often has a significant effect on the circuit.
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2 Series RLC circuit

In the situation where we consider series RLC circuit, the three components
are all in series with the voltage source (R − L − C − v). The governing
differential equation can be found by substituting into Kirchhoff’s voltage
law (KVL) the constitutive equation for each of the three elements. From
KVL,

vR + vL + vC = v(t), (1)

where vR, vL, vC are the voltages across R,L,C respectively and v(t) is
the time varying voltage from the source. Substituting the corresponding
physical term, in eq. (1), we get the following integral differential equation:

Ri(t) + L
di

dt
+

1

C

∫ τ=t

−∞
i(τ)dτ = v(t). (2)

If we consider the more simple situation with v = 0, then instead of
equation (2) we write

LQ̈+RQ̇+Q/C = 0 (3)

with stationary solution

Q = Ae−
R
2L t sin(ωt+ α), (4)

where

ω =

√√√√ 1

LC
− R2

4L2
. (5)

The Thomson formula for the period of oscillations is when R = 0

T = 2π/ω = 2π
√
LC. (6)

3 Two RLC circuits with the mutual induction

In this configuration the components R1, L1, C1 are inductive boned with
R2, L2, C2 configuration. The problem was published in the textbook by
Landau et al. (1989) and the frequency of the inductive system was
calculated in the form (for R1 = R2 = 0).

ω2
1,2 =

L1C1 + L2L2 ± [(L1C1 − L2C2)
2 + 4C1C2L

2
12]

1/2

2C1C2(L1L2 − L2
12)

. (7)
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After performing the Lorentz transformations of all known components
in the last formula, we can eliminate the term of the mutual induction L12

(Pardy, 2017; Rohlf, 1994).

4 Lorentz-Dirac equation for a charge generating

bremsstrahlung

It is well known that Lorentz-Dirac equation describes motion of a charged
particle in electromagnetic field where also the bremsstrahlung force is
involved in the equation.

The bremsstrahlung force is in the nonrelativistic limit expressed in the
following form:

f =
2e2

3c3
v̈. (8)

The force f is not active force and it means it cannot cause motion of
electron. In other words the equation f = mv̇ has no physical meaning.
The bremsstrahlung force is meaningful only with addition of the active
force. Then the bremsstrahlung force acts as the so called light friction.

The relativistic equation which involves the bremsstrahlung force is so
called Lorentz-Dirac equation and it can be evidently written in the form
(Landau et al., 1987):

mc
dvµ
dτ

=
e

c
Fµνv

ν + gµ, (9)

where gµ can expressed according to Landau et al. (1987) in the form:

gµ =
2e2

3c

d2vµ
dτ 2

− vµv
ν d

2vν
dτ 2

 , (10)

where the form of the bremsstrahlung term leads in the nonrelativistic
limit to eq. (8), where uµ is the four-velocity and the radiative term was
approximated in the form (Landau et al., 1987):

gµ =
2e3

3mc3
∂Fµν

∂xα
vνvα − 2e4

3m2c5
FµαF

βαvβ +
2e4

3m2c5
(
Fαβv

β
)
(F αγvγ) vµ. (11)

It is possible to show that the space components of the 4-vector force
gµ is of the form (Landau et al., 1987)
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f =
2e3

3mc3

1− v2

c2

−1/2 {(
∂

∂t
+ (v∇)

)
E+

1

c

[
v

(
∂

∂t
+ (v∇)

)
H

]}
+

+
2e4

3m2c4

{
E×H+

1

c
H× (H× v) +

1

c
E(vE)

}
−

− 2e4

3m2c5
(
1− v2

c2

)v

(
E+

1

c
(v ×H)

)2
− 1

c2
(Ev)2

 . (12)

Using the Lorentz equation we can express the second derivative in the
form:

d2vµ
dτ 2

=
e

mc2
∂α (Fµν) v

αvν +
e2

mc4
FµνF

ναvα. (13)

After insertion of the last equation in the Lorentz-Dirac equation, we
get the Lorentz-Dirac equation in the final form:

mc
dvµ
dτ

=
e

c
Fµνv

ν+

+
2e3

3mc3

{
∂αFµνv

νvα − e

mc2
FµαF

ναvν +
e

mc2
vµFαβv

βF αγvγ

}
, (14)

5 The bremsstrahlung generated by RLC circuit

If

v(t) = E0 sin(ωt), (15)

we can write the intensity of the current in the form

j = j0 sin(ωt+ α), (16)

where

j0 =
E0√

R2 +
(
Lω + 1

Cω

)2 ; tanα =
Lω − 1

Cω

R
, (17)

We can see the motion of RLC is the motion of the harmonic oscil-
lator and it means that RLC produces bremsstrahlung of from harmonic
oscillator.
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In this case the adequate formula was derived in the following form for
the average value of energy of radiation (Matveev, 1951; Sokolov et al.,
1983):

W =
Q2ω2

c2

∞∑
ν=1

ν2
∫ 2

0
sin θdθ×

tan2 θJν(νβ cos θ); β =
aω

c
, (18)

where Q is a effective charge and a is amplitude from eq. (17). Using
formula (Watson, 1966)

∞∑
ν=1

ν2J2
ν (νβ cos θ) =

β2 cos2 θ(4 + β2 cos2)

16(1− β2 cos2)7/2
, (19)

we get

W =
Q2ω2β2

16c

∫ π

0
sin2 θdθ =

(4 + β2 cos2 θ)

(1− β2 cos2 θ)7/2
. (20)

After integration over angles, we get

W =
Q2ω2β2

21

(4− β2)

(1− β2 cos2)3/2
. (21)

6 The dipole and quadrupole radiation

In case of the relative small speeds electrons in the oscillator we can restrict
our calculation to the first two term in equation (18). The first term gives
the dipole radiation and the second term gives the quadrupole radiation.
Considering only the small arguments in the Bessel functions, we get

J1(x) =
x

2

1− x2

8

 ; J2(x) =
x2

8
(22)

and for the probability of the radiation of the first harmonic we get

W1 =
Q2ω2

c2

∫ π

0
sin θ2θβ2 cos2 θ

(
1− 1

4
cos2 θ

)
dθ =

Q2ω2β2

3c2

(
1− 1

5
β2
)
≈ Q2a2ω4

3c3
. (23)

We get by the same way the quadrupole radiation formula as follows
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W2 =
4

15

Q2ω2

c
β4 =

4

15

a4Q2ω6

c5
. (24)

7 Discusion

The RLC circuit bremsstrahlung is very small for small RLC circuit.
However, the intensity of radiation will be big for the giant circuits
which can be documented by the giant Tesla projects and realization with
electron discharge machine, transformer, and so on. The high intensity
of the polychromatic radiation by the RLC circuit can be used in the
experiments with the conversion of photons into gravitons. The article
forms the preamble of the future investigation of relativistic electronic
systems (Nillson et al. 2008) and it will be, no doubt, the integral part of
such institutions as Bell Laboratories, NASA, CERN and so on.
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