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Liquid surface tension.  

Forms of hanging and sitting drops. 

 

Oleg G. Verin 

 

The surface tension of a liquid is associated with many effects such as 

capillary forces, meniscus formation at walls of a vessel containing liquid, shaping 

of drops of liquid, etc.  

In a basis of these physical phenomena are interatomic and intermolecular 

forces both inside of a liquid and on the surfaces of contact of a liquid with 

environment and solid substances. It is confirmed by the evident and well-known 

interrelation of surface tension with vaporation heat of liquids. 

Researches of apparently quite clear physical phenomena in liquids with the 

purpose to get more exact and detailed knowledge are caused by requirements of 

modern techniques and technologies development. It concerns in full with studying 

of liquids properties in a drop state.  

In given article the solution method of a problem on the form of a drop of 

liquid in the gravitational field, convenient for the numerical solution on modern 

computers, specifically is presented. Examples of this problem solution are offered 

and some characteristic results are shown. 

 

 

1. Introductory remarks 

 

Evaporation can be represented as fragmentation of a liquid down to the 

smallest parts (molecules and atoms). The energy, necessary "to disjoint" from 

each other these small particles making a liquid, actually, is evaporation energy. 

It is also clear that the particles, which are being on a surface of a liquid 

have in part unused potential energy in comparison with those particles, which 

being in the interior of a liquid interact with a maximum number of surrounding 

particles. Therefore the liquid, tending to a minimum of potential energy, "tries" to 

get the form at which its surface is minimal. On the other hand, any increase in a 

surface of a liquid (having constant volume) causes the expenditure of energy.  
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Proceeding from these clear reasons, it is possible to draw a wrong 

conclusion that particles being on the liquid surface are easier to be removed (for 

example, at evaporation). This conclusion can seem quite natural as expenditure 

of energy (at evaporation) is connected with break of intermolecular bonds, and in 

this case bonds on liquid surface are partially absent. 

Let's examine more closely this paradoxical situation. 

Let's imagine that the small particle was separated from a surface of the 

liquid having the form of a sphere (for example, in zero-gravity condition).  

Let's assume that radius of an initial sphere (for example, of water) was 

equal to R. Owing to separation of the small particle having radius r (the form of a 

small particle for simplicity we shall consider also spherical) there was some 

reduction of initial radius of a water sphere (dashed line, Fig. 1) and accordingly 

some decrease of area of its surface shell occur.  

 

 

Fig. 1. Separation of a small particle from spherical water mass. 

 

Now we have to compare the total area of water surface before and after 

separation of a small particle.  

An initial water mass in the form of a sphere had had area of a surface 

equal to S = 4πR2.  

After separation of a particle the total area of water shares between the 

separated particle, which area of surface is equal to 4πr2, and the area of surface 

of the great bulk of water, which has somewhat decreased. 

As the separated particle is very small in comparison with initial volume of 

water it is possible to get the approximate expression for radius reduction of a 

water sphere ΔR: 
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In the equation (1) is stated the fact that a small particle volume is equal to 

the reduction of initial volume of water.  

Accordingly reduction of the area of surface of a great bulk of water (in the 

form of sphere) will be equal to differential ΔS: 
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As we see, surface reduction of great bulk of water is equal to very small 

part of surface of the separated particle 4πr2 (as earlier we have put r <<R), and 

not nearly compensates the increase in general water surface. 

If evaporation occurs from water surface in a vessel, then it is a fortiori 

possible to consider the area of the open surface of a great bulk of water constant. 

Hence we can define the specific heat of evaporation L: we shell multiply 

the area of surface of the separated particle of water by the force of surface 

tension and next we shall divide the received energy expenditure by the mass of 

separated small particle: 
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Here ρ - density of a liquid,  

         σ - surface tension force, actually the same as surface potential 

energy (it is easy to notice, that these physical quantities have the same 

dimension: N/m = N∙m/m2 = J/m2). 

Expression (3) enables to estimate the size of evaporating small particles 

on the bases of known values of specific heat of evaporation, surface tension force 

and density of a liquid: 
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In case of water such estimation gives following result: 
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For mercury we receive the same order of magnitude: 
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This result indicates that evaporating particles have minimally possible size 

- at a level of separate molecules and atoms, that is, measured by units of 

angstrom (1 Ǻ = 10-10m).  

Naturally, it is only rank values, as much depends on «a mode of packing» 

and on the form of molecules of each concrete liquid. 

There is one more crucial issue. How much total surface Σs of evaporated 

particles exceeds surface of liquid in condensed state? We shall make such 

estimate, for example, for one litre (1 kg) of water: 
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Here the litre of water is represented in the form of cubic decimeter, and 

comparison is carried out through comparison of potential surface energy of all 

evaporated molecules of water (for 1 kg it is equal to specific heat of evaporation) 

and potential energy of surface of liquid in condensed state (surface of cubic 

decimeter). 

As we see these values differ by many orders of magnitude and hence the 

conclusion about small influence on evaporation of surface energy of an initial 

liquid takes one more confirmation. 

Let's estimate now binding energy of one molecule of water in condensed 

state. 

As one mole of water (0,018 kg) contains 6,02∙1023 molecules (Avogadro 

number), so at evaporation of water on each molecule it is spent 

.43,01069,0
1002,6

018,0103,2 19

23

6

1 eVJ
N

L
E

A





 

   

Similar calculation for mercury gives close result: 
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It is high binding energy, for example, in comparison with thermal energy of 

molecules under normal conditions (кТ ~ 0,03 eV). Therefore in normal conditions 

evaporation process goes rather slowly. 

On the other hand, high-energy processes of evaporation and condensation 

of water, for example, in atmosphere generate huge flows of energy and 

determine climate of the Earth. 
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Knowing binding energy of one molecule it is also possible to make a rough 

estimate of surface tension force.  

Number of molecules in volume unit, for example, of water is: 
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Number of molecules on surface unit we shall estimate proceeding from the 

most simple arrangement of molecules - in the form of a cubic lattice. Then for 

water this number is about: 

)./1(1037,10)104,33( 2183/227 mns     

Assuming, that molecule being on a surface of liquid has free one sixth part 

of its potential (binding) energy, we obtain estimated value of surface tension 

force: 
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It is correct order of magnitude though calculation is one and a half times as 

much than the actual value (0,0728 J/m2). 

Similar calculations for mercury give following result: 
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As we see, the order of magnitude is also correct, though actual value 

(0,465 J/m2) in this case exceeds more than twice the calculation. 

For rough estimations such results it is possible to recognize quite 

satisfactory. Similar calculations have been done in paper [1] with use of 

experimental characteristics of more than 50 liquid substances. Calculations have 

convincingly shown interrelation of surface tension force, specific heat of 

evaporation and properties of liquid molecules (structure features).  
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2. Forms of drops of a liquid under gravitation 

 

The radius of curvature of a liquid surface, as per our point of view, should 

not influence a surface tension force as it is determined by huge intermolecular 

bonds. But it is not only the effect of intermolecular interactions (see п.1), but also 

essential is the fact that any radius of curvature can be considered as infinitely 

large in comparison with the size of molecules.  

Therefore calculation of drops form were carried out assuming that surface 

tension force is constant and does not depend on direction (along a liquid surface).  

Thus the surface tension actually creates effect of some elastic thin film 

enveloping a liquid while inside of this surface the liquid follows usual laws of 

hydrostatics (in state of rest). 

So the calculation of drops form is based on solution of Laplace equation, or 

on variational solution. Variational approach gave an opportunity to arrive at the 

analytical solution and to reduce a problem to numerical integration of some 

(rather complicated) function.  

The detailed review on the given subjects was made in paper [2]. 

Quit not belittling advantages of already existing methods of calculation 

which actually were developing from the beginning of the XIX century and up to 

date, it would be useful to pay attention to one more opportunity of solution of a 

problem concerning a liquid drop form under gravitation.  

In the basis of presented method was put the evident physical model of 

mechanical equilibrium of a liquid under surface tension force, gravity and internal 

pressure in a drop of liquid. 

First we shall examine simpler problem on internal pressure of a spherical 

drop of a liquid (in weightlessness).  

The first variant of solution. Let’s derive the equation describing a 

balance of forces in horizontal section of sphere, halving it (fig. 2). On the one 

hand, internal pressure of a liquid drop creates in this section the disruptive force 

proportional to the area of this section, and on the other hand, the surface tension 

of a liquid withstands to this internal pressure. So we receive expression for 

pressure inside of a spherical drop: 
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Fig. 2. The surface tension is counterbalanced by internal pressure. 

 

This result corresponds with Laplace’s equation. 
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Here R1 and R2 radiuses of curvature of a surface in two mutually 

orthogonal directions. In case of sphere  R1 = R2. 

The balance of forces can be got in any section of a sphere (fig. 2). The 

result of calculation of pressure value, obviously, will turn out the same: 
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The second variant of solution. Let’s imagine, that inside a drop the 

additional small volume of liquid is somehow added (for example, through tubule), 

and the radius of a sphere increases by a small amount ΔR. Thus energy is spent 

to overcome the internal pressure. Accordingly there is an increase in a surface 

area of sphere and hence the potential energy associated with a surface tension 

also increases. From balance of energy, as expected, we receive the same 

expression for pressure: 
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To solve a problem on the form of a drop of liquid under gravity we also 

shall use balance of forces, as it was done above (the equations (5), (7)). We shall 

only consider supplementary forces caused by gravity action (fig. 3).  

Calculation is convenient to begin from a drop vertex. The point is that to 

initialize is expediently at a drop vertex, as well as to do first steps of numerical 

solution of the problem. 
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Fig. 3. On calculation of the form of a hanging drop. 

 

Let's set-up balance of forces in any section of a drop (fig. 3): 
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The first member of the equation describes the force arising in given section 

due to internal pressure (decreases with height).  

The second member on the left side of the equation in the form of integral 

represents weight of the bottom part of a drop, that is, below section (increases 

with height h). 

On the right side of the equation there is surface tension force which 

counterbalances both forces represented on the left side of the equation. 

Unlike the equation for a hanging drop, the equation for a sitting drop (10) 

differs only in opposite signs. Pressure grows (first member of the equation) when 

distance from drop vertex grows. The second member has minus sign as the top 

piece of a drop (above the section) is taken away from the force generated by 

pressure (fig. 4). 

 

Fig. 4. On calculation of the form of a sitting drop. 
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Therefore the equation for a sitting drop looks like: 
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Pressure at a drop vertex is determined by radius of curvature, that is, set 

by initial conditions: 

.
2

R
p


                                                                                          (11) 

In view of (11) and after division by πσ equations (9) and (10) it is possible 

to write down in general view: 
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The upper sign regards a hanging drop, and inferior - a sitting drop. 

A capillary constant here also is denoted: 
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On the right side of equations (12) there is function sin Θ expressed through 

a derivative dr/dh:  
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In view of (14), the equations for a hanging drop and for a sitting drop (12) 

acquire the form: 
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For the numerical solution of the equations (16), for example, in program 

Excel it is necessary to determine curvature radius R at a drop vertex. 

It is also essential to pay attention to an opportunity of broader 

generalization of equations (12): 
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Here the notations for so-called Bond numbers and relative coordinates are 

entered:  
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At such transformation the angle Θ will not change, as coordinates h and r 

are divided by the same value R. 

Thus, the equations for the form of drops (18) do not contain any physical 

quantity which has dimension.  

Occurrence of dimensionless parameter Ф testifies to the effect that 

changing the characteristic dimension of a drop it is possible to simulate influence 

of any other physical characteristic of a liquid entering into this parameter.  

For example, the form of a drop of a liquid with the greater surface tension 

force will coincide completely with the form of a drop of the smaller size, but 

having smaller surface tension force. The comparison of the form of drops of 

different liquids, naturally, it is necessary to do in relative coordinates.  

As an interesting example it is also possible to mention that in conditions of 

small free fall acceleration on the Moon (1,62 m/s2) drops of a liquid will have the 

same form as on the Earth, but their size will be 2,46 times as big (root of the ratio 

9,8/1,62). 

Thus, apparently, abstract mathematical transformation of the equations 

carries great depth of physical meaning and enables to draw important 

conclusions. Besides the results obtained for any concrete case, it is possible to 

use for other liquids and conditions.  

The equations of drops after differentiation can be reshaped in the form not 

containing integration (differentiation of integral on the top limit gives subintegral 

function). 

Differentiation of equations (15) gives following result: 
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The equations (18) also can be reshaped convenient for calculations:  
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Differentiation of the equation (21) gives a result similar to (20): 
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Let's go into detail on initial steps by the numerical solution of differential 

equations in program Excel.  

Depending on the purposes or preferences with equal success it is possible 

to solve the equations (16) or (22), containing the first derivative and integral, or 

the equations (20) and (23) with the first and second derivatives. However in any 

case initial conditions are required for calculations when making first step near the 

vertex (zero of coordinate system). 

Let's use a circle property consisting in approximate ratio of coordinates 

(real and relative) valid near the origin of coordinates: 

.2,2   Rhr                                                                 (24) 

In (24) it is considered, that the radius of curvature in relative coordinates at 

drop vertex is always equal to unit. 

Near zero it is possible with high accuracy determine not only coordinates 

(24), but also the first derivative 
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Thus, at calculations in program Excel the first row (at the origin of 

coordinates) will contain only zero values of coordinates, while the first and the 

second derivatives cannot be defined as they are infinite. 

Formulas (24), (25) are used while filling in the second row (first step). The 

stride parameter of coordinate axis h (or α) must be small enough to achieve high 

precision of calculation.  
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The second row should also contain the second derivative (formulas (20) or 

(23)). After that in the same row, using value of the second derivative, the 

increment of the first derivative, and, using value of the first derivative, the 

increment of radius (the product of derivatives and stride parameter) are to be 

located. 

The third and subsequent rows are filled in similarly: coordinate h (or α) has 

the increment at the rate of selected step, then radius (r or β) and the first 

derivative get calculated in previous row increments. The second derivative is 

again determined according to formulas (20) or (23) and then, as well as it was 

done in previous row, increments of the first derivative and radius are filled in. 

Automatic calculation and completion of consequent rows presents no 

difficulties. Opportunity of graphic representation of results, which is also provided 

by the program Excel, enables to carry out visually an estimation and comparison 

of various variants of calculation.  

Computations in accordance with the formulas containing integrals actually 

differ little from described above sequence of operations.  

It is necessary also to note, that calculations in real coordinates enable to 

receive the additional information (for example, drop weight and pressure inside of 

the drop). 

Below some calculation results describing forms of hanging and sitting 

drops of water in normal conditions are presented. 

When drop size is rather small the form of the drop little differs from sphere 

(in fig. 5 drops of water with radius of curvature at vertex R=1mm are shown, that 

corresponds to relatively small Bond number Ф≈0,135). 

To show in full measure drop forms with different Bond numbers, we 

conditionally remove the restriction imposed by wetting angle depending on 

interphase factors (σSG - solid body - gas, σSL - solid body - liquid, σLG - liquid - 

gas): 

.cos
LG

SLSG
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 
                                                                          (26) 

Young equation (26) is a condition of mechanical balance of a drop and 

usually is considered as a basis for calculations of the drop form.  
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However, assuming universality of the drop form which follows from above 

mentioned equations, it is logical to impose constraints (26) on the available 

complete solution.  

For example, in fig. 5 is shown that, depending on angle of wetting, it is 

possible to make imaginary horizontal section so that tangent line in point of the 

intersection with generating line of drop surface will subtend angle (26) with these 

horizontal section.  

 

 

Fig. 5. Hanging drop (above) and sitting drop (below) with radius of 

curvature at vertex R=1mm=0,001m (Ф≈0,135). 
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Such method, hence, enables an opportunity to use single problem solution 

(one drop form) for various boundary conditions (26). 

Calculations show, that depending on Bond number hanging drop can have 

two form versions. With small numbers Ф the hanging drop has form close to 

spherical, as in fig. 5, or a little bit elongated, as in fig. 6.  

At Ф increase the intermediate form version of the drop is observed, shown 

in fig. 7, and further the drop gets rather complex form having expansion in the top 

part (fig. 8).  

 

 

Fig. 6. Elongated form of a hanging drop (R=1,4mm, Ф≈0,264). 

 

Interestingly enough, that the hanging drop with expansion in the top part to 

some extent reminds suction cap as its internal pressure in attaching place on a 

flat horizontal surface turns out to be negative (in relation to external air pressure). 

In fig. 9 the envelope curve of drop in the form of suction cap and decrease 

of internal pressure with increasing height (on the right) are shown. Pressure is 

measured in Pa, coordinates - in real sizes (m). 

Negative pressure inside of a drop comes nearer to - 20 Pa and actually 

makes possible its attaching to a horizontal surface. It is effect of suction cap 

which sometimes is taken as increased adhesion of liquids in a drop state. 
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Fig. 7. Intermediate form of a hanging drop (R=2,1mm, Ф≈0,6). 

Calculation was carried out in relative coordinates. 

 

 

Fig. 8. Hanging drop with expansion in the top part (R=2,85mm, Ф≈1,093). 

Calculation was carried out in relative coordinates. 

 

As of sitting drops, the increase in radius of curvature R at drop vertex 

(increase in parameter Ф) results in increasing of deviation of drop form from the 

spherical form (fig. 10). 

At parameter Ф exceeding 10, sitting drop even greater reminds the form of 

a disk (fig. 11). 
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Fig. 9. Envelope curve of a drop in real coordinates (on the left) and pressure inside of a 

drop as a function of height (R=3mm, Ф≈1,21). 

 

 

 

 

Fig. 10. Sitting drop of water (R=3mm, Ф≈1,21). 

Calculation was carried out in real coordinates. 
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As well as in case of hanging drops, we give general solution of a problem 

of a sitting drop form.  

 

 

 

Fig. 11. Sitting drop of water reminding form of a disk (R=8,8mm, Ф≈10,42).  

Calculation was carried out in relative coordinates. 

 

 

Fig. 12. General solution can be used to get variants  

with various wetting angles. 
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Depending on concrete conditions (wetting angle (26)) it is necessary to 

determine a horizontal secant plane to be imposed on the general solution to meet 

these conditions. In this section the necessary condition of mechanical equilibrium 

of a drop (fig. 12) will be routinely provided.  

Let's notice, that for simplification of writing we used in the text and in 

formulas the contracted notation of a surface tension force of a liquid σ though, 

strictly speaking, it would be necessary to use more exact notation - σLG as it was 

done in the formula (26). 

In calculations, as it was already mentioned, everywhere water was used as 

a liquid, but it does not reduce a generality of results, because the form of a drop 

depends on unique parameter - Bond number. 

 

 

3. Conclusion 

 

The problem of liquid drop form in gravitational field, undoubtedly, is very 

interesting both from the point of view of physics of liquids, and from the viewpoint 

of used methods of analysis. 

Traditionally these methods are based on Laplace equation (capillary 

pressure law), or on the solution of a variational problem of search of total energy 

minimum of a drop (surface energy plus potential energy of liquid in gravitational 

field).  

In the given paper the drop form equation was deduced on the basis of 

balance of forces acting in horizontal section, conditionally dissecting a liquid drop 

at some height. Advantage of such approach is not only simplicity and clearness of 

solution of the problem, but also the universality of results which do not depend on 

particular boundary conditions. 

The opportunity to abstract from concrete boundary conditions enables to 

get adequate representation of the phenomenon and to discover on this basis 

regular dependences. 

The form of a drop in relative coordinates is determined by only one (and 

too dimensionless) parameter - Bond number.  
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Thus, envelope lines of drops (solutions of equation of drop form) actually 

are special mathematical functions βФ (α), having at least three versions. One 

version meets the form of sitting drop and two more versions of functions describe 

different forms of hanging drop. 

As we saw, when Bond number exceeds Ф≈0,6 hanging drops essentially 

change their form. The usual, close to spherical or extended drop form turns into 

other version of a drop which has expansion in the top part and in shape reminds 

suction cap. 

However this is not only similarity of appearance. It turned out, that internal 

pressure in the top part of such drop is negative in relation to external air pressure. 

Therefore this kind of hanging drop attaches to a horizontal surface as suction cap 

- due to a difference of external and internal pressure. 

Calculation and construction of graphs of hanging and sitting drops of a 

liquid was accomplished on the basis of the introduced method of analysis of 

equilibrium conditions of a liquid drop with use of the most widespread and 

accessible computer program Excel.  

Naturally, stated approach is not universal or replacing other methods of 

analysis, but, undoubtedly, it can appear very convenient and useful addition to 

already known methods of studying of liquids properties in a drop state. 
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