On a triangle with two parallel sides

HIROSHI OKUMURA
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. We consider the side lengths of a triangle with two parallel sides by division by zero.

Keywords. triangle with parallel sides, division by zero.

1. Introduction

Let us consider a triangle ABC in the plane such that $a = |BC|$, $b = |CA|$ and $c = |AB|$. Let θ_a (resp. θ_b) be the angle between \overrightarrow{BA} and \overrightarrow{AC} (resp. \overrightarrow{BC}) (see Figure 1). In this note we fix the points A, B and the angle θ_b, and consider the side lengths of parallel sides of ABC in the case $\theta_a = \theta_b$ (see Figure 2). We use the definition of division by zero [1, 2]

$$z \div 0 = 0 \text{ for any real number } z.$$

We use a rectangular coordinate system such that A and B have coordinates $(p, 0)$ and $(q, 0)$, respectively, where we assume $p = c + q$ and the point C lies on the region $y \geq 0$.

2. Side length

The point of intersection of the lines expressed by the equations $y = \tan \theta_a(x - p)$ and $y = \tan \theta_b(x - q)$ coincides with the point C, and has coordinates

$$\left(\frac{p \tan \theta_a - q \tan \theta_b}{\tan \theta_a - \tan \theta_b}, \frac{c \sin \theta_a \sin \theta_b}{\sin(\theta_a - \theta_b)} \right).$$

Therefore we get

$$a = \frac{c \sin \theta_b}{\sin(\theta_a - \theta_b)}, \quad b = \frac{c \sin \theta_a}{\sin(\theta_a - \theta_b)}.$$

If $\theta_a = \theta_b$, then $\sin(\theta_a - \theta_b) = 0$, and we get $a = b = 0$ by (1). Therefore the side length of the parallel sides of a triangle equals 0.

Notice that the y-coordinate in (2) also shows that the height corresponding to the base AB equals 0 if $\theta_a = \theta_b$. Also (2) shows that the point C coincides with the origin $(0, 0)$ if $\theta_a = \theta_b$.

1
REFERENCES