
THE ROCKERS FUNCTION

T. AGAMA

Abstract. In this note we introduce and study the rockers function λ(n) on

the natural numbers. We establish an asymptotic for the rockers function on
the integers and exploit some applications. In particular we show that

λ(n) ∼
nn− 1

2n
− 1

2
√

2π

en+Ψ(n)−1

where

Ψ(n) :=

n−1∫
1

∑
1≤j≤t

log(n− j)

(t+ 1)2
dt.

1. Introduction

The factorial function and the Gamma function by extension is an incredibly
useful function. It shows up a lot in most theoretical scenarios and as well in many
applications. It is defined in a natural way as

Γ(s+ 1) = sΓ(s)

for any s ∈ R, where

Γ(s) :=

∞∫
0

e−tts−1dt

is valid in the entire complex plane except at s = 0,−1,−2, . . . with simple poles
[1]. On the integers, this function is the well-known factorial function given by
Γ(s + 1) := s! = s(s − 1) · · · 2.1. Sterling’s formula for the factorial function is
endowed with important constants such as π and e given by (See [1])

n! ∼ nn
√

2πn

en

that makes it very rife and indispensable modeling tool. In this note, with the
goal of illustrating a real-life situation, we introduce and study the rockers function
closely suitable for our model. We first establish an asymptotic in the following
result

Theorem 1.1. For all n ∈ N, the rockers function satisfies the following asymptotic
relation

λ(n) ∼ nn−
1
2n−

1
2

√
2π

en+Ψ(n)−1
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where

Ψ(n) :=

n−1∫
1

∑
1≤j≤t

log(n− j)

(t+ 1)2
dt.

2. The rockers function

Definition 2.1. By the rockers function, we mean the function

λ : N −→ R+

such that

λ(n) = 2
n−2
n−1 3

n−3
n−2 · · · (n− 1)

1
2n.

We call Fk(λ(n)) = (n − k) for k ≥ 1 the (k + 1) th factor of the iteration with
index k

k+1 . We denote the index of each factor (n− k) by Ind(n− k) = k
k+1 .

The rockers function on the natural numbers is very much akin to the factorial
function, except that each factor produced by an iteration is scaled down dramat-
ically. This accounts in part for the relative slow growth rate when compared to
the factorial function.

Theorem 2.2. For all n ∈ N with n ≥ 1, the rockers function satisfies the following
asymptotic relation

λ(n) ∼ nn−
1
2n−

1
2

√
2π

en+Ψ(n)−1

where

Ψ(n) :=

n−1∫
1

∑
1≤j≤t

log(n− j)

(t+ 1)2
dt.

Proof. We observe that the rockers function can be written in the form

λ(n) =
n!

n−1∏
j=1

(n− j)
1

j+1

.

By taking the natural logarithm on both sides of the expression, we have

log λ(n) = log n!−
n−1∑
j=1

1

j + 1
log(n− j).

By an application of partial summation to the second expression on the right, we
have the following

n−1∑
j=1

1

j + 1
log(n− j) =

1

n

n−1∑
j=1

log(n− j) +

n−1∫
1

t∑
j=1

log(n− j)

(t+ 1)2
dt.
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It follows that

log λ(n) = log n!− 1

n

n−1∑
j=1

log(n− j)−
n−1∫
1

t∑
j=1

log(n− j)

(t+ 1)2
dt.

The result follows from this relation. �

2.1. Properties of the rockers function. In this section we examine some prop-
erties and subtle features of the rockers function.

Proposition 2.1. The following relation hold for the rockers function

n−2∏
k=1

Ind(Fk(λ(n))) =
1

n− 1

for all n ∈ N with n ≥ 3.

Proof. The relation is easily established by noting that

n−2∏
k=1

Ind(Fk(λ(n))) =

n−2∏
j=1

(
j

j + 1

)
=

1

n− 1

by a simple induction argument. �

It follows from this relation we can somehow relate the arguments of the rockers
function to their indices in the following way

1
n−2∏
k=1

Ind(Fk(λ(n)))

+ 1 = n.

3. Distribution of the rockers function on the integers

In this section we examine the distribution of the rockers function λ(n) for all
n ∈ N. We examine the distribution for the first twelve values of the integers, in
the following tables.

Table 1

n 1 2 3 4 5 6 7 8 9

λ(n) 1 2 4.243 10.998 34.983 134.176 608.491 3205.596 19322.113

Table 2

n 10 11 12

λ(n) 131557.4713 1000838.66 8428867.597
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It can be Inferred from the above table that the growth rate of the rockers
function is not as dramatic and superfluous compared to the factorial function.
Though it does exhibit some dramatic growth, we can in most cases get control of
the growth rate and can use it to model several real life phenomena which we will
lay down in the sequel.

4. Inequalities involving the rockers function

Proposition 4.1. The rockers function λ(n) satisfies the following inequality

nn−log n
√
n
√

2π

en
≤ λ(n) ≤ nn

√
n
√

2π

2log nen

for sufficiently large values of n.

Proof. We observe that the rockers function can be written in the form

λ(n) =
n!

n−1∏
j=1

(n− j)
1

j+1

.

The desired inequality follows from the inequality

2log n ≤
n−1∏
j=1

(n− j)
1

j+1 ≤ (n)log n

and applying Sterling’s formula. �

5. Applications

A criminal from a crime scene, subject to a final arrest, has some amount of
momentary maneuvers before his final apprehension. At the crime scene, he has

(i) n for n ≥ 3 possible routes of momentary escape.
(ii) For each of the n routes of escape he resolves to take, he has

b(n− 1)
1
2 c

possible routes to take to outwit an arrest.
(iii) Again for each of the possible b(n − 1)

1
2 c routes he has at his disposal, he

has

b(n− 2)
2
3 c

routes of momentary escape.
(iv) In general, on the (k + 1) th route from the crime scene, he has

b(n− k)
k

k+1 c
possible routes of momentary escape. If we denote the total number of
possible routes of escapes from the crime scene with n possible routes of
escapes before final arrest by A(n), then

A(n) = b2
n−2
n−1 cb3

n−3
n−2 c · · · b(n− 1)

1
2 cn

∼ 2
n−2
n−1 3

n−3
n−2 · · · (n− 1)

1
2n

∼ nn−
1
2n−

1
2

√
2π

en+Ψ(n)−1
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where

Ψ(n) :=

n−1∫
1

∑
1≤j≤t

log(n− j)

(t+ 1)2
dt.
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