On some mathematical connections between the Cyclic Universe, Inflationary Universe,
p-adic Inflation, p-adic cosmology and various sectors of Number Theory

Michele Nardelli*?

! Dipartimento di Scienze della Terra
Universita degli Studi di Napoli Federico Il, Largo S. Marcellino, 10
80138 Napoli, Italy

? Dipartimento di Matematica ed Applicazioni “R. Caccioppoli”
Universita degli Studi di Napoli “Federico 11” — Polo delle Scienze e delle Tecnologie
Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

Abstract

This paper is a review, a thesis, of some interesting results that has been obtained in various
researches concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic
inflation and p-adic cosmology.

In the Section 1 we have described some equations concerning cosmic evolution in a Cyclic
Universe. In the Section 2, we have described some equations concerning the cosmological
perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang
transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang
Cosmology. In the Section 3, we have described some equations concerning the generating
Ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective
five-dimensional theory of the strongly coupled heterotic string as a gauged version of N = 1 five-
dimensional supergravity with four-dimensional boundaries, and some equations concerning the
colliding branes and the origin of the Hot Big Bang. In the Section 4, we have described some
equations regarding the “null energy condition” violation concerning the inflationary models and
some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase
with w>1. In the Section 5, we have described some equations concerning the approximate
inflationary solutions rolling away from the unstable maximum of p-adic string theory. In the
Section 6, we have described various equations concerning the p-adic minisuperspace model, zeta
strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In the Section 7, we
have showed various and interesting mathematical connections between some equations concerning
the p-adic Inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in
string and M-theory. Furthermore, in each section, we have showed the mathematical connections
with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea
Ratio and the Fibonacci’s numbers.

Dedicated to the memory of Professor Anatolii Alexeevich
Karatsuba (1937-2008), mathematical genius, whose
original researches are for me always source of new great
inspirations...
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1. On some equations concerning cosmic evolution in a Cyclic Universe. [1] [16]

The action for a scalar field coupled to gravity and a set of fluids p, in a homogeneous, flat
Universe, with line element  ds® = az(r)(— N?dz® + diz) is

§=d? xdr[ -1( 3a'2+2a2¢'2j ((aﬂ)“zipi+a4v(¢))] (L.1)

We use 7 to represent conformal time and primes to represent derivatives with respectto 7. N is
the lapse function. The background solution for the scalar field is denoted ¢(z), and V(g) is the

scalar potential.
The equations of motion for gravity, the matter and scalar field ¢ are straightforwardly derived by

varying (1.1) with respect to a, N and ¢, after which N may be set equal to unity. Expressed in
terms of proper time t, the Einstein equations are

H = S’f( ¢+V+ﬂpR+ﬂpMJ (1.2)
§=—%(¢ VBt ﬂpMj (13)

where a dot is a proper time derivative.
With regard the trajectory in the (a,,a,)-plane, the Friedmann constraint reads

a'é—af%{(aﬁ)“m%(aé—af)ZV(%)}. (1.30)

Now we solve the equations of motion immediately before and after the bounce.
Before the bounce there is a little radiation present since it has been exponentially diluted in the
preceding quintessence-dominated accelerating phase. Furthermore, the potential V(¢) becomes

N2
negligible as ¢ runs off to minus infinity. The Friedmann constraint reads [%j =%¢'2 , and the

scalar field equation, (a2¢'):o, where primes denote conformal time derivatives. The general
solution is

$= \/7In AH(in)r), a=Ae’*® = AJAH(in),

A(1+ 2 AH (in)r), a, = A(A— 2 AH,(in)), (1.4)



where 4 =e’'Y% \We choose 7 =0 to be the time when a vanishes so that = <0 before collision.
A is an integration constant which could be set to unity by rescaling space-time coordinates but it is
convenient not to do so. The Hubble constants as defined in terms of the brane scale factors are

a',/a2 and a',/a? which at 7 =0 take the values + 2°H,(in) and — 2°H,(in) respectively.
Re-expressing the scalar field as a function of proper time t = Iadr , We obtain

¢ = \/glng H5(in)t) . (15)

The integration constant Hs(in)<0 has a natural physical interpretation as a measure of the

contraction rate of the extra-dimension. We remember that when the brane separation is small, one
can use the usual formula for Kaluza-Klein theory,

dz_—g¢ 2 2E¢ 2
s. =e V3'ds, +e“Vs'dy”, (1.5b)

where ds; is the four-dimensional line element, y is the fifth spatial coordinate which runs from
zeroto L, and L is a parameter with the dimension of length. Thence, we have that:

o]
_dy _ 24002
H, = =" —\E¢e , (1.6)

Ldt,

2

N . . . - .
where L, = Le‘/; is the proper length of the extra dimension, L is a parameter with dimensions of
length, and t; is the proper time in the five-dimensional metric,

2y 2y
dt, =ae Ve dr=eVe'dt, (1.7)

with t being FRW proper time. Notice that a shift ¢, can always be compensated for by a rescaling
of L. As the extra dimension shrinks to zero, H, tends to a constant, H,(in).
Immediately after the bounce, scalar kinetic energy dominates and H, remains nearly constant. The

kinetic energy of the scalar field scales as a™ and radiation scales as a™, so the former dominates
at small a. It is convenient to re-scale a so that it is unity at scalar kinetic energy-radiation
equality, t,, and denote the corresponding Hubble constant H,. The Friedmann constraint in eq.
(1.3b) then reads

(a'y =%Hf(1+ a?), (L8)

and the solution is



1
3, | 23H2(out)H? 1.,
¢=,=I 5 ; , az\/EHrT +\/§Hrr. (1.9)
[HJ—%—ZZ]
The brane scale factors are
Hr 11 2 |
aosa(/rle‘f”@Me-W@):A A 1+ |+ 2125 H3HZ (out)r |,
25

H,z

3

22

8, =al- 1%e® 1 1e 95 )= A 4| 1+

1 1 2
—25 'HEH2 (out)r | (1.10)

1 1
Here the constant A =26(H,/H(out))s has been defined so that we match a, and a, to the

incoming solution given in (1.4). As for the incoming solution, we can compute the Hubble
5 2 1

constants on the two branes after collision. They are + A °H,(out)+2 3A*HZ*H3 on the positive
5
and negative tension branes respectively. For H_<221°H,, the case of relatively little radiation

production, immediately after collision a, is expanding but a, is contracting. Whereas for
5
H, >22°H,, both brane scale factors expand after collision. If no scalar potential V(¢) were

present, the scalar field would continue to obey the solution (1.9), converging to

_ |2, {3 Hslout)
b = 3In{2 v J (1.11)

r

5
This value is actually larger than ¢, for H, <H._A°22, the case of weak production of radiation.
However, the presence of the potential V(¢) alters the expression (1.11) for the final resting value
of the scalar field. As ¢ crosses the potential well travelling in the positive direction, H; is reduced

to a renormalized value H,(out)< H,(out), so that the final resting value of the scalar field can be

smaller than ¢ . If this is the case, then a, never crosses zero, instead reversing to expansion
shortly after radiation dominance. If radiation dominance occurs well after ¢ has crossed the
potential well, eq. (1.11) provides a reasonable estimate for the final resting value, if we use the

corrected value ﬁs(out). The dependence of (1.11) is simply understood: while the Universe is
1
Kinetic energy dominated, a grows at t® and ¢ increases logarithmically with time. However,
1
when the Universe becomes radiation dominated and aoct?, Hubble damping increases and ¢

converges to the finite limit above.
With regard the egs. (1.6-1.11), we note the following connections with number theory:



25° =3/32 =3174802104 = (0)*"" + () *'7 =3171;
237 = /8 =2,828427125 = (@) + (@) ™" =2,826;
279 2 0,314980262 = (®) " + (@) "7 = 0,3168;

210 —8/2 1122462048 = (@) + (@) ™*'" =1,1231;
25/% = /32 =5,656854249 = (O )" + (d)*"'" =5,6553.

Note that, 32=8x4=24+8, where 8 and 24 are the “modes” that correspond to the physical
vibrations of a superstring and the physical vibrations of the bosonic strings.

\/§+1
2

Here, we have used the following expression: (®)"’, with @ = =1,618033987... that is

the Aurea ratio, n is a natural number and 7 are the compactified dimensions of the M-
Theory.

Using the following potential

V(p)=Volt-e)F(g), (112)

we consider the motion of ¢ back and forth across the potential well. V' may be accurately
approximated by —V,e *. For this pure exponential potential, there is a simple scaling solution

. 1-3 2
a(t)=[t", V=—V08¢=—F’(t—2'°), p=7. (113)

which is an expanding or contracting Universe solution according to whether t is positive or
negative. A the end of the expanding phase of the cyclic scenario, there is a period of accelerated
expansion which makes the Universe empty, homogeneous and flat, followed by ¢ rolling down

the potential V(¢) into the well. After ¢ has rolled sufficiently and the scale factor has begun to
contract, the Universe accurately follows the above scaling solution down the well until ¢
encounters the potential minimum. Let us consider the behaviour of ¢ under small shifts in the
contracting phase. In the background scalar field equation and the Friedmann equation, we set
p=¢;+0¢ and H=H;+H, where ¢, and H, are the background quantities given from
(1.13). To linear order in o¢, one obtains

+1+3p
t

54 5¢5—1_tf’p5¢:0, (1.14)

with two linearly independent solutions, 5¢ ~t™ and t**", where p <<1. In the contracting phase,
the former solution grows as t tends to zero. However, this solution is simply an infinitesimal shift
in the time to the Big Crunch: &g o« ¢.

We next the incoming and outgoing collision velocity, which we have parameterized as H,(in) and
H.(out). Within the scaling solution (1.13), we can calculate the value of incoming velocity by
treating the prefactor of the potential F(#) in eq. (1.12) as a Heaviside function which is unity for
¢ > .., and zero for ¢ <4, , where ¢, is the value of ¢ at the minimum of the potential. We
compute the velocity of the field as it approaches ¢ . and use energy conservation at the jump in

min
V to infer the velocity after ¢ . is crossed. In the scaling solution, the total energy as ¢
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3p?

approaches ¢ . from the right is %(/52 +V =7 and this must equal the total energy %4152

min

evaluated for ¢ just to the left of ¢,,,. Hence, we find that ¢ =+/6p/t=,/6pV,,, /(L-3p) atthe
minimum and, according to eg. (1.6),

13,
: \/g [Vmin|2e\f2¢mln
HS(In)z_T—m.

Note that from the eq. (1.15), we obtain:

(1.15)

3,
2 ~ _E [\/min|(eJ;¢mm)2

c® 1-6¢7

[H,(in)]

where the number 8 is connected with the “modes” that correspond to the physical vibrations of a
superstring by the following Ramanujan function:

© COS 77tXW' oWy
4| antilog ~ coshzx 142
—m—zw' tZWI
1 e * g,(itw)

]

At the bounce, this solution is matched to an expanding solution with

H(out)=—(1+ )H.(in)>0, (1.16)

where y is a small parameter which arises because of the inelasticity of the collision. We shall
simply assume a small positive y is given, and follow the evolution forwards in time. Since y is
small, the outgoing solution is very nearly the time reverse of the incoming solution as ¢ starts
back across the potential well after the bounce: the scaling solution is given in (1.13), but with t
positive. We can treat y as a perturbation and use the solution in eq. (1.14) discussed above,
Sp~t" and t'°". One can straightforwardly compute the perturbation in 6H, in this growing

mode by matching at ¢,,, as before. One finds ¢H,=12yH°/c* where H? is the background

3
- N ¢ .
value, at the minimum. Beyond this point, JH. grows as £/ o e‘f2 for large c, whereas in the
. . . [\E—clzjqﬁ
background scaling solution H. decays with ¢ as e
field has attained the value

. The departure occurs when the scalar



2, ¢’ 12y
=¢ +ZIn—, <
¢Dep min C 12){ [V| [ CZ

j V| - (1.17)

As ¢ passes beyond 4, the kinetic energy overwhelms the negative potential and the field passes
onto the plateau V, with H, nearly constant and equal to

J6

ﬁs(out)z;((lzzlchs(in), (1.18)

until the radiation, matter and vacuum energy become significant and H; is then damped away to
zero. Note that we can rewrite the eq. (1.18) as follow:

(1.18b)

2 ﬁ \/— N |1 \/§¢min
1 c ¢ 8 Vmin|2€
HS(OUt)z Z(lzZJ X—TW.

Also this equation is related with the number 8, i.e. with the “modes” that correspond to the
physical vibrations of a superstring by the following Ramanujan function:

© COS 7tXwW'

eV | s
4| antilog > €oshzx N4z
—ﬂt—zw' tZW'

1 e ¢ 4,(itw)

]

and with the number 12 (12 = 24 / 2) that is related to the physical vibrations of the bosonic strings
by the following Ramanujan function:

» COS 7tXW'

e ™ Vdx | s
4 antilog ™ coﬂstzhﬂx : t14'2
A w

e * ¢W(|tWI)

|09[ J[mim} J(10+47 ﬁﬂ |

The time spent to the left of the potential well (¢ < ¢mm) is essentially identical in the incoming and
outgoing stages for y <<1, namely
C

min|zm-

it (1.19)



For the outgoing solution, when ¢ has left the scaling solution but before radiation domination, the
definition eq. (1.6) may be integrated to give the time since the Big Bang at each value of ¢,

e e
d¢ 2 2 e'?
t(g ‘/ j¢ T (1.20)

Also this equation can be rewritten as follow:

(1.20b)

J6 1 3,
2 \E¢/ [ C2 jc x_@[\/minke\fz%m .
12y C 1-6c7?

The time in eq. (1.20) is a microphysical scale. The corresponding formula for the time before the
Big Crunch is very different. In the scaling solution (1.13) one has for large ¢

2 e°(¢—¢min)/2 6ec(¢—¢min)/2
t(¢)__‘/Ime| =l (020)

The large exponential factor makes the time to the Big Crunch far longer than the time from the Big
Bang, for each value of ¢. This effect is due to the increase in H, after the bounce, which, in turn,

is due to the positive value of y. As the scalar field passes beyond the potential well, it runs onto
the positive plateau V,. The value of H5(out) is nearly cancelled in the passage across the potential

well, and is reduced to I—A|5 given in eg. (1.18). Once radiation domination begins, the field quickly
converges to the large t (Hubble-damped) limit of eq. (1.9), namely

¢ = \/;In(z (out)/Hrj, (1.22)

where H, is the Hubble radius at kinetic-radiation equality. Also the eq. (1.22) can be rewritten as
follow

¢C:\f| 22 (C j L NOFmnlTE | (1.22)
3 12y C 1-6¢72

The dependence is obvious: the asymptotic value of ¢ depends on the ratio of ﬁs(out) to H,.

Increasing ﬁs(out) pushes ¢ further, likewise lowering H, delays radiation domination allowing
the logarithmic growth of ¢ in the kinetic energy dominated phase to continue for longer.

The solution of the scalar field equation is, after expanding eq. (1.9) for large 7, converting to
proper time tzja(r)dr and matching,

. A3H,
¢~ =0 ~a jdtaﬁv (1.23)



where as above we define a(t) to be unity at kinetic-radiation equal density. We have that ¢ may
reach its maximal value ¢ . and turn around during the radiation, matter or quintessence
dominated epoch. For example, ¢ . is reached in the radiation era, if, from eq. (1.23),

max

1 2
t t 5[V 5
-max ~ 104 - | | — <1, (1.24
v (t] (Vﬁ (¢C)J (1.24)

where t_ is the time of matter domination.
For turn around in the matter era, we require

L[t : Vo)
3x10 S(EJ (V’¢(¢C)] <30. (1.25)

Finally, if the field runs to very large ¢, so that V’¢/V( . )~ ce % is exponentially small, then ¢

only turns around in the quintessence-dominated era.
For our scenario to be viable, we require there to be a substantial epoch of vacuum energy
domination (inflation) before the next Big Crunch. The number of e-foldings N, of inflation is

given by usual slow-roll formula,

eC¢c

—, (1.26)

I\l‘*:jdqjviz C

¢

for our model potential. For example, if we demand that the number of baryons per Hubble radius
be diluted to below unity before the next contraction, which is certainly over-kill in guaranteeing

that the cyclic solution is an attractor, we set e*™ >10%, or N_ >60. This is easily fulfilled if 4.
is of order unity Planck units. Hence, the eq. (1.26) can be rewritten as follow:

Vo e%
Ne:J.d(bEz 260, (1.26b)

With regard the egs. (1.24-1.25, 1.26b) we have the following mathematical connections with the
Aurea ratio:

@) + (@)™ = 29,03444185 + 0,059693843 = 29,0941 ;

@) + (@)™ = 0,576974982 + 0,381966011 = 0,95894 ;

)™/ ~0,4914670835;  arcsin(0,4914670835)- 10  20,437054
T

(

(

(

(®)?'" =0,8715438560 ; arccos(0,8715438560)-% = 29,361456 ;
(@)*'7 + ()" = 29,03444185 + 31,10060654 = 60,135048 ;

(

)™ ~0,4914670835;  arccos(0,4914670835). o0 = 60,562946
T



(@)*'" =0,8715438560 ; arcsin(o,8715438560)-@ =60,638544.

T

From the formulae given above we can also calculate the maximal value ¢. in the cyclic solution:

for large ¢ and for t. >> 7't ., itis

min !

t

¢C _¢min ~ \/gln[l tmrin j’ (127)

where we used H;* ~t_, the beginning of the radiation-dominated epoch. From eq. (1.27) we obtain

3
t, zl(%j “ . (1.28)
tmin X VO

This equation provides a lower bound on t.. The extreme case is to take [\/ |z1. Then using

V, ~10™%, ¢ ~10, N, ~ 60, we find t, ~10 seconds. In this case the maximum temperature

of the Universe is ~10"°GeV. This is not very different to what one finds in simple
inflationary models.

We have shown that a cyclic universe solution exists provided we are allowed to pass through the
Einstein-frame singularity according to the matching conditions, egs. (1.15) and (1.16).
Specifically, we assumed that H(out)=—(1+ z)H.(in) where » is a non-negative constant,

corresponding to branes whose relative speed after collision is greater than or equal to the relative
speed before collision. Our argument showed that, for each y >0, there is a unique value of

H. (out) that is perfectly cyclic. Now we show that an increase in velocity is perfectly compatible

with energy and momentum conservation in a collision between a positive and negative tension
brane, provided a greater density of radiation is generated on the negative tension brane.

We shall assume that all other extra dimensions and moduli are fixed, and the bulk space-time
between the branes settles down to a static state after the collision. We shall take the densities of
radiation on the branes after collision as being given. By imposing Israel matching in both initial
and final states, as well as conservation of total energy and momentum, we shall be able to
completely fix the state of the outgoing branes and in particular the expansion rate of the extra
dimension H,(out), in terms of H,(in). The initial state of empty branes with tensions T and - T,

and with corresponding velocities v, <0 and v_ >0 obeys

(1.29)

TV =T1v?; E = ' . p=tv v
—Vv° -V’

tot \/1_\/3 _\/1 tot \/1_\/5 _\/1

The first equation follows from Israel matching on the two branes as the approach, and equating the
kinks in the brane scale factors. The second and third equations are the definitions of the total

10



energy and momentum. The three equations (1.29) imply that the incoming, empty state has
v, =-v_, E, =0 and that the total momentum is

5 __ TLH(in)

)

<0, (1.30)

where we identify v, —v_ with the contraction speed of the fifth dimension, |LH5(in]. For the eq.
(1.15), we can rewrite the eg. (1.30) also as follow:

3
\/g [\/min|;e\f2¢mm 1
C 1-6¢7 3
. 1 \/g [Vmin|;e\f2¢min

L

471 ¢ Ji-6c?

P, =TL - =

tot

_<0. (1.30b)

The corresponding equations for the outgoing state are easily obtained, by replacing T with
T + p, =T, for the positive tension brane, and —T with —-T + p_=-T_for the negative tension
brane, assuming the densities of radiation produced at the collision on each brane, p, and p_
respectively, are given from a microphysical calculation, and are both positive.

Writing v, (out)=tanh(6, ), where 6, are the associated rapidities, one obtains two solutions

sinn6, = (Rl + IR (12 =T sinne = (R IR (22 s

+

where T, =T+p,, T. =T -p_ with p, and p_ the densities of radiation on the positive and
negative tension branes respectively, after collision. Both p, and p_ are assumed to be positive. In

the first solution, with signs (- +), the velocities of the positive and negative tension branes are the
same after the collision as they were before it. In the second, with signs (- -), the positive tension
brane continues in the negative y direction but the negative tension brane is also moving in the

negative y direction. The corresponding values for v, (out) and V are

v+(out): | tot|+| tot| ( Z_Tz) 1 (out | 1ot| | mt| ( ) ,
\/Ptjt+2T2+T )+ P2(r7 -T2 \/Ptjt+2T2+T )+ P2(r2 -T2f
o REr T AT AR AT TR T

R tot|( T 7)( ) +[P (T ( ) | tot|+| tot| ( )

where the first solution for V holds for the (- +) case, and the second for the (- —) case. We are
interested in the relative speed of the branes in the outgoing state, since that gives the expansion rate
of the extra dimension, —v,(out)+Vv_(out)=LH,(out), compared to their relative speed

—2v, =—LH,(in) in the incoming state. We find in the (- +) solution,

11



|H out | out out) Ptjt 4 AT? .
| Helin) | 2V+ P2 +2(T2+T%)+P2(T2 -T2 (1.33)
and in the (- -) solution
Hs °Ut| (rz-12) P2 +4T7 L
[ Hs(in) | Fz; o e T ey A

with P, given by (1.30) in both cases. We note that we can rewrite the relation above mentioned,
i.e. —v (out)+v_(out)=LH,(out) also as follow:

3
@ [Vmin |% e\E¢mi"
C J1-6¢7?

—v, (out)+v_(out)= LHg(out) = L| -1+ ) - (1.34b)

At this point we need to consider how the densities of radiation p, and p_ depend on the relative
speed of approach of the branes. At very low speeds, |LH5(in)| << 1, one expects the outer brane

collision to be nearly adiabatic and an exponentially small amount of radiation to be produced. The
(- +) solution has the speeds of both branes nearly equal before and after collision: we assume that
it is this solution, rather than the (- —) solution which is realised in this low velocity limit. As

|LH in) is increased, we expect p, and p_ to grow. Now, if we consider p, and p_ to be both
<< P, <<T, then the second term in the denominator dominates. If more radiation is produced on
the negative tension brane, p_> p,, then

=1+ 4)~ [1+ %} (1.34c)

and so y is small and positive. This is the condition necessary to obtain cyclic behaviour.
Conceivably, the brane tension can change from T to T'=T —t at collision. Then, we obtain

~ (p— — Pt 2t)j|
@+ 2)~ [1+—2T . (1.34d)

For the (- +) solution, we can straightforwardly determine an upper limit for
|H out/H |n)| 1+;() Consider, for example, the case there the brane tension in unchanged at

collision, t=0. The expression in (1.33) gives |H (out)/ Hy(in) as a function of T,, T_and P,. |
is greatest, at fixed T_and P, when T, =T, its smallest value. For P2 <T?, it is maximized for

tot ?

2
L+ Py when equality holds. For P, >T?, it is maximized when

T?=T?-P2, and equal to 2 ot

T_ =0, its smallest value, and PZ =2T?, when it is equal to \/§=1,154700538. This is more than

12



enough for us to obtain the small values of » needed to make the cyclic scenario work. A reduction

in brane tension at collisions t > 0 further increases the maximal value of the ratio. To obtain cyclic
behaviour, we need y to be constant from bounce to bounce. That is, compared to the tension

before collision, the fractional change in tension and the fractional production of radiation must be
constant.

We note that for \/g =1,154700538, we have the following mathematical connections with the

Aurea ratio:

\E =1,154700538 = (®)™'" + (@) ?'" = 0,933565132 + 0,220384833 = 11539499 ;

\E ~1154700538 = (®) """ + (@) *'" = 0,6180339887 + 0,5386437257 = 1156677713

2. On some equations concerning cosmological perturbations in a Big Crunch/Big Bang
space-time and M-Theory model of a Big Crunch/Big Bang transition. [2] [3] [4] [5]
[16]

We consider a positive or negative tension brane with cosmological symmetry but which moves
through the five-dimensional bulk. The motion through the warped bulk induces expansion or
contraction of the scale factor on the brane. The scale factor on the brane obeys a “modified
Friedmann” equation,
Hf:i 3 Pt pi6_£2+£4’
3M;L 36M; bl b,

(2.1)

where p, is the density (not including the tension) of matter or radiation confined to the brane, b,
is the brane scale factor, and H., is the induced Hubble constant on the positive (negative) tension

brane. Choosing conformal time on each brane, and neglecting the p* terms equations (2.1)
become

b2 =4t b Kb +€, b=

b*—Kb2+e. (2.2
ERETVET TlamEl T (22)

where prime denotes conformal time derivative. The corresponding acceleration equations for b",
and b"_ , from which € disappears, are derived by differentiating equations (2.2) and using

d(,ob“): b*(p—3P)db with P being the pressure of matter or radiation on the brines. We now

show that these two equations can be derived from a single action provided we equate the
conformal times on each brane. Consider the action

§ = [dtNd*x[- 3M2L(N %2 -Kb?)- p,b¢ +3L(N 2b?-Kb2)- p b*], (2.3)

where N is a lapse function introduced to make the action time reparameterization invariant.
Varying with respect to b, and then setting N =1 gives the correct acceleration equations for b",

and b"_ following from (2.2). These equations are equivalent to (2.2) up to two integration
constants.
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We rewrite the action (2.3) in terms of a four-dimensional effective scale factor a and a scalar field

¢, defined by
_ ¢ _ oeinnl 2
b+_acosh(\/€j, b asmh(\/gj.

Clearly, a and ¢ transform as a scale factor and as a scalar field under rescalings of the spatial
coordinates X. To interpret ¢ more physically, note that for static branes the bulk space-time is
perfect Anti-de Sitter space with line element dY? +e?"/ L(— dt® + df(z). The separation between the
branes is given by

d= Lln(ﬁjz Lin[ S0 |
a (cﬁj
J6
so d tends from zero to infinity as ¢ tends from minus infinity to zero. In terms of a and ¢, the
action (2.3) becomes

S= jdtd&[— 3|\/|§L(a‘12 — Ka2)+ %azgﬂ +S8,, (2.4)

which is recognized as the action for Einstein gravity with line element az(t)(— dt? +7ijdxidxj),
7; being the canonical metric on H?®, S® or E® with curvature K, and a minimally coupled scalar
field ¢. The matter action §, is conventional, except that the scale factor appearing is not the

Einstein-frame scale factor but instead b, = acosh(¢/\/€) and b_= —asinh(gﬁ/\/g) on the positive
and negative tension branes respectively.

Now we wish to make use of two very powerful principles. The first is the assertion that even in the
absence of symmetry, the low energy modes of the five-dimensional theory should be describable
with a four-dimensional effective action. The second is that since the original theory was coordinate
invariant, the four dimensional effective action must be coordinate invariant too. Since the five-
dimensional theory is local and causal, it is reasonable to expect these properties in the four-
dimensional theory. If furthermore the relation between the four-dimensional induced metrics on
the branes and the four-dimensional fields is local, then covariance plus agreement with the above
results forces the relation to be

9., = ((:osh((ﬁ/\/g))2 gn 9, = (— sinh(¢/\/§))zg;ﬁ‘j. (2.5)

When we couple matter to the brane metrics, these expressions should enter the action for matter
confined to the positive and negative tension branes respectively. Likewise we can from (2.4) and
covariance immediately infer the effective action for the four-dimensional theory:

5= Id“xﬁ(MTfR —%(8#¢)ZJ+S,;[9‘]+ slo] @6

where we have defined the effective four-dimensional Planck mass M2 = (87G,) " = ML .

The two brane geometries are determined according to the formulae (2.5), and the background
solution relevant post-collision is assumed to consist of two flat, parallel branes with radiation

14



densities p, . The corresponding four-dimensional effective theory has radiation density p,, and a
massless scalar field with kinetic energy density p,. The four-dimensional Friedmann equation in
conformal time then reads

a?= %(pra4 +p,at)= 4A4(r4 +ij, 2.7)

aZ

where we have defined the constants A, and r,, and used the fact that the massless scalar kinetic
energy p, o a®. The solution to (2.7) and the massless scalar field equation (a2¢'): 0is:

a’ =4Az(l+1,7), ¢=\E|n[ﬁ]. (2.8)

From these solutions, we reconstruct the scale factors on the branes according to (2.5), obtaining:
b, =1t Az+rz, (2.9)
so we see that with the choice of normalization for the scale factor a made in (2.7), the brane scale

factors are unity at collision. We may now directly compare the predictions (2.9) with the exact
five-dimensional solution, equating the terms linear in z to obtain

L2(r, —r) L(r, +r1)
A =(/L)1+—=—=|tanh(y,/2), =—-F——_ (210
= )[+ 12 ]an (00/2): 5 =y r2) @10

where y, is the rapidity associated with the relative velocity of the branes at collision V = tanh(yo)

and r, is the value of the radiation density o, on each brane at collision. Thence, the eq. (2.9) can
be rewritten also:

2
b, =1+ (L/L g L =r) tanh(y, / 2)r b HEE0) o 0n)
12 12tanh(y, /2)

Furthermore, we define the fractional density mismatch on the two branes as

=57 21
r+r
so that we have
r—r = 12Lfr4 tanh(y,/2). (2.12)

Now, we describe the perturbations of the brane-world system in terms of the four-dimensional
effective theory. We shall now describe the scalar perturbations, in longitudinal gauge with a
spatially flat background where the scale factor and the scalar field are given by (2.8). The
perturbed line element is

ds? = a?(z)- (L+ 20)d 72 + (1-2%)dx?].  (2.13)
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Since there are no anisotropic stresses in the linearized theory, we have ® =¥
A complete set of perturbation equations consists of the radiation fluid equations, the scalar field
equation of motion and the Einstein momentum constraint:

5, =5, ~30) v, =204 (5] 429658 -—K:(5p)+ 49

r

D'+ HD = %az PN, + %¢'(§¢) , (2.14)

where primes denote 7 derivatives, ¢, is the fractional perturbation in the radiation density, v, is

the scalar potential for its velocity i.e. V. =Vv., ¢ is the perturbation in the scalar field, and from
(2.8) we have the background quantities

a' (l+2rr
2 - nd 2=
a [21(1+rz' l+rz'

We are interested in solving these equations in the long wavelength limit, |kz| <<1. Solving all the
above equations for dlna, one finds

H

5 o -
Crw) @ew)’ i=1..N, (2.15)

for adiabatic perturbations. The components of the background energy density in the four-
dimensional effective theory are scalar kinetic energy, with w, =1, and radiation, with w, :%. It

follows that for adiabatic perturbations, at long wavelengths we must have

3

o, ~—0,.
2

y (2.16)

r

In longitudinal gauge, the fractional energy density perturbation and the velocity potential
perturbation in the scalar field (considered as a fluid with w=1) are given by

5¢) 5
5¢zz((¢+’f)—®) vﬁ?"f. (2.17)

From the equations (2.14) above (and using ¢'cc a™) it follows that

(@-g@j _ %k {v —%} (2.18)

Maintaining the adiabaticity condition (2.16) up to order (kr)2 then requires that the fractional
velocity perturbations for the scalar field and the radiation should be equal: v, =~ 5¢/¢". Expressing
the radiation velocity in terms of 5¢, the momentum constraint then yields
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§¢z( +3&] (M] (2.19)
3, ¢

where p, = %(;5'2 a’.

The above equations may be used to determine the leading terms in an expansion in |k2'| of all the
quantities of interest about the singularity. We shall choose to parameterize the expressions in terms

of the parameters describing the comoving energy density perturbation, ¢, = —%%‘Zkzq) , wWhich

has the following series expansion about 7 =0
g, =&D(r)+&E(z), (2.20)
where &, and &, are arbitrary constants, and
D(r)=1-2r,r —%kzrz nkl+...  E()=r*+.. (221)

For adiabatic perturbations, we obtain

5¢:‘9°(_4u<—2r Infkz] + 1—%& )+824—i2+0(r,2'|n|kr|), (2.222)

V¢:80(4Ifzr(1 rr))+0(rrln|kr|) 5r=§5¢+0(z'2,2'2|n|k2'|), v, =V, +O(z,zInk]),
@:go(—gk% oinfer]+ 385:2} oy +O(e,rInfe]), (2220)

(f/?: 0(8k3r (- 2[’2’)+2—|n|k| ; 183” 52$+O(r,rln|kr|), (2.22c)
Lom :-%gﬁgo(siz(k +16r7 )+ —|n|kr|j+0(r,r|n|kr|), (2.22d)

where ¢, , is the curvature perturbation on comoving slices introduced by Mukhanov.

With regard the (2.22c) we note that is possible the following mathematical connection with the
Aurea ratio:

1

7

\/g 1 -13/7
=0,40824829 = () ™" = ( 2* j =0,4091477 = 0,409.

Furthermore, in the egs. (2.22b-2.22c) there is the number 8, that is related to the “modes” that
correspond to the physical vibrations of a superstring by the following Ramanujan function
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© COS 7ztXW' oWy
o cosh zx V142
;ztz t2W|

4| antilog
1 e g, (itw)

o]

and that 2, 3, 5, 8 and 13 are Fibonacci’s numbers.
Now, we consider the propagation of metric perturbations through a collision of tensionless branes

where the background space-time is precisely JM“/Z,xR*. The form that we take for the five-
dimensional cosmological background metric is

ds® = n?(t, y)(— dt? +t2dy2)+ b(t, y)s,dx'dx!, (2.23)
and we write the most general scalar metric perturbation about this as

ds? = n?(t, y )~ (1+ 2 )dt? — 2Wditdy +t>(1— 2 )dy? — 2V, adx'dt + 2t2V, Adydx' )+
+02(t, yN(L-2%)5, —2V,V, )dxidx) . (2.24)

For perturbations on M x R® it is straightforward to find a gauge in which the metric takes the
form

ds? = (1%1@}(— dt? +t2dy2)+((1—§k2;(j5ﬁ + 2kikj;(]dx‘dxj . (2.25)
and y satisfies a massless scalar equation of motion on M x R*. To be precise, the gauge is
2 2 2 1 2
a=p4=0, I'=0-¥Y-ky, d):§k Ve ‘P:§k ¥, W=0. (2.26)

Notice that the non-zero variables can all be related to » according to

2 2
(F,(D,“P):(—E,“rgﬁ'gjk X - (227)

We shall, henceforth, refer to these as the “Milne ratio conditions”. Furthermore, imposing the Z,
symmetry, we obtain Neumann boundary conditions on y,

2'(y.)=0, (228)

where y, =+y,/2 are the location of the two Z, fixed points. In the model space-time, the lowest
energy mode for y is y -independent and has the asymptotic form

2(t,y)=Q+PlInkt|, (2.29)
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with Q and P being arbitrary constants. We have the following relations:

Qout = _Qin + 2(7/ —In 2)Pm ) Pout = I:>'n : (230)

These relations are sufficient to determine the metric fluctuations after the bounce. We are only
interested in the long-wavelength part of the spectrum, and, for the cases of interest, P is

suppressed by k? compared to Q. As a result, we obtain the approximate matching rule

Qout = _Qin ) Pout = I:)in : (231)

The key conditions (2.26) through (2.28) are satisfied precisely for all time in a compactified Milne
mod Z, background.

Now, we wish to use the four-dimensional effective (moduli) theory to infer the boundary data for
the five dimensional bulk perturbations. In any four-dimensional gauge, the four-dimensional
metric perturbation h,, and scalar field perturbation o6¢ determined the induced metric

perturbations on the branes via the formulae (2.5):

h,, =h,, +2(InQ.),54g,,, (2.32)

uv?

where Q. =cosh(¢/\/_) and Q_ :—sinh(gzﬁ/\/g) and the metric perturbations are fractional i.e.
A, =a2h/w, 5g —b+h;v This formula is particularly easy to use in five-dimensional
longitudinal gauge. This gauge may always be chosen, and it is completely gauge fixed. In this

gauge the five-dimensional metric takes the form
ds® = n’(t, y)( 1+ 2@ )dt? — 2W, dtdy + t?(1— 21 )dy? )+b ty)a-2%) )dx dx!. (2.33)
In the absence of anisotropic stresses the brane trajectories are unperturbed in this gauge. An

immediate consequence is that the four-dimensional longitudinal gauge scalar perturbation variables
@, and ¥, describing perturbations of the induced geometry on each brane

ds? =b?(z, ) (L+ 20, )d7? + (1— 2%, )dx?), (2.34)

are precisely the boundary values of the five-dimensional longitudinal gauge perturbations
@, =@ (y.) and ¥, =¥ (y.). Using (2.32) and (2.34), we find for the induced perturbations

®+:®4+%tanh(%]5¢, Y, =0,- \/%tanh(flj%

b =0, +%coth(%j5¢, Y =@, - \/%coth(fljﬁqﬁ (2.35)

The brane conformal times may be expressed in terms of t by integrating,

Codt
Y LT ¥
B I00|(t.y+) (2:39)
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where q=Db/n. So for example the boundary value of the bulk metric perturbation ®  on the
positive tension brane is given explicitly by

@, (1y.)= 0, [alt.y.) "ot tannlpl[a(ty.) )Vl atty.'ot). - @37)

where vy, is the location of the positive tension brane.
Also in these equations (2.35-2.37), we have the following connection with the Aurea ratio:

\/§+1

2

-13/7
=0,40824829 = () ™" = ( J =0,4091477 = 0,409.

S

Now, using (2.22) and the following equation

g, tanh(y, /2)
32k2L? cosh?(y, /2

W(t)= g (t)+ )[18(3/0 —sinh(y,))— L2(r, —r X3y, +sinh(y, )]+ O(p2L%,t,tInkt]

(2.38)
to find Q and P before and after the bounce for all components of the metric perturbations and

matching according to the rule given in equation (2.31) results in £, ,, inheriting two separate

scale-invariant long wavelength contributions in the post-singularity state. The first occurs as a
direct consequence of the sign change in (2.31), and is independent of the amount of radiation
generated at the singularity. The second is proportional to the difference in the densities of the
radiation on the two branes. At leading order in velocities we have

3 ¢ (r, —r )e V2 _

Alam = rparz Vi +Vou )= 7 + OV VAL, pIL°), - (239
;4,M 64 k2L2 ( in out) 32k2 (_ p_ ) ( )

are the relative velocities of the branes before and after collision. Note that since

P oc g,, matching P is in fact equivalent to matching &, across the collision. In terms of four-

dimensional parameters including r, given in (2.12) defining the abundance of the radiation and the
fractional density mismatch f defined in (2.11), we find again at leading order in velocities

where V,, and V,

out

3 ¢ g, fr\V3
A =— 20 (v4pvh ) =0 afot (240
;4,M 64 ksz( in out) 28k2 L ( )

This is the final result, relevant to tracking perturbations across the singularity in the ekpyrotic and
cyclic models.

The result for the long wavelength curvature perturbation amplitude in the four-dimensional
effective theory, propagated into the hot Big Bang after the brane collision is:

: 3e Ve
(6 —sinh @)~ ﬁ (2.41)

o 9¢, tanh(6/2)
M 16k*L? cosh?(6/2)
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where @ is the rapidity corresponding to the relative speed V_, of the branes at collision, and the

2

second formula assumes V_,, is small. L is the bulk curvature scale, and 6 has a scale invariant

power spectrum.
With regard the egs. (2.40) and (2.41), we have the following mathematical connections with the
Aurea ratio and the Fibonacci’s numbers:

64=48+16=24+24+8+8;, 64=8=34+21+8+1 thatare Fibonacci’s numbers;
24=3x8; 64=(3x8)+(3x8)+8+8, with 3 and 8 that are Fibonacci’s numbers;
8= (d)".306,342224 .

Furthermore, in the eq. (2.40) 2, 3 and 8 are Fibonacci’s numbers and 8 is connected with the
“modes” that correspond to the physical vibrations of a superstring by the following Ramanujan
function:

o COS 7ztXw'

e N
4| antilog . €Oshzx V142

—m—zw' tZW'
1 e 4 ¢w(|twl)

el ]

The d + 1-dimensional space-time we consider is a direct product of d — 1-dimensional Euclidean
space, R’*, and a two-dimensional time-dependent space-time known as compactified Milne
space-time, or J. . The line element for . x R*™ is thus

ds® =—dt* +t°d¢” +dx?, 0<6<f,, -owo<t<o, (242)

where X are Euclidean coordinates on R, @ parameterizes the compact dimension and t is the
time. The compact dimension may either be a circle, in which case we identify 8 with 6+ 6, or a
Z, orbifold in which case we identify & with 6+ 26, and further identify & with 26, -6. The
fixed points =0 and 8 =g, are then interpreted as tensionless Z,-branes approaching at rapidity
6,, colliding at t=0 to re-emerge with the same relative rapidity. The orbifold reduction is the

case of prime interest in the ekpyrotic/cyclic models, originally motivated by the construction of
heterotic M theory from eleven dimensional supergravity. In these models, the boundary branes
possess nonzero tension. However, the tension is a subdominant effect near t =0 and the brane

collision is locally well-modelled by . x R*™.

Now consider a string loop of radius R in M theory frame. Its mass M is 2zR times the effective
string tension L, where L is the size of the extra dimension. The effective Einstein-frame

gravitational coupling is given by 2 =7 /L. The gravitational potential produced by such a
loop in d spacetime dimensions is:
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) M

=K A R (2.43)

D+1
2
of interest, namely 2-branes in eleven-dimensional M theory, the tension g, is related to the eleven

dimensional gravitational coupling by a quantization condition relating to the four-form flux,
reading

where A, is the area of the unit D -sphere, A, =2z IT((D+1)/2). Specializing to the case

12 =27%1(nk2) (2.44)

with n an integer. Equations (2.43) and (2.44) then imply that the typical gravitational potential
around a string loop is
o= (2Rn)'~-@2/n (2.45)
64715Rn e 0 '

up to numerical factors.
With regard the (2.45) we note that are possible the following mathematical connections with the
Aurea ratio and the Fibonacci’s numbers:

105=89+16=55+34+8+8; 105=21x5;
64=8"=34+21+8+1=48+16=24+24+8+8=(3x8)+(3x8)+8+8;
and 3,5, 8, 21, 34, 55 and 89 are Fibonacci’s numbers. Furthermore, we have that

105 \/g 1 5/7 \/g 1 —21/7
= _164062521640; (O + ()27 =| 22| 4| 2T —~1,64625=1,646.
64 2 2
Thence, the gravitational potential on the scale of the loops is of order &7 and therefore is

consistently small for small collision rapidity. Since the mean separation of the loops when they are
produced is of order their size R, this potential @ is the typical gravitational potential throughout
space. Multiplying the tt component of the background metric (2.42) by 1+ 2® and redefining t,

we conclude that the outgoing metric has an expansion rapidity of order =~ 90(1+ CHOZ) with C a

constant of order unity. We conclude that for small 6, the gravitational back-reaction due to string
loop productions is small.

2.1 On some equations concerning the solution of a braneworld Big Crunch/Big Bang
Cosmology.

We shall employ a coordinate system in which the five-dimensional line element for the
background takes the form

ds? = n?(t, y)— dt? +t%dy? )+ b2(t, y)dx?, (2.46)

where y parameterizes the fifth dimension and x', i =1,2,3, the three non-compact dimensions.

Cosmological isotropy excludes dtdx' or dydx' terms, and homogeneity ensures n and b are
independent of X. The t,y part of the background metric may then be taken to be conformally flat.
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We find it simplest to work in coordinates in which the brane locations are fixed but the bulk
evolves. The bulk metric is therefore given by (2.46), with the brane locations fixed at y =+y, for

all time t. The five-dimensional solution then has to satisfy both the Einstein equations and the
Israel matching conditions on the branes. The bulk Einstein equations read G, =-AJ,, where the
bulk cosmological constant is A =-6/L%. Evaluating the linear combinations G +G; and
GY+G: —(3/2)G!, we find

y 1 )

B..—B,+ - B +12" =0, (247) v, -v, +§(,52y —f%)-2e =0, (248)
where (t/L)=¢", #=3Inb and v =In(nt/L). The Israel matching conditions on the branes read
oy M 049

=T (2.49)

where all quantities are to be evaluated at the brane locations y =y, .

Now we express the metric as a series of Dirichlet or Neumann polynomials in y, and y, bounded
at order n by a constant times y,, such that the series satisfies the Israel matching conditions
exactly at every order in y,. To implement this, we first change variables from b and n to those
obfyin)g Neumann boundary conditions. From (2.49), b/n is Neumann. Likewise, if we define
N(t,y) by

(2.50)

then one can easily check that N(t,y) is also Neumann on the branes. Since N and b/n obey
Neumann boundary conditions on the branes, we can expand both in a power series

N =N)+ SN OR(y),  bin=g(t)+ Xa,0R(y). (@5)

n=3 n=3

where P, (y) are polynomials

n n ne
P.(y)=y oY =34, (252)

satisfying Neumann boundary conditions and each bounded by |P,(y)}<2y;/(n—2), for the
relevant range of y. Note that the time-dependent coefficients in this ansatz may also be expanded

as a power series in y,. By construction, our ansatz satisfies the Israel matching conditions exactly

at each order in the expansion. Substituting the series ansatze (2.51) into the background Einstein
equations (2.47) and (2.48), we may determine the solution order by order in the rapidity y,. At

each order in y,, one generically obtains a number of linearly independent algebraic equations, and

at most one ordinary differential equationin t.
The first few terms of the solution are
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11 1 1 (5
Ny ==-——tyy + —t{8-9t .. (253 Ny=——+| <2t . (254
o=tV o B (253)  Ny=— (72 jy+ (2:54)

and

Jo —1—§t y2 + (tz_zt jyo . (2.55) g, =—-2t°y; +... (2.56).

With regard the egs. (2.54-2.55) we note that are possible the following mathematical connections
with the Aurea ratio and the Fibonacci’s numbers:

5 z(q))—sgn =[\/§+1

—=0,06944 =
72 2

-39/7
] =0,06849207 ;

. \/g 1 217
5=0875=(0)"" =[ 2+ ] = 0,87154.

Furthermore, 72(=24x3) and 8 are connected with the “modes” that correspond to the physical

vibrations of the bosonic strings and to the physical vibrations of a superstring by the following
Ramanujan functions:

 COS 7itXw' oWy
4| antilog = COSh 2 ~ 't14'2
A w
1 e 4 ¢ (itw)
3 10+1142 10+ 742
log| || — =% |+ || /2
4 4
 COS 7tXW' o W iy
4| antilog ™ COSh”X : t&4'2
A w
e« g (itw)

w2 (23]

To calculate the affine distance between the branes along a spacelike geodesic we must solve the
geodesic equations in the bulk. Let us first consider the situation in Birkhoff-frame coordinates for
which the bulk metric is static and the branes are moving. The Birkhoff-frame metric takes the form

ds? =dY2 - N?(Y )dT? + A%(Y )dx®, (2.57)

where for Schwarzschild-AdS with a horizonat Y =0,
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2oy Cosh(2Y /L) 2ror cosh(2Y,/L)[ sinh(2y /L) T
A(Y)_cosh(Z\(Q/L)’ N¥(Y)= cosh(2Y/L)Linh(2Y0/L) - (258)

At T =0, the Y -coordinate of the branes is represented by the parameter Y, ; their subsequent
trajectories Yi(T) can then be determined by integrating the Israel matching conditions, which read

tanh(2Y, /L)=+1-V? , where V, =(dY,/dT)/N(Y,) are the proper speeds of the positive- and
negative-tension branes respectively. From this, it further follows that Y, is related to the rapidity

y, of the collision by tanhy, =sech(2Y,/L).

For the purpose of measuring the distance between the branes, a natural choice is to use spacelike
geodesics that are orthogonal to the four translational Killing vectors of the static bulk,
corresponding to shifts in X and T . Taking the X and T coordinates to be fixed along the geodesic
then, we find that Y, is constant for an affine parameter A along the geodesic. To make the

connection to our original brane-static coordinate system, recall that the metric function
b?(t,y)= A*(Y), and thus

Yj _ (bb’tt’éj_b;’gyy’ﬂ)z _ nz(_ t’i +t2yi), (2.59)

where we have introduced the constant & =tanhy,=V/c. Adopting y now as the affine
parameter, we have

0=(b2b? +nZ(b* — )} + 2b,b b2t +(b2b? —nt(b* - 62)), (2.60)

where t is to be regarded now as a function of y. We can solve this equation order by order in vy,
using the series ansatz

=Yy (261)
n=0

where the constants c, are themselves series in y,. Using the series solution for the background

geometry given in the egs. (2.53)-(2.56), and imposing the boundary condition that t(yo) 0, We
obtain

3),,4 3 2 2 4 7
b+ O;/O oeyis (t +?£2t0 ve sty s (720 T8, )y t2(13 -+ 25012 + 795t )y

4 60
(2.62)

5t? 91t? 23t! 53t
C, =20yl + [3°+5t§jy§ 8toys + (188+ 6°+ 4°Jy§+0(y3) (2.63)

2 4 5
Tty t!1+6to)y0 2y [%—2t§+4t§jy§+%+0(y§) (2.64)

2779 4
Bt2y2 t2(25+ 2014 Jys i
C. = - +0 2.65
= 5 (ye) (2.65)
5t, (5, 7t 5t2y2 .
L ] +0 2.66
+ =2y (48 4Jyo 1 (yo) (2.66)
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_ 2y, +0(y?) (2.67)

60

_ 61ty )
C = +0 2.68
= (y2) (2.68)

c,=0+0(y,). (2.69)

Substituting t, = X,/ y, and y =y, we find x(@)=x,/Yy, +O(y,), i.e. to lowest order in vy, the

geodesics are trajectories of constant time lying solely along the @ direction. Hence in this limit,
the affine and metric separation of the branes, defined with the following equation

d =|_jl

11—a)x

4

do+0(y?)= LInG+ X4J+ o(y?), (2.70)

must necessarily agree. To check this, the affine distance between the branes is given by

3,3 3 5),,5 2 4,,6
d_La [ mE Py =21, + (t +2t0 M _agzye s (t, ~20 + 159t )y _ 2(t5 +30t5 )yg
—Yo

60 3
+o(y), (271

N (t, + 31115t% —5523t5 +12795t/ )y!
2520

which to lowest order in y, reduces to

5% . 53Xg . 853x,
168

d—L"=‘=2x0 + +0(¢)+0(y3). (272)

in agreement with the series expansion of (2.70).
We obtain also the following equation:

1 I’]X4§40 Xf B 2X4§40(X4) _
vl o
_ le_l {%Ex4(AbJO(|Zx4)+ By, (kx, ))— 4(Ad, (kx, )+ BOYl(IZx“))} . (2.72b)

To evaluate the perturbation od, in the affine distance between the branes, consider

&ﬂv)-(y)-(v

Sp oo
ngX X

5],/ WXXdA =2 J. o"gwx”x +0,, XXX +2g, XX ) _ XK +£J. dA
\/ Jo,. 5% |2
(2.73)
where dots indicate differentiation with respect to the affine parameter A, and in going to the
second line we have integrated by parts and made use of the background geodesic equation

1
X, = 5 —0,,,X“X" and the constraint g

(e

x“x" =1. If the endpoints of the geodesics on the branes

v

are unperturbed, this expression is further simplified by the vanishing of the surface term.
Converting to coordinates where t, =X,/Yy, and y=wy,, to lowest order in y, the unperturbed
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geodesics lie purely in the @ direction, and so the perturbed affine distance is identical to the
following perturbed metric distance

&jm Yo nX§ x5
= j_yontrLdyz L b424 do. (2.74)

Explicitly, we find

&, _ 2B+At)y, _{B(4+3t§)+ Al +9t§)}yg +(-4B+aA)y! +

L t, 121, 3
B(2+ 2169t2 +135t¢ )+ 2At2(1+1110t2 + 375t )| o  [4AL2(1+42t2)-B(4+57t2)]
— Yo + Yo +
1201, 6
B(4 + 8888512 + 952866t + 28875t )+ 4At? (1- 152481t + 293517t} + 36015t )| , (4
- Yo t+ O(Yo)’
10080t
(2.75)
which, substituting t, = X,/ Y, and dropping terms of O(yj), reduces to
My 2B o B —aae 2B — B A - 2P 3By +0(x¢), (2.76)
L x 4 8 4 96 24

where B = By; . Also this expression is in accordance with the series expansion of (2.74). However,

the perturbed affine and metric distance do not agree at O(yg).

With regard the egs. (2.72) and (2.76) we have the following mathematical connections with Aurea
ratio and with Fibonacci’s numbers:

5/7 -20/7
g ~1,666= ()" +(0)*" = (*/g; 1} + (@; 1} 1663054757 ;

12/7 -14/7
% =265 (@) + (@) = (*/g”] + (*/gﬂj — 2,663607

2 2
1/7 -16/7 -10/7
J + (\/g; 1] + (*/g; 1j ~5,0718

-10/7
] =112089;

@ 5077381 (CD)21/7 N (CD)—16/7 10/7 (
168
%=1,125E((I))7/7 +( 10/7 {\/_4‘1 {

2817 (

1417
% =2,864583 = (@) + (@)™ = J

35/7 1717
J (*/_+J —14,3078.

%=6,255(®)28/7 _( 7/7 (

=717
J =6,236067977;

-20/7
J =2,870901,

343 35/7 717
—=142916= (D )] =
. o o[ %
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Furthermore, we have that:

53=21+34-2; 853=2+8+ 233 +610; where 2, 8, 21, 34, 233 and 610 are Fibonacci’s
numbers;

9=3%: 25=34-3?: 275=233+34+8; 343=233+34+8+13+55 where3,8, 13, 34,55
and 233 are Fibonacci’s numbers.

3. On some equations concerning the generating ekpyrotic curvature perturbations
before the Big Bang. [6] [7] [8] [16]

With regard the ekpyrotic perturbations including gravity, we consider the action for N decoupled
fields interacting only through gravity:

Id“xﬁBR—%iNZl(aszﬁ.)z—ivi(zzi.)] (3

i=1

where we have chosen units in which 8zG =M_>=1. In a flat Friedmann-Robertson-Walker

background with line element ds® =—dt? + a?(t)d x°, the scalar field and Friedmann equations are
given by
4 +3Hg +V,, =0 (3.2)

and

e P AN N
where H=a/a and V,, =(0V,18¢,) with no summation implied. Another useful relation is
H=-2Td. 64
If all the fields have negative exponential potentials V,(¢)=-V,e™** then as is well-known, the

Einstein-scalar equations admit the scaling solution

a=(Ctf, g=ohlA), V=T p=Y 2. @9

CI

Thus, if ¢, >>1 for all i, we have a very slowly contracting universe with p <<1.

We focus on the entropy perturbation since this is a local, gauge-invariant quantity, and on the case
of only two scalar fields. The entropy perturbation equation
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&+

. o, _2@2\/‘@3’2 +oNV,, 3 ¢2v¢; —@% &=0 (3.6)
¢+ 4+

in flat spacetime is replaced by

& +3H& +

at §7 + 92 b+ g s

For simplicity we will focus attention on straight line trajectories in scalar field space. Since 6 =0,
the entropy perturbation is not sourced by the Newtonian potential @ and we can solve the
equations rather simply. We shall assume that the background solution obeys scaling symmetry so

that ¢, = y4,. Denoting 7 derivatives with primes, and introducing the re-scaled entropy field

k® [¢22Vv¢1¢1 — 2¢1¢2Vv¢1¢2 * ¢12Vv¢2¢2 ]+ 3[ ¢2V'¢l _ ¢1V’¢2 J :|5S = 4k29 D (37)

S =a(r)%, (3.8)

eq. (3.7) becomes
" a’ll
&S +[k2 —;+azvy¢¢jés =0. (39)

The crucial term governing the spectrum of the perturbations is then
212 _v 2] 310)
q  #% ] .

When this quantity is approximately 2, we will again get nearly scale-invariant perturbations. It is
customary to define the quantity

3 2+ 42 L+ 2 )
gsE(1+w)s¢12Hf2 | ZQZ)"’ . (3.11)

In the background scaling solution,
2
C

- . (312
ey O

We proceed by evaluating the quantity in (3.10) in an expansion in inverse powers of ¢ and its
derivatives with respect to N, where N =In(a/a,,), where a,, is the value of a at the end of

the ekpyrotic phase. Note that N decreases as the fields roll downhill and the contracting ekpyrotic
phase proceeds. We obtain the first term in (3.10) by differentiating (3.4), obtaining

2 _oH Zaz[l—igj . (3.13)
a 2

The second term in (3.10) is found by differentiating (3.11) twice with respect to time and using the
background equations and the definition of N . We obtain
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aV/,, = —a’H 2(252 .y —%8,N}+ 0(e°). (3.14)

Finally, need to express %€= (a'/ a) =aH in terms of the conformal time z . From (3.13) we obtain
J=31-¢), (3.15)

which integrates to
g = dr(s-1). (3.16)

Now, inserting 1= d(z‘)/dz‘ under the integral and using integration by parts we can re-write this as

F = 57(1—1 —(er)™ jo’g'zdrj . (3.17)

&

Using the same procedure once more, the integral in this expression can be written as

(82')_1'[()T¢€"Z'd T= % - (gr)_l'[;ddz_ (e'r)dz. (3.18)

Now using the fact that &'= ¢, and that to leading order in 1/¢, € can be replaced by its value

in the scaling solution (with constant &), %€z =¢", we can re-write the second term on the right-
hand side as

() [ e = (er)’ Idr%(%) . @19)

odr
which shows that this term is of order 1/&* and can thus be neglected. Altogether we obtain

' = [[de(s-1)~ gr(l—l —E—Q] . (3.20)
0 & €

Using (3.13) and (3.14) with (3.20) we can calculate the crucial term entering the entropy
perturbation equation,

o(a" 2 3 3é&y
—=V a" [=2]1-—+——-|. (3.21
’ (a i j [ 2¢ 4 gzj (3:21)

The deviation from scale-invariance in the spectral index of the entropy perturbation is then given
by

The first term on the right-hand side is the gravitational contribution, which, being positive, tends to
make the spectrum blue. The second term is the non-gravitational contribution, which tends to make
the spectrum red.
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Now defining & to be the curvature perturbation on comoving spatial slices, for N scalar fields
with general Kahler metric g; (#) on scalar field space, the linearized Einstein-scalar field equations
lead to

. H D2¢i ) k2
R=——-|0, s'-—W¥ |, (3.23
H [g” Dt? a’ ] (3.23)

where the N —1 entropy perturbations

1 9, (p)d' 08"

"= 54 — & _
SR O

(3.24)

are just the components of d¢' orthogonal to the background trajectory, and the operator D?/Dt?

is just the geodesic operator on scalar field space. Things simplify because the scalar field space is
flat, so the metric is g; =&, and D/Dt reduces to an ordinary time derivative. Considering only

ij?
two scalar fields, we have
Sl = _¢;253/ ¢212 + ¢22 ) 52 = +¢155/ ¢212 + ¢22 : (3-25)

For a straight line trajectory in field space, the right-hand side of (3.24) vanishes even if the entropy
perturbation is nonzero.

We assume that the scalar field bounce occurs after the ekpyrotic potentials are turned off, so that
the universe is kinetic-dominated from the 4d point-of-view. The scalar field trajectory is

¢, =—7¢,, for t<t,, and @, =74, for t>t,, with ¢ constant and negative in the vicinity of the
bounce. The bounce leads to a delta function on the right-hand side of (3.23),

D°¢,

Dt2 = 5(t _tb)2¢2(tb+)’ (3.26)

where t, is the time of the bounce of the negative-tension brane. As can be readily seen from
(3.23), if the entropy perturbations already have acquired a scale-invariant spectrum by the time t,,

then the bounce leads to their instantaneous conversion into curvature perturbations with precisely
the same long wavelength spectrum. We can estimate the amplitude of the resulting curvature
perturbation by integrating equation (3.24) using (3.26). Since we have assumed the universe is
Kinetic-dominated at this time, H :1/(3t). Since the entropy perturbation

& =408, - oh )R +4  (327)

is canonically normalized, its spectrum is given by
k’dk 1
2 —_—
)= Gz e BB

up to non-scale invariant corrections. This expression only holds as long as the ekpyrotic behaviour
is still underway: the ekpyrotic phase ends at a time t,, approximately given by [\/ |= 2/(c2tjnd).

After t_,, the entropy perturbation obeys & +t™% =0, which has the solution & = A+ BIn(-t).

min
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Matching this solution to the growing mode solution t™ in the ekpyrotic phase, one finds that by t,
the entropy grows by an additional factor of 1+ In(tend /tb). Employing the Friedmann equation to

relate ¢, = 74 to H, putting everything together and restoring the Planck mass, we find for the
variance of the spatial curvature perturbation in the scale-invariant case,

2\ _ CZIVmin| 772 2 %: % 2
<$>_h37z2M§| (1+}72)2(1+In(tend/tb)) =l A, (k) (3.29)

for the perfectly scale-invariant case. Notice that the results depends only logarithmically on t, : the
main dependence is on the minimum value of the effective potential and the parameter c.
Observations on the current Hubble horizon indicate Azm(k)z 2.2x107°. Ignoring the logarithm in

1
(3.29), this requires c[\/min|§ ~107°M,,, or approximately the GUT scale. This is of course entirely

consistent with the heterotic M-theory.
With regard the egs. (3.29) we have the following mathematical connections with the Aurea ratio:

-16/7
iz =0,03377 = i(cp)‘m” _ 1[5+ =0,03329. If we take M, =0,4340, then we
3 25 2-5( 2
have that
1 \/g 1 -25/7
Sz~ 0179307948 = (@)®" = ( 2+ j =0,1793145665. Furthermore, we obtain
7T Wl

arcsin(0,1793145665)- % +arccos(0,1793145665)- % =10,3289 +79,6702=90=55+34 +1,

with 34 and 55 Fibonacci’s numbers.

If the entropic perturbations are suddenly converted to curvature perturbations, the curvature

perturbations inherit the spectral tilt given in (3.22). We now begin by re-expressing eg. (3.22) in

terms of A, the number of e-folds before the end of the ekpyrotic phase (where dW = (g—l)N

and £ >>1):

2 dlne
. :

n. -1

S

(3.30)

This expression is identical to the case of the Newtonian potential perturbations, except that the first
term has the opposite sign. In this expression, () measures the equation of state during the

ekpyrotic phase, which must decrease from a value much greater than unity to a value of order unity
in the last WV e-folds. If we estimate £ ~ &/, then the spectral tilt is

n-1~—2_% (331
NN

Here we see that the sign of the tilt is sensitive to « . For nearly exponential potentials (a ~ 1), the

spectral tilt is n, =1+1/N =1.02, slightly blue, because the first term dominates. However, there

are well-motivated examples in which the equation of state does not decrease linearly with & . We
have introduced « to parameterize these cases. If « >0.14, the spectral tilt is red. For example,
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n, =0.97 for a = 2. These examples represent the range that can be achieved for the entropically-
induced curvature perturbations in the simplest models, roughly 0.97 <n, <1.02.

For comparison, if we use the same estimating procedure for the Newtonian potential fluctuations in
the cyclic model (assuming they converted to curvature fluctuations before the bounce through 5d
effects), we obtain  0.95<n,<0.97. This range agrees with the estimate obtained by an
independent analysis based on studying inflaton potentials directly.

With regard the values of ng, i.e. 0.95, 0.97 and 1.02, we have the following mathematical

connections with the Aurea ratio:

\/g 1 -0,67/7
0,95 = 0,9552046220 = (@) **"" :{ 2+ ] ;
-0,33/7
0,97 = 0,9773457024 — () °%'7 — [ﬁ; 1J ;
0,33/7
1,02 ~1,0231794109 = (@)0’33/7 _ (\/gz-i- 1] ;

A second way of analyzing the spectral tilt is to assume a form for the scalar field potential.
Consider the case where the two fields have steep potentials that can be modelled as

V(g)= —Voe_j “’ and é, = yd,. Then eq. (3.22) becomes

41+,%) 4c,
M2

n, —1= (3.32)

where we have used the fact that ¢(¢) has the dimensions of inverse mass and restored the factors
of Planck mass. The presence of M, clearly indicates that the first term on the right is a

gravitational term. It is also the piece that makes a blue contribution to the spectral tilt. The second
term is the non-gravitational term and agrees precisely with the following flat space-time result

C
n -1=-4-£  (3.33)

S C2

although the agreement is not at all obvious at intermediate steps of the calculation. For a pure
exponential potential, which has c, =0, the non-gravitational contribution is zero, and the
spectrum is slightly blue. For plausible values of c=20 and y=1/2, say, the gravitational piece
is about one percent and the spectral tilt is n, ~1.01, also consistent with our earlier estimate.

We note that ¢ = 20, is related with the Aurea ratio by the following mathematical formula:

2 2

35/7 1417
(@)= (‘D)””]g = [(£+1J +(*/§ +1J } gz 11,090+ 2,618 =13,708%= 20,562 .
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In the cyclic model, the steepness of the potential must decrease as the field rolls downbhill in order
that the ekpyrotic phase comes to an end, which corresponds to ¢ , > 0. If c(¢) changes from some

initial value T >>1 to some value of order unity at the end of the ekpyrotic phase after ¢ changes
by an amount Ag, then ¢, ~C/A¢. When c is large, the non-gravitational term in eq. (3.32)
typically dominates and the spectral tilt is a few per cent towards the red.

For example, suppose ¢ o ¢* and Ic(qﬁ)dqﬁ ~ 125 then, the spectral tilt is

n -1--003-L_, (334
1+ 4
which corresponds to 0.97 < n, <1 for positive 0 < f# <, in agreement with our earlier estimate.

With regard the value 125, we have the following mathematical connection with the Fibonacci’s
numbers:
125=2+5+8+ 21 + 34 +55.

We note that negative potentials of this type with very large values of ¢ have been argued to arise
naturally in string theory. Our expression for the spectral tilt of the entropically induced curvature
spectrum can also be expressed in terms of the customary “fast-roll” parameters

_(vY_1 (v
i3 el e

n 1= 4(1”2)5—477. (3.36)

This result can be compared with the spectral index of the time-delay (Newtonian potential)
perturbation, where the corresponding formula is

n-1=- 4

S 2
Pl

F-47. (3.37)

Here, the first term is again gravitational, but it has the opposite sign of the gravitational
contribution to the entropically induced fluctuation spectrum. So, the tilt is typically a few per cent
redder. Finally, for inflation, the spectral tilt is

n,—1=-6¢+2n (3.38)
where the result is expressed in terms of the slow-roll parameters &= (1/ 2)(M F,|V'¢/V)2 and

n=MZV IV . Here we have revealed the factors of M, to illustrate that both inflationary

contributions are gravitational in origin. This gives the same range for n, as the Newtonian
potential perturbations in the cyclic model.
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3.1 On some equations concerning the effective five-dimensional theory of the strongly
coupled heterotic string as a gauged version of N =1 five-dimensional supergravity with
four-dimensional boundaries.

We will now briefly review the effective description of strongly coupled heterotic string theory as
11-dimensional supergravity with boundaries given by Horava and Witten. The bosonic part of the
action is of the form

S=S4 +S, (339

where Sy is the familiar 11-dimensional supergravity

\/5
SG = __JMM\/ {R o5 GIJKLG o 1728 I1lclllzlgGl4...l7GI8...IM (3.40)

and S,,, are the two E; Yang-Mills theories on the orbifold planes explicitly given by

Sym =— 8m(( j J.m/_{tr )——trR} 8721(( j J' \/_{tr f——trR}

(3.41)
Here Fl(j‘) are the two E; gauge field strengths and C, is the 3-form with field strength

Gy = 240,Cyyy- In order for the above theory to be supersymmetric as well as anomaly free, the
Bianchi identity for G should receive a correction such that

2/3
(4G )y = —ﬁ(f) (0506 )+ 30506 - mplle (342
VA T

where the sources are given by
30 = (trF(‘) N —%trR A Rj. (3.43)

With regard the egs. (3.40) and (3.42), we have the following mathematical connections with the
aurea ratio and the Ramanujan modular equations:

5/7

V2 =1,414213562 = (@) = (@J =1,4101875; 1728=1432-4=24.24.3=24%.3;

432 = 306,342Hz -1,4101875817; 432=2-3°-8;

\/§+1

1
22 2

Fibonacci’s numbers, while 24 is related to the physical vibrations of the bosonic strings by the
following Ramanujan function:

-31,67/7
=0,112539539 = (@) "7 =( j =0,1133912969 We note that 2, 3 and 8 are
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 COS 77tXW' oWy
0 cosh zx V142
ﬂtz

e g, (itw)

A ]

While the standard embedding of the spin connection into the gauge connection

4 antilog

trFYAFY =trRAR  (3.43b)

leads to vanishing source terms in the weakly coupled heterotic string Bianchi identity, in the
present case, one is left with non-zero sources £trR A R on the two hyperplanes. As a result, the
antisymmetric tensor field G and, hence, the second term in the gravitino supersymmetry variation

NP
oY, = D|77+E(FUKLM =80l vm )GJKLMU"'--- (3.44)

do not vanish.
With regard the mathematical connections with the Aurea ratio and Fibonacci’s numbers, we note

that:
\/E +1
2

5/7
432 =306,342- (@) = 306,342-( J —306,342-1,4101875817 ; 432 — 288 = 144 and 144

is a Fibonacci’s number. Furthermore, 288 =24-12 and 24 is related to the physical vibrations of
the bosonic strings by the following Ramanujan function:

© COS 7ztXw' oW gy
4| antilog : COj!’]ﬂX : ,[14.2
A w
€ 4 ¢W(Itw')

A 0]

Now, let us start with the zeroth order metric
ds? =77, dx“dx” + R2(dx™ f +V°0Q,qdxAdx®,  (3.45)
where Q,; is a Calabi-Yau metric with Kahler form w; =iQ_; . (Here a and b are holomorphic

and anti-holomorphic indices). To keep track of the scaling properties of the solution, we have
introduced moduli V, and R, for the Calabi-Yau volume and the orbifold radius, respectively. To

order x2'3, the metric can be written in the form

ds2 = 1+ b 7, dx dx” + REL+ 7 e +VZ3(Qq +hyg JiX"dx®  (3.46)
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where the functions b, 7 and h,, depend on x** and the Calabi-Yau coordinates. Furthermore,
G,sep and G, receive a contribution of order x** from the Bianchi identity source terms. The
general explicit form of the corrections are

Bz_ngmq —apl2) (3.47a) 7= 2fRV 2“@ ~7pl2) (347b)
1

=0 e a)EFg(X“) (3.47d)

N2
e :?ROV0 2/30(QX11 —ﬂp/ZbAB (3.47c) Gageo 6

Grer =0 (3.47¢)

with

8\5\/(4 j jamtrR YARY, v=[JQ. (348)
Via X

Here g( ) is the step function which is +1( )for x"! positive (negative).
With regard the egs. (3.47) and (3.48), we have the following mathematical connections with the
Aurea ratio:

V2

-11/7
=0,47140452 = ()™’ ( ] = 0,469451 ;

2

717 -35/7
2*/_ =0,942809041= (@) """ + (@) > L*/— +1j + (\/g; 1} =0,618034 +0,090170 =

=0,708204; 0,708204 % =0,944272;

1 \/g 1 -2617
g=o,1666;(c1>)‘26” =[ 2* ] =0,1674018269 ;

1 \/g 1 -18,33/7
=0,0281348 = — (@) ***/" = i =0,02835642.
2.5 2 5( 2

1
82x
In the five-dimensional space M, of the reduced theory, the orbifold fixed planes constitute four-
dimensional hypersurfaces which we denote by Mf), i=12. There will be an E; gauge field A/(})
accompanied by gauginos and gauge matter fields on the orbifold plane Mfﬁ). We will set these
gauge matter fields to zero in the following. The field content of the orbifold plane Mff) consists of
an E; gauge field Aff) and the corresponding gauginos. In addition, there is another important

boundary effect which results from the non-zero internal gauge field and gravity curvatures. More
precisely, note that

[ NOUFRFO® = [ JOUrR,,R*® = -16v2 ﬂv(“”] o, F2=0. (3.49)
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In view of the boundary action (3.41), it follows that we will retain cosmological type terms with
opposite signs on the two boundaries. Note that the size of those terms is set by the same constant
a, given by eq. (3.48), which determines the magnitude of the non-zero mode. The boundary
cosmological terms are another important ingredient in reproducing the 11-dimensional background
as a solution of the five-dimensional theory.

We can perform the Kaluza-Klein reduction on the metric

dsp =V °g,,dx“dx” +V°Q, dx*dx®.  (3.50)

The complete configuration for the antisymmetric tensor field that we use in the reduction is given
by

C 1

=240,Cpsp Copp = EAaa)AB v Gope =Fp0n,  Fp=0,A,-04A,,
1

Case = gé:a)ABC ' Gpec =0,60,5:  (3.51)

G

afy aprs

and the non-zero mode is
a
Gagco ZE‘C"ABCDEFCOEFE(XM)’ (3.52)

where o was defined in eq. (3.48).
We can now compute the five-dimensional effective action of Horava-Witten theory. Using the
field configuration (3.49) — (3.52) we find from the action (3.39) — (3.41) that

Sc =S, + Spyper TS

— “grav

(3.53)

hyper bound

where
S _ 1 / R 3:— qap 1 aﬁ}'5€A G G 3.54
grav __ﬁj-’v's -9 +§J&ﬁ" +$g a‘tﬁy‘%g ( 2 a)
5 L

1 —11,,_ ) 1 )
Shyper - _ﬁst -9 EV Zﬁavaa\/ +2V laaga é +ﬂv zGaﬂyé‘G hro +
5 L
n \2/3 gaﬂ75é‘Gaﬁy§ (|(§a&§_ - é?agf)-l- 2&A£‘)+%V 2a2i| (3.54b)

1 1 2 2
Spound = —?¥ Z\EJ‘MP V-9V e+ 2\/§ng2> N\ ‘1a}— ZIM o-QVtrEl)S L (3.54¢)
5

In this expression, we have now dropped higher-derivative terms. The 4-form field strength G, ; is
subject to the Bianchi identity

2

K
dG = 3.55
( )11;1va 4\/§7TaGUT ( )

{0s(x)+ 3Ds(x™ = zp)}

uvpo

which follows directly from the 11-dimensional Bianchi identity (3.42). The currents J © have been
defined in eq. (3.43). The five-dimensional Newton constant x, and the Yang-Mills coupling o,

are expressed in terms of 11-dimensional quantities as
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2 2 2/3
» K K (4r
K =—o, Osyr =—| — | . (3.56
5 Vv GUT ZVKKJ ( )

Since we have compactified on a Calabi-Yau space, we expect the bulk part of the above action to
have eight preserved supercharges and, therefore, to correspond to minimal N =1 supergravity in
five dimensions. Accordingly, let us compare the result (3.54) to the known N =1 supergravity-
matter theories in five dimensions. In these theories, the scalar fields in the universal hypermultiplet
parameterize a quaternionic manifold with coset structure .M, = SU(2,1)/SU(2)xU(L). Hence, to

compare our action to these we should dualize the three-form C . to a scalar field o by setting (in

the bulk)

1

Goys = ﬁv 5000 —i(80°E — E0°8)-2aA%).  (3.57)

Then the hypermultiplet part of the action (3.54b) can be written as
_ anV 1 -2 2
hyper - 21(‘ _[ vV |:huv 4 v q +§V a } (358)

where " =(\/,O‘,§,§_). The covariant derivative V_ is defined as V,_q"=0,q" +2A k" with
k" =(0,-2,0,0). The sigma model metric h,, = 0,0,K, can be computed from the Kahler potential

Ke=-In(s+5-2CC), S=V+&+ioc, C=¢. (359

Consequently, the hypermultiplet scalars q" parameterize a Kahler manifold with metric h,, . It can

be demonstrated that k" is a Killing vector on this manifold.

To analyze the supersymmetry properties of the solutions shortly to be discussed, we need the
supersymmetry variations of the fermions associated with the theory (3.53). They can be obtained
either by a reduction of the 11-dimensional gravitino variation (3.44) or by generalizing the known
five-dimensional transformations by matching onto gauged four-dimensional N =2 theories. It is
sufficient to keep the bosonic terms only. Both approaches lead to

Syl =D g +*/8_ (7 — a5y )3, &' - *l’z(a Er,—ir,) —~0,&(c, +ir,) Je +
V2, e V2o L
96 g Vel Gy zs) i’ _Eav 1€(X11) GRS
V2

i afiyde i | — a i | £ i i J
8¢ =, gVET G .8 =N Yy (0.(e—i7), + 0,8 (e +iz) o +

i _ i | _ i i
+§V lyﬂéﬂVg —ﬁav 15(X“Xra) ;&' (3.60)

where z; are the Pauli spin matrices. Thence, we see that the relevant five-dimensional effective

theory for the reduction of Horava-Witten theory is a gauged N =1 supergravity theory with bulk
and boundary potentials.
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The theory (3.53) has all of the prerequisites necessary for such a three-brane solution to exist.
Generally, in order to have a (D —2)-brane in a D -dimensional theory, one needs to have a
(D —1)-form field, or, equivalently, a cosmological constant. This cosmological term is provided by

the bulk potential term in the action (3.53). From the viewpoint of the bulk theory, we could have
multi three-brane solutions with an arbitrary number of parallel branes located at various places in

the x™ direction. As is well known, however, elementary brane solutions have singularities at the
location of the branes, needing to be supported by source terms. The natural candidates for those
source terms, are the boundary actions. Given the anomaly-cancellation requirements, this restricts
the possible solutions to those representing a pair of parallel three-branes corresponding to the
orbifold planes. It is clear that in order to find a three-brane solution, we should start with the
Ansatz

ds; =a(y) dx“dx"n,, +b(y)dy* (3.61)
V=V(y)

where a and b are functions of y=x" and all other field vanish. The general solution for this
Ansatz, satisfying the equations of motion derived from the action (3.53), is given by

a=aH"*, b=bH?* V=bH® and HZ%“MJFCO (3.62)

where a,, b, and c, are constants. We note that the boundary source terms have fixed the form of

the harmonic function H in the above solution. Without specific information about the sources, the
function H would generically be glued together from an arbitrary number of linear pieces with

V2

slopes J_r?a. The edges of each piece would then indicate the location of the source terms. The

necessity of matching the boundary sources at y=0 and zp, however, has forced us to consider
only two such linear pieces, namely y €[0,zp] and y € [- 7p,0]. These pieces are glued together at
y =0 and 7zp. Therefore, we have

H =220(5(y)-5y- ) (369

which shows that the solution represents two parallel three-branes located at the orbifold planes. We
stress that this solution solves the five-dimensional theory (3.53) exactly, whereas the original

deformed Calabi-Yau solution was only an approximation to order x**. It is straightforward to
show that the linearized version of (3.62), that is, the expansion to first order in OlZO(K‘Z/3),

coincides with Witten’s solution (3.46) — (3.47) upon appropriate matching of the integration
constants. Hence, we have found an exact generalization of the linearized 11-dimensional solution.
We still have to check that our solution preserves half of the supersymmetries. When g,, and V

are the only non-zero fields, the supersymmetry transformations (3.60) simplify to
i i \/E -1 i i i -1 N [ -1 i
Sy, =D.8' = sV . (w) ¢ 8¢' =Ny, 0Ve —3ae(y)/ () &', (3.64)

With regard the egs. (3.54), (3.55), (3.57), (3.60) and (3.62-3.64), we have the following
mathematical connections with Aurea ratio and with the Ramanujan’s modular equations:
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1 \/— 1 -5/7
L 07071067812 (@) =| 2|~ 0709125
V2
-7,6717
g =0,058925565 = %(cp) TR - %{*/—; J =0,0590213661;

\/g 1 15/7
22 = 2,828427125 = (0 )" =( 2+ J — 2,8043399;

1 \/g 1 -25,33/7
ol 017677 = (@) **'" = ( 2+ J ~017525:
-8,33/7
L _ 0056269769 = i(cb)*w” _ 1[5+t =0,05640;
42x 2-5 2.5 2
-25/7
% = 0176776695 = (0) > (*/_ - J ~0,179314;
-31/7
% =0,11785113 = (@)’ ( ] =0,118708;
-18/7
V2 _ 020462782 = L @y L V1) 0200137
48 2-5 2.5 2
-2817
Y2 _ ) 014731301 = Loy L 541 o1a589s:
96 2.5 2.5 2
-11/5
g =0,47140452 = (@) ™'° = (\@; 1} =0,469451.

Furthermore, the number 8, 12, 24, 48 and 96 are connected with the “modes” that correspond to
the physical vibrations of a superstring and to physical vibrations of the bosonic strings by the
following Ramanujan functions:

© COS 7ztXW' oWy
4| antilog ™ COSh”X V142
——W t2W'
1 e ¢ 4,(itw)

]
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© COS 7ztXW' oWy
0 cosh zx V142
ﬂtz

Ea 2w
e g liw) |

A ]

We note also that 8 is a Fibonacci’s number.

4 antilog

The Killing spinor equations oy’ =0, 8' =0 are satisfied for the solution (3.62) if we require
that the spinor &' is given by
e =H"g, re=I(z)e (3.65)

where & is a constant symplectic Majorana spinor. This shows that we have indeed found a BPS
solution preserving four of the eight bulk supercharges.

3.2 On some equations concerning the colliding Branes and the Origin of the Hot Big Bang

We have derived the five-dimensional effective action of heterotic M-theory in the precedent
subsection (3.1). Now, we shall use a simplified action describing gravity g, the universal

“breathing” modulus of the Calabi-Yau three-fold ¢, a four-form gauge field A ;. with field
strength ¥ = dA and a single bulk M5-brane. It is given by

M2 5
==, 40 ﬂ%——(a¢)

3e2""'2
2 5l

/1 VKA

—SZaM j d*g, (1/ N TR X0, X650 x4j, (3.66)

where y,9,¢,4=0,...,4, uv...=0,..3. The space-time is a five-dimensional manifold 4 with
coordinates x”. The four-dimensional manifolds J", i=1,23 are the visible, hidden, and bulk
branes respectively, and have internal coordinates i) and tension a,M?. Note that «; has
dimension of mass. If we denote o, =-a, a,=a—-/f, and a, = f, then the visible brane has
tension —aM_?, the hidden brane (o — #)MZ, and the bulk brane AM?. It is straightforward to
show that the tension of the bulk brane, M2, must always be positive. Furthermore, one can easily
deduce that the tension on the visible brane, —aM_, can be either positive or negative. We will take
a >0, so that the tension on the visible brane is negative. Furthermore, we will choose £ such that
a— >0, that is, the tension of the hidden brane is positive. The tensor h(i) is the induced metric
on JI/L . The functions X()(f()) are the coordinates in J, of a point on JI/L with coordinates &) .

In other words, X(i)(,ﬁ(i)) describe the embedding of the branes into J{;. The BPS solution of Lukas,
Ovrut and Waldram is then given by
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ds* = D(y)- N’de” + Adx’)+ B*D(y)dy*;  e* =BD(y);

Froar = —06A3NB‘1D‘2(y) for y<Y
F =—(a— p)ANB'D?(y) for y>VY, (3.67)
where
D(y)=ay+C for y<Y
D(y)=(a—pB)y+C+pY for y>Y, (3.68)

and AB,C,N and Y are constants. Note that A,B,C,N are dimensionless and Y has the
dimension of length. The visible and hidden boundary branes are located at y=0 and y=R,
respectively, and the bulk brane is located at y=Y, 0<Y <R. We assume that C >0 so that the
curvature singularity at D =0 does not fall between the boundary branes. Note that y=0 lies in
the region of smaller volume while y =R lies in the region of larger volume. Note that inserting the

solution of the four-form equation of motion into eq. (3.66) yields precisely the bulk action with
charge —a in the interval 0<y<Y and charge —a+ £ in the interval Y <y<R. The
formulation of the action eq. (3.66) using the four-form A is particularly useful when the theory
contains bulk branes, as is the case in ekpyrotic theory.
The following equation

|§k|=4aCHC(1— ::62]|Az(k)|, (3.69)

C c

expresses the density perturbation in terms of the time delay at the time of collision, Ar(k). If we
consider the exponential potential V =—-ve™™ , then the eq. (3.69) yields

~————JAz(k). (3.70)

Now we compute the spectrum of quantum fluctuations of the brane oY, and use the result to
compute the time delay, Az(k).
For the calculation of quantum fluctuations, it is sufficient to work at the lowest order in S/« .

Without loss of generality, we can therefore set A= N =1. In that case, the bulk brane Lagrangian
is given by

L, =3M S’BE D(Y Yn*'a,Yo,Y -V (Y )} . (371)

Note that this agrees with £, given in the following equation

£, ZMBDZW ) NZ\/(Y)] (3.72)

when we set A=N =1 and spatial gradients of Y to zero. Let us first consider the spatially

homogeneous motion of the brane which will be described by Yo(r). It is governed by the following
equation of motion
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%D(YO)ZYOZ +V(Y,)=E, (3.73)

where E is a constant. Eq. (3.73) is simply the statement that the energy E of the bulk brane is
conserved to this order in B/« . Since we have chosen the visible brane to lie at y=0 and the

hidden universe to lie at y =R, we focus on the branch Y <0 in which case the bulk brane moves
towards the visible brane. The solution to eq. (3.73) is then given by

(3.74)

)= %
20E-VL(Y
with 7 <0, and with the collision occurring at 7 =0. Let us now consider fluctuations around the

background solution Y,(r). Namely, if Y =Y,(z)+oY(z,X), with oY(z,X)<<Y,(z), we can
expand the action to quadratic order in 6Y

L

fluc

) LAV, 1d3, | v
~ D[ N7 +( )2] {aD ?(V, — E)-aD; d—%+2dY02}(aY), (3.75)

where we have used eq. (3.73), and where we have introduced D, =D(Y,) and V, =V (Y,) for
simplicity. The key relation is the fluctuation equation as derived from the action (3.75)

2 e
X2 d f'z —{?TZ _)(2:|.':iz :O, XE‘R‘(_ T), (376)

dXZ pert
where f.=D,-oY. and where a, is defined by
a
— = p;? adv DOOI—ZVZ0 . (3.77)
A pert dy, dy,

The fluctuation eq. (3.76), can be compared with the corresponding equation for the perturbations
of a scalar field with no potential and minimally coupled to an FRW background with scale factor

a(r)

S, + 225@ +K254,=0. (3.78)

Defining f. =a-d¢,, eq. (3.78) becomes

Zdzle a 2 2
X o ET -x“|f.=0. (3.79)

Let us now discuss the Hubble horizon for the perturbations. Recall that in usual 4d cosmology (see
ed. (3.79)), we have
K

x:k(—z'):(gj-a-(—r):kphysa-(—r)zkphysH1, (3.80)
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where H™'=a’/a is the Hubble radius as derived from the scale-factor a. By definition, a mode
is said to be outside the Hubble horizon when its wavelength is larger than the Hubble radius. From
ed. (3.80), we see that this occurs when x <1. Therefore, a mode with amplitude f. crosses outside

the horizon when x =~ ¢(1). Similarly, in our scenario we can write
X= k(_ z'): kphysD(:)Uz(_ T)E kphysH[:e::Lrt ’ (381)

where k. =k/D}'?. The role of the Hubble radius is replaced by

phys

HL = Dl/2( )_ Dé/zroﬂ (3.82)

pert 0 /7—52 E—V(Y) ’

which is to be thought of as an effective Hubble radius for the perturbations. So, the length scale at
which amplitudes freeze depends on a; (rather than a ., ), but the amplitude itself, as derived from

eq. (3.76), depends on a_.. . The feature of two different scale factors is novel aspect of ekpyrotic

scenario. With regard the comparison to inflationary cosmology, we have that in inflation, the
wavelengths are stretched superluminally while the horizon is nearly constant. In the ekpyrotic
scenario, the wavelengths are nearly constant while the horizon shrinks. We can obtain a spectrum
which is scale-invariant. Writing the equation for the perturbations in the form of eq. (3.76) is
useful since one can read off from it the spectral slope of the power spectrum. It is determined by

the value of (apm / apm)rz. In particular, one obtains a scale-invariant spectrum if (apm /apen)f =2

when the modes observed on the CMB cross outside the horizon.
Combining egs. (3.74) and (3.77), we find

pert *

é:pert 2 -3 dV dY '
Fpert 2 _ 3.83
a'Pert : ’ ( dY O I V E V ( )

The spectrum will be scale-invariant if the right hand side of eq. (3.83) equals 2 when the modes of
interest cross outside the horizon. Thence, we have:

4

ert 2 _3 av d 2V Y D(Y ')dY' ’
et 2 _ o _p 9V _2. (3.
a0 (“ dy, °dv? jbo J2(E-V[Y '))} (3.830)

pert

With regard the eq. (3.83b), we have the following mathematical connections with the Aurea ratio:

14/7 -1417
(CD)“”+(<D)“”=(*/§+1J (*/_+] — 2,618034 + 0,381966 = 3; %3:2;

2
]21/7 ( J 717 [\/§+1]28/7
+ =
2
1e
3

=4,236068 +1,618034 +0,145898 =6 ; =2. We note also that 2 is prime number and

(q))21/7+(q))7/7+(q))728/7 [

Fibonacci’s number.
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Thence we can rewrite the eq. (3.83b) also as follow:

B o of dV,  dy [ DY)y |
A D (OtdY0 % dYOZJDO J2E-V(Y) |

1417 -14/7
[[”52”] {*/52*1} ]—%(2,618034+0,381966)—2;

pert

2 417 -14/7 _E
=Sl@f" + (@)™ =3

We can add a potential V(Y) of the form that might result from the exchange of wrapped M2-
branes. We would like to think of V as the potential derived from the superpotential W for the
modulus Y in the 4d low energy theory. Typically, superpotentials for such moduli are of
exponential form, for example,

W=xe®, (3.84)

where c is a positive parameter with dimension of mass. The corresponding potential is constructed
from W and the Kahler potential K according to the usual prescription

3

2
pl

WW |. (3.85)

Vv ="' | K'DWD W -

where D, =8/0¢' +K;/M} isthe Kahler covariant derivative, K;=0K/og', K;=0°K/0¢'0¢’
and a sum over each superfield ¢ is implicit. Egs. (3.84) and (3.85) imply that V decays

exponentially with Y . Here it will suffice to perform the calculation using a simple exponential
potential, namely

V(Y)=—-ve™, (3.86)

where v and m are positive, dimensionless constants. Note that, in the case where the potential is
generated by the exchange of wrapped M2-branes, the parameter m is of the form m=cT,v/«,

where ¢ is a constant, T, is the tension of the M2-brane, and v is the volume of the curve on which

it is wrapped. The perturbation modes of interest are those which are within the current Hubble
horizon. As the wavelengths corresponding to those modes passed outside the effective Hubble
horizon on the moving bulk-brane, the amplitudes became fixed. Scale invariance will require
mD >>1 during this period. We know that, if the potential V is negligible compared to E, the

spectrum of fluctuations is not scale-invariant. Hence, we consider the limit where |E| << |V,|. This
condition, as seen from the equation of motion for Y,, eq. (3.73), is satisfied if Y, =0 initially, or,
equivalently, if the bulk brane begins nearly at rest. For the brane to be nearly at rest, one must have
[E|~V,| initially. As the brane traverses the fifth dimension, V| increases exponentially, whereas
E is constant. Hence, the condition |E| <<|V,| is automatically satisfied. The bulk brane beginning

nearly at rest is precisely what we expect for a nearly BPS initial state. Applying the condition
|E| << V|, €q. (3.74) reduces to
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2V ma“ve

2
P U bl )emawzdy} < (1_mé j (3.87)
0

where we have neglected the endpoint contribution at Y = 0. On the other hand, eq. (3.77) gives

4 2 2. —maY,
e _Mave 77, 11 @8)
a Dy mD,

pert

Combining the above two expressions, we obtain:
2 | a
- 2D0—maY :(1 1 ]/ pert; :2(1_+_ 1 j/ pert(l_ 2 j,
meave " mD, ) @, mD, ) @ mD,
d
Sper 2 _glqp L 12 | (3.89)

apert mDO mDO

The right hand side of eq. (3.89) is approximately equal to 2 in the limit of large mD,. Thence, we

have
a
Fper 2 2(1+ L ](1— 2 ]:2. (3.89b)
a mD, mD,

pert

Also here, with regard the numerical result of eq. (3.89b), we have the following mathematical
connections with Aurea ratio:

-3

Il
N

w|N

2 2

(@) + (@) + (@)™ =(\/§2+1j [\/_4-1] ( 5 +1J o _
1
3

=4,236068 +1,618034 + 0,145898=6; —-6=

1417 -14/7
(@7 + (@)™ = [\/g +1] + [\/g +1J = 2,618034 +0,381966 = 3;

Hence, the exponential potential of eq. (3.86) results in a nearly scale-invariant spectrum of
perturbations provided that |E|<<|V,| and mD, >>1 are satisfied when modes pass outside the

effective Hubble horizon.
We next compute the perturbation amplitude, by using eq. (3.76) to calculate |AYk|. The conditions

[E|<<V,| and mD,>>1 must be satisfied when wavelengths pass outside the horizon. These

conditions can be relaxed once the mode is well outside the horizon. In the limit that mD, >>1
when the relevant modes cross outside the horizon, eq. (3.76) reduces to

,d2f

X~k -[2-x2]f. =0, (3.90)
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with solution
fy = Xl/z(cl(k)‘]3/2(x)+ Cz(k)‘]—slz(x))1 (3.91)

where J,,,, are Bessel functions. The coefficients C,(k) and C,(k) are fixed by requiring that
modes well-within the horizon (i.e., x >>1) be Minkowskian vacuum fluctuations, that is

fo L ek for xs>1, (3.92)

6kAM B

Using this initial condition, we find the following amplitude for modes outside the horizon (with
x<<1)

k3/2f _i
Af =T . (3.93)
" (ce)N2xf2JepmiB
Substituting eq. (3.87) and using f, = D,oY,, we find
AY, = — M@ LA
© 202zf?3pmie DF
Finally, we define the time-delay Az(k) by
2
|Ar(k)|:|A.Yk|= na ( 2 J (3.95)
| Yo | 16772,/3pmzB ( mD,

where we have used the equation of motion for Y,, eq. (3.73). Note that the time-dependence of
Az(k) is mild, a necessary condition for the validity of the time-delay formalism. The factor of
mD, =mD(Y,(r)) is to be evaluated at time ¢ when a given mode crosses outside the horizon
during the motion of the bulk brane. Let D, denote the value of D, at horizon crossing for mode
k . Since horizon crossing occurs when x =1, or, equivalently, when (— r): k™, eq. (3.87) gives

2 mC
D, zglog m-a [ve
m 2k 2

}. (3.96)

Substituting egs. (3.95) and (3.96) into eq. (3.70), we find

|5k|= 0(2m4\/5 )( 2 j (397)

47°'%[3MB(MC + 2)\ mD,

This expression for |5k| increases gradually with increasing k, corresponding to a spectrum tilted

slightly towards the blue. The blue tilt is due to the fact that, in this example, D is decreasing as the
brane moves. That is, the spectral index,
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2
n 51+Mz1+ 4

s —, (3.98)
dlogk mD,

exceeds unity. The current CMB data constrains the spectral index to lie in the range about
0.8 <n, <1.2. Therefore, for our results to be consistent with experiments, we must have

mD, > 20, (3.99)
a constraint that is easily satisfied.

With regard the value s of n,, i.e. 0.8 and 1.2, we have the following mathematical connections
with Aurea ratio:

717
(@) = (_\/g; 1) —1618033987 21618034 ; 1618034 % =1,2135255;

0 -4217 -56/7
(<I>)°+(<I>)“‘2”+(c1>)‘56”=(£+1J +[*/§+1j +(\/g+1] —1+0,055728 +0,021286 =

2 2 2

=1,077014; 1,077014 % =0,8077605.

For the value of the eq. (3.99), we have the following mathematical connections:

35/7 2117 -14/7
(@) + (@) + (@)™ = (@j + [\/g; 1] + (\/g; 1J =11,090170 + 4,236068 + 0,381966 =

=15,708204 % =20,944272.

Thence, we obtain:

mD, > 20=

— (cD)35/7 + (cD)21/7 + (cD)—14/7 :(

:15,708204-%: 20,944272. We note that 20,944272=21; 21 =13 + 8, where 8

2 2

\/§+1j35/7 +(\/§+1J21/7 +(\/§2+1

-14/7
J =11,090170+4,236068 + 0,381966 =

and 13 are Fibonacci’s numbers. Furthermore, the number 8 is connected with the “modes” that
correspond to the physical vibrations of a superstring by the following Ramanujan function:

© COS 7tXW' oWy
4| antilog > €oshzx V142
—ﬂt—zw' t2W'
1 e ¢ 4,(itw)

el ]
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Furthermore, we consider the power-law potential

V(Y)=-vD(Y)' =—v(aY +C)*, (3.100)

where v >0 and g <0 are constants. In this case, eg. (3.83) gives

oo,
apert 2_2 ~2 q ~

apel‘t (1 . 4}2
q

for |q| >>1. Hence, a power-law potential can also lead to a nearly scale-invariant spectrum

provided that its exponent is sufficiently large. We can straightforwardly extend our analysis to an
arbitrary potential V(Y ). Let us suppose that V(Y ) satisfies

(3.101)

dv
D(Y )—
‘ ()dY

s a (), ‘D(Y)

dV
dy?

>> a‘d—v . (3.102)
dy

Then, eq. (3.83) reduces to

a "
et 12 2[\\’/\{2 j . (3.103)

apert
Hence, the conditions for scale invariance are egs. (3.102) as well as

AV
Vl2

~1. (3.104)

Also for the numerical value of egs. (3.101) and (3.104), we have the following mathematical
connections with the Aurea ratio:

(q))14/7 +((D)—14/7 =(\/§+1J +(\/§+1

-14/7
> > ] =2,618034+0,381966=3; —-3=2;

WIN

(@ + (@) + (@) :[\/§+1] +(\/§+1J +[\/§+1]

2 2 2

=4,236068 +1,618034 + 0,145898 =6 ;

((D)14/7 +((I))714/7 :(\/§+1] +£\/§+1

-14/17
> 5 ) =2,618034+0,381966=3; —-3=1.

Wk

-6=2:

[CO NN
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If g, is the unperturbed, homogeneous metric (see eq. (3.67) with A and N functions of time),

the perturbed 5d metric can be written as
9, =0, +A(t)D(y,th, (Xt), (3.105)

where x,v =0,..,3. We can treat the tensor perturbations h,, as functions of X and t only. We are

interested in the tensor perturbations which satisfy the conditions: h,, =0, h} =0, and aihij =0.
The perturbed 5d Einstein action to quadratic order is

S EMTSIdSXH R =M?52Id“xa2(h:‘h; ~ohea'h:)  (3.106)

where the second expression is obtained by integrating over y. The tensor action is analogous to

the scalar action given in eq. (3.75). From the action, we can derive the tensor analogue of the scalar
fluctuation equation of motion, eq. (3.76)

zdzfﬁT a , 2 |eT
XK | 222y 1fT =0, (3.107)

dx? a k
where
h' = jﬂgﬂhk(r) (3.108)
# (27[)3 !
and

fET =ah.. (3.109)
The critical difference between this tensor equation and the scalar fluctuation equation, eq. (3.76), is
that the effective scale factor a__. in eq. (3.76) has been replaced by a.

pert

We introduced a potential to insure that a led to a nearly scale-invariant spectrum,

pert

(apen/ apert)z2 ~2. However, a(r) in the tensor equation is approximately constant (recall that

a= (Blg(o)ME.))“2 +0(B/a)). Consequently, the root mean square tensor fluctuation amplitude

k3/2h~ k

K| = (272_)3/2 ~ (272_)3/2 :

(3.110)

is not scale-invariant.
With regard the eq. (3.110), we have obtained the following mathematical connections with the
Aurea ratio:

(27)"'% =15,74960995 ;

_32/7 40/7
(q))-zzn N (q))40/7 _ (\/32+ 1) + (\/52+ l) =15,75004243 = 15,75;
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-19/7
@) = V5 +1 ~0,2708618458; arcsin(0,2708618458)- 120 15, 715558
2
T
2817 14/7 0
(@7 + (@) +(@ )02[*/52”] +(\/§2+1J {*EZHJ =10,472136;

10,472136 g =15,708204 .

The cyclic story can be described in terms of an ordinary four-dimensional field theory, which can
be obtained by taking the long wavelength limit of the brane picture. The distance between branes
becomes a moduli (scalar) field ¢. The interbrane interaction is replaced by a scalar field potential,

V (¢). The different stages in the cyclic model in the brane picture are in one-to-one correspondence

to the motion of the scalar field along the potential. Then, the action S describing gravity, the
scalar field ¢, and the matter-radiation fluid is:

167G

s=[d'x/-g [—%——aczs) (¢)+ﬂ“(¢)pR] (3.111)

where g is the determinant of the Friedmann-Robertson-Walker metric g, , G is Newton’s

constant and R is the Ricci scalar.
The p factor has the property that f#—>o as a—0 such that af —constant. The revised

solution to the equation of motion is py ocl/(a,é')4 which approaches a constant as a — 0. The

energy, once thinned out during the dark energy dominated phase, remains thinned out at the
bounce. The g -factor simply reflects the fact that the extra-dimension collapses but our three-

dimensions do not. As a result, entropy produced during one cycle is not concentrated at the crunch
and does not contribute significantly to the entropy density at the beginning of the next cycle.
Hence, cycles can continue for an arbitrarily long time and there is no practical way of
distinguishing one cycle from the next.

If the cyclic model can be described in terms of ordinary field theory, then it may seem surprising
that it is possible to generate a nearly scale invariant spectrum density perturbations. There are
actually three distinct ways of producing a nearly scale-invariant spectrum, and that inflation
represents only one of them. The three ways can be characterized by

1.,
(2‘1’ ‘V)
[27+)

the effective equation of state of the scalar field. Case | is where w~1 and the universe is
expanding, the example of inflation. Case Il is a contracting universe with w~0. Case Il is a
contracting universe with w >>1, that is the situation that applies in the cyclic model.

What is required to obtain w>>1? From the expression for w, it is apparent that this is only
possible if the potential is negative. In particular, for a negative exponentially steep potential
V ~ —exp(c¢), the solutions to the equation of motion have a scaling solution in which ¢*/2V is

constant and approximately — 1. Consequently, w is much greater than unity and nearly constant.
The generation of fluctuations for w>>1 can be understood heuristically by examining the
perturbed Klein-Gordon equation:

W=
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54", = —(kz & +V,¢¢j5¢i (3.112)

a
where ¢ (x,t) has been expanded in Fourier components o4, (t) with wavenumber k and prime is

derivative with respect to conformal time 7. The a"/a term is due to gravitational expansion, and

the last term is due to the self-interaction of the scalar field. This equation applies equally to
inflation and to cyclic models. The cyclic model corresponds to the limit where the gravity term is
negligible and, instead, the perturbation equation is driven by the potential term. For the negative

exponential potential, for example, the scaling solution corresponds to V, , ~ 217,

We have defined that w >>1. We take the following values: w=4.97 and w=4.23. We obtain
the following mathematical connections with the Aurea ratio:

(@) + (@) + (@) +(®)™'" =1,618034 + 0,618034 + 0,236068 + 0,013156 = 2,485292 ;

J5+1),.
)

2,485292 -2 =4,970584 (for & = (

2117 -3
(@ = (@) = [\/g; 1] = 4,236067977; (@)™ =(0)°= (*/g; 1] =0,236067977 ;

arcsin(o,236067977)-@ =13,654585; arcsin(0,23)- 180 132913
T T

We note that 3, 21 and 13 are Fibonacci’s numbers.
For inflation, the most stringent constraints are on the flat part of the potential, the range of the
inflaton field where the density perturbations are generated. The constraints are commonly
expressed as bounds on two “slow-roll” parameters:

gz(%j <<l (3.113)

and

n= VV <<1. (3.114)

For the cyclic model, the analogous constraints are on the steep portion of the potential where
perturbations are generated. The constraints can be expressed in terms of two “fast-roll” parameters:

E:(\%j <<l (3.115)

and
7l :1—u <<1. (3.116)

VY

The first constraint forces the slope to be steep and the second fixes the curvature, where each
applies to the range of ¢ where the fluctuations are generated that are within the horizon today. The

result is that the constraints in the two models are remarkably similar.
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We note that if we take for 7 =0,090170, we have the following mathematical connections with
the Aurea ratio:

\/g 1 -21/7 \/g 1 -49/7
(@)2“7+(c1>)“9”=( 2* J +( 2+ ] = 0,236068 + 0,034442 = 0,270510;

0,270510 % =0,090170;

-35/7
(@)*'" = (_\/g; 1) ~0,000169944; arcsin(0,090169944). 120 — 5173384 =5 that is a
T

Fibonacci’s number.

4. On some equations concerning the “null energy condition” (NEC) violation regarding
the inflationary models. [9] [10] [16]

The metric of the higher dimensional theory is R -flat (RF) or R -flat up to a conformal factor
(CRF):
ds® = e®*(—dt® +a%(t)d x*) + g, dy"dy", (4.1)

where the x are the non-compact spatial dimensions; y = {ym} are the extra dimensions; E(t) is the
usual FRW scale factor; and

Ot Y)=€7"T,, (4.2)

where @, has Ricci (scalar) curvature R =0, as evaluated in the compact dimensions. We call the

metric R -flat (RF) if Q =const. and conformally R -flat (CRF) if Q(t,y)=Ql(t,y).

Now we develop some basic relations that make it possible to detect easily when a higher
dimensional theory is forced to violate the NEC.

To describe a spatially-flat FRW spacetime after dimensional reduction, the metric gmn(t,y) and
warp function Q(t,y) must be functions of time t and extra-dimensional coordinates y™ only. We
parameterize the rate of change of g,,, using quantities & and o, defined by

1dg 1
= dm _ = 4.3
> g T mtOm (43)

where g™o,, =0 and where & and o are functions of time and the extra dimensions.

The space-space components of the energy-momentum tensor are block diagonal with a 3x 3 block
describing the energy-momentum in the three non-compact dimensions and k x k block for the k
compact directions. The 0-0 component is the higher dimensional energy density p .

Associated with the two blocks of space-space components of T,; are two trace averages:

m

1 . 1 m
pBEgj/fnyv and pkEFyk T (4.4)
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where y,, are respectively the 3x3 and k xk blocks of the higher dimensional space-time metric.

Violating the NEC means that T,,,n"'n" <0 for at least one null vector n" and at least one space-

time point. We find simple methods for identifying a subset of cases where the NEC must be
violated. For this purpose, the following two lemmas are very useful:

Lemma 1: If p+ p, or p+ p, is less than zero for any space-time point, then the NEC is violated.

The second lemma utilizes the concept of A-averaged quantities:
(), =([Qe™Jgd y)([e*Jgd*y); (5)

that is, quantities averaged over the extra dimensions with weight factor e*® where, for simplicity,
we restrict ourselves to constant A. Using the fact that the weight function in the A-average is
positive definite, a straightforward consequence is:

Lemma 2: If (p+p,), <0 or (p+p,), <0 forany A andany {t,x |, then the NEC must be
violated.

To illustrate the utility of A-averaging, we introduce the CRF metric into the higher-dimensional
Einstein equations, and then try to express terms dependent on & in terms of the 4d effective scale
factor using the relation a(t)=e’"?a(t), where:

e’ = f’kIeZQ\/Edky (4.6)

and ¢ is the 4+k-dimensional Planck length. The 4d effective scale factor, a(t), obeys the usual 4d

Friedmann equations:
2
a 1
(E] =3P (4.7)
a)’ 4
(—j +2—=—p,y. (4.8)

a a
Note that the 4d effective energy density p,, and pressure p,, are generally different from p
and p, in the higher dimensional theory if the warp factor is non-trivial. Then, using the Einstein
equations, we obtain

e_¢<e2§2(p + p3)>A = (pAd + Pag )_M<§>2 N < 2<(§ _<§>A)2>A _<O-2>A (4.9)

2k Aok
e‘“’<em(,0+ Pk )>A :%(/04(1 +3p4d)+2(%_1j%<(§_<§>A)Z>A - kZ—LZ <§>i _<O-2>A *
20(~0 R\ . K d (s
{—5+%+k+A(—3+%ﬂ<e (0Q) >A+2Lk2%a(a (£),). (4.10)

There is a range where
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2
4> A>10-0k+kT
3k -6

=A, (411)
which is the case for 13>k >3 (for CRF). Some theorems below rely on choosing A= 2; for this
value to be within the range given in eq. (4.11), it is necessary that 8 > k > 3. Since this includes the

relevant string and M-theory models, we will implicitly assume this range of k for CRF models.
We note that 3, 8 and 13 are Fibonacci’s numbers.
The two relations in eg. (4.9) can be rewritten

e‘¢<em(p + p3)>A = p,a [0+ W)—%(éﬁ +non-positive terms for all A (4.12)

e‘¢<e29(p + P, )>A = %pm 1+ 3w)+%%%(a3<§>A)+ non-positive terms for some A, (4.13)

where the values of A that make the last term non-positive are those that are in the range in eq.
(4.11). Recall that w represents the ratio of the total 4d effective pressure p,, to the total 4d

effective energy density p,, .

On the left hand side of egs. (4.12) and (4.13), both ¢ and <>A depend on the warp factor, Q, but
the combination is invariant under shifts Q — Q+C, where C is a constant. Furthermore, the
combination tends to have a weak dependence on Q. For example, if o+ p, iS homogeneous in
{ym}, the left hand side reduces to K(p+ pk), where the dimensionless coefficient K is not very

sensitive to Q or A; in particular,
K =“1(A+2)/1(A)(2),

where

I(A)=[e"*Jgd"y. (414)

In this notation, the k -dimensional volume of the compact space is V, = I(O); then, K is equal to
7% IV, , a coefficient which is strictly less than unity. Similarly, if p+ p, is smooth and Q has a
sharp maximum on some subspace of dimension m and volume v_, then the left hand side of eq.

(4.13) is O(l)(f'“/vmx,o+ P ) Where (p+p,) . is the value of p+ p, evaluated on the
subspace where Q is maximal.

If the NEC is violated, it must be violated in the compact dimensions; it must be violated strongly
(w, significantly below the minimally requisite value for NEC violation); and the violation in the

compact dimensions must vary with time in a manner that precisely tracks the equation-of-state in
the 4d effective theory. The magnitude of the NEC violation is proportional to p,, according to eq.

(4.13), which is roughly 10" times greater during the inflationary epoch than during the present
dark energy dominated epoch. Hence, the source of NEC violation for inflation must be different

and 10' stronger.

The fact that NEC violation is required to have inflation in theories with extra dimensions is
unexpected since this was not a requirement in the original inflationary models based on four
dimensions only. Curiously, a criticism raised at times about models with bounces from a
contracting phase to an expanding phase, such as the ekpyrotic and cyclic alternatives to
inflationary cosmology, is that the bounce requires a violation of the NEC (or quantum gravity
corrections to GR as the FRW scale factor a(t)— 0 that serve the same function).
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If is true that the violation of the condition NEC (condition of null energy) is required for the
inflationary universe model and for the cyclic universe model, then it is possible that for the cyclic
model the acceleration and initial exponential expansion of the inflationary phase, is equivalent to
the collision between the two Brane-worlds and to the consequent acceleration of the expansion of
space immediately after the Big Bang. This could be the explanation of the various cosmological
and mathematical connections between the two models. Then, the inflation and the Big Bang
would be only phases of the cyclic universe. Every cycle has its phase of Big Bang and its phase
of inflation.

4.1 On some equations concerning the evolution to a smooth universe in an ekpyrotic
contracting phase with w>1.

With regard the evolution to a smooth universe in an ekpyrotic contracting phase with w>1, we
find that the ekpyrotic smoothing mechanism is robust in the sense that the ratio ot the proper
volume of the smooth region to the mixmaster-like region grows exponentially fast along time
slices of constant mean curvature.

In this system the spacetime is described in terms of a coordinate system (t, xi) and a tetrad (eo, e ,)

where both the spatial coordinate index i and the spatial tetrad index « go from 1 to 3. Choose ey
to be hypersurface orthogonal with the relation between tetrad and coordinates of the form

eo=N"8, and e_=e '6, where N isthe lapse and the shift is chosen to be zero. Choose the spatial
frame {ea} to be Fermi propagated along the integral curves of e,. The commutators of the tetrad
components are decomposed as follows:

les.e,]=u,8,—(H5/ + o/, (4.15) le..e,]= (28,8, +&,,5n" , (4.16)

4

where n* is symmetric, and o is symmetric and trace free. The scale invariant tetrad variables
are defined by o0J,=¢,/H and 0&,6=e,/H while scale invariant versions of the other

gravitational variables are given by
[E2,, A“ N, |= 0,20, //H. (417)
Note that the relation between the scale invariant tetrad variables and the coordinate derivatives is

0,=N7"0, (4.18) 0,=Elo,, (4.19)

a1

where W = NH is the scale invariant lapse. The matter model is a scalar field ¢ with potential V
of the form
V(g)=-Vee ™, (4.20)

where V, and c are positive constants. The scale invariant matter variables are given by
W =0, (4.21) S,=0,¢ (4.22) V =V/H?. (4.23)

The time coordinate t is chosen so that
e'=3H. (4.24)
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Note that this means that the surfaces of constant time are constant mean curvature surfaces. Note
also that the singularity is approached as t — —oo. Due to equation (4.24) the scale invariant lapse
satisfies an elliptic equation

— 00, N +2A%0, N + N(3+Z 5% +W2 -V )=3. (4.25)

We note that 3 is a Fibonacci’s number. Furthermore, we have the following mathematical
connection with the Aurea ratio:

14/7 0 -14/7
(@7 +(0)f + (@)™ = (@ +1] + [\/g +1J + {\/g ”j ~2,618034+1+0,381966 = 4 ;

2 2 2

2.3_3,
4

The gravitational quantities E', A

o

N* and X, satisfy the following hyperbolic evolution

equations
0.E! =E! - W¥(E! +3/E}) (4.26)
1 1
oA, =A, + Ezfa N =0, N+ N(Ea Zh—-A, -3 Aﬁj (4.27)

ONY =N — 75 N+ M- NP 2N, 5P _glep 50)  (4.28)
O0F 0y =Ly + 0.0, N+ A0, N +5, N TN+ N-35,, -0, A, ~2N_N, +

<a ' p>

NN+, 07N, —2AN,)+s .S, |, (4.29)

Here parentheses around a pair of indices denote the symmetric part, while angle brackets denote
the symmetric trace-free part. The equations of motion for the matter variables are as follows:
o= NW (4.30)
8,5, =S, +Wo, N + oW —(S, +27s,)| (4.31)
OW =W +S“0 N +JV[6“SQ —3W —-2A"S, —%] . (4.32)

In addition, the variables are subject to the vanishing of the following constraint quantities

(€)= s |0,EL - AEL|-N7E! (4.33)
@) =0 N7 +5%5 A, —2A N (4.34)
@), =0,5/ ~35/ A, — 5, NPT WS, (4.35)
2 1 1 ), 1 1 1 1
—1+50 A~ A“A —=NYN__+—(N7,f —Z25%y _ZW2_2geg _=V 4.36
063“ “ 6 “ﬂlz(y)e“ﬂe 6 * 3 (4.36)
(), =S,-8,6. (4.37)
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With regard the value 12 of eq. (4.36) we have the mathematical connection with the following
Ramanujan’s modular equation:

The number 12 = 24 / 2, is related to the physical vibrations of the bosonic strings by the following
Ramanujan function:

o COS 7itXW'

e | s
4| antilog = COSh - éjvz
e g, (itw)

A ]

For simplicity, we choose the initial conformal metric to be flat and (x,y,z) to be the usual

cartesian coordinates for that metric, and we choose the spatial triad to lie along those spatial
directions. Thus, the scale free spatial triad becomes

El =H™s,. (4.38)
It then follows from equation (4.16) that

A =-2y'Elow (4.39) N_,=0. (4.40)

af

The shear is essentially the trace-free part of the extrinsic curvature, and the constraint equations
simplify for a particular rescaling of the trace-free part of the extrinsic curvature with the conformal
factor. We therefore introduce the quantity Z,, defined by

S =W 2, (441)

Similar considerations apply to the matter variables, leading us to define the quantity Q given by
W=yp"Q. (4.42)

Here we will specify Q, ¢ and a part of Z, and solve the constraint equations for the conformal
factor y and the rest of Z, . From equation (4.35) and our ansatz for the scale invariant variables

we obtain
0'Z, =Qo,¢. (4.43)

In the vacuum case this equation simply becomes the conditions that Z, is divergence-free, which
is in turn simply an algebraic condition on the Fourier coefficients of Z; . Note that since X~ _, must

be trace-free, so must Z, . A simple, but still fairly general divergence-free and trace-free Z, is the
following:

59



b, K 0
Z,=| Kk acosx+h a, CoS X . (4.44)
0 a,cosx  —hb —b,—a cosx

where «, &, a,, b, and b, are constants. We still keep this divergence-free part of Z, but now
add to it a piece that has a non-zero divergence. We simply specify the Fourier coefficients of ¢
and Q via

Q(x,t=0)= &cos(mlx +d,) (4.45)  #(x,t=0)= f,cos(mx+d,), (4.46)

where f, m, d,, f,, m, and d, are constants. This turns equation (4.43) into an algebraic
equation for the Fourier coefficients of this non-zero divergence piece of Z, which we then solve.
Now imposing equation (4.36) our ansatz yields

0oy = G H? —%v jyf’ —%(&i(é@i(/ﬁ)y —%(QZ +Z%Z, HY T, (4.47)

which is solved for the conformal factor y using the numerical methods.

With regard the eq. (4.47), the number 8 is connected with the “modes” that correspond to the
physical vibrations of a superstring by the following Ramanujan function:

© COS 7tXW'

e VAX | s
4| antilog > €Oshzx N4z
—ﬂt—zw' t2W'

1 e ¢ 4,(itw)

o]

The constraint equations (4.33) and (4.34) are automatically satisfied by this ansatz. We then
satisfy equation (4.37) by using the given value of ¢ to compute the initial value of S, .

Now we show results from a single example that demonstrates the generic behaviour: evolution
from a highly inhomogeneous, anisotropic universe with significant curvature at the initial time to a
universe containing distinct volumes of either smooth, homogeneous w>>1 matter dominated
regions, or w=1 mixmaster-like regions. Whenever a w>>1 region forms it grows exponentially
fast in proper volume relative to w=1 regions. The particular initial conditions for this example are
(4.44 - 4.46)

a =070, a,=010, x«=0.01, b =180, b,=-0.15, f =200,

m, =1, d=-17, f,=015, m,=2, d,=-1.0, and V,=0.1, c=10 (4.48)

for the scalar field potential parameters (4.20).
With regard the values of (4.48), we take the following: 0,10 0,15 0,70 1,70 1,80 and 10. We
have the following mathematical connections with the Aurea ratio:
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2 2 2

\/g+1J—35/7 +(\/g+1j—49/7 +[\/g+1j—63/7

(q))—35/7 + ((I))—49/7 + ((I))—63/7 :(
=0,090170 + 0,034442 + 0,013156 = 0,137767; 0137767 % =0,103326;

\/§+1]28/7+(\/§+1J42/7+[\/§+1]56/7+[\/§+1]84/7

o)) —28/7 10)) —42/7 10)) —56/7 10)) —84/7 —
e R : : :

=0,145898 + 0,055728 + 0,021286 + 0,003106 = 0,226018 - % =0,150679;

\/§+1j_7/7 +(\/§+1]—21/7 +£\/§+1J_35/7

(@)‘7/7 N (CD)_ZW 4 ((D)—35/7 :( 2 2 2
3

=0,618034 + 0,236068 + 0,090170 = 0,944272 - 1 0,708204;

@j7/7+(£+1J—7/7+(\/§+1j—42/7

2 2 2

(q))7/7+(q))—7/7+(®)—42/7 :[
3

=1,618034 + 0,618034 + 0,055728 = 2,291796 - 21 1718847,

(q))—7/7 + (cD)—21/7 " (q))—49/7 " (q))—84/7 _ [\/g-i‘lj_ +[\/§+1]_ +(\/§+1J_ ”{\/g—”j_ _

2 2 2 2

=0,618034 + 0,236068 + 0,034442 + 0,003106 = 0,891649-2 =1,783298 =0,90-2=1,80;

2 2
Now, let z,(n) be a complex character to the modulus 5 such that ,(2)=1i, and let

\/g 1 35/7 \/g 1 1477 3
(q>)35”+(c1>)14”=( i J +( il j =11090170+ 2,618034 = 13,708204 - = 10,281153.

10-245 -2
K=——

=0,284078227.  (4.48b
1 (4.48b)

The function

f(s)= 1_2iK L(s, z,)+ 1+2iK L(s,7,), (4.48c) where L(s,y)= i Zn(sn) ,

is called the Davenport-Heilbronn function and satisfies the Riemann-type equation

(%j_mr(w) f(s)=gl-s). (4.480)

2

We note that 10,281153 — x =10 . Furthermore:
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-14/7
(@)™ = (\/g +1J =0,381966; 0,381966- % =0,286475 . Thence, we can write also:

2

-14/7

K= V10-245 -2 —0,284078227 =~ 0,2841 = V5+1 Se 0,2865 .
J5-1 2 4

It is enlightening to visualize the evolution via the behaviour of the matter (2, ), shear (Q,) and
curvature (Qk) contributions to the normalized energy density, defined as

o Elwuisasa Ly (4.49) Q, 512“”2,15 (4.50)
6 6 3 6
2 1 1 2
Q =—=0 A"+ A°A +=N*N ,——(N7, |, (451
k 3 o o 6 Otﬂ 12( 7) ( )

where Q_+Q. +Q, =1 by (4.36).

We note that the eq. (4.51), i.e. 12 = 24/2, is related to the physical vibrations of the bosonic strings
by the following Ramanujan function:

© COS 7ztXw'

e ™ dx | s
4| antilog = CoSh : t14'2
A, w

e’ ¢W(Itwl)

A ]

The effective equation of state parameter w takes the following form in Hubble normalized
variables:

1w2+isasa -V
W= % 2 . (452)

“w? +18“8a +V
2 2

It is evident that at late times the region that has smoothed out and become matter dominated
coincides with w >>1, whereas the mixmaster-like regime evolves to w=1. We can calculate the
behaviour of the solution in the asymptotic matter dominated region as follows. At late times, all
spatial derivatives have become negligible. The constraint (4.36) then reduces to

W2+2\7_

1~0, (453
5 (4.53)

and slicing condition for & (4.25) becomes
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3
3-V.

3N = , (4.54)
Furthermore, V is finite and non-zero. This implies from (4.20, 4.23, 4.24) that ¢ takes the

asymptotic form

o)~ )+ (455)

and thus W (4.21) tends to

W~-2 . (456)
cN
Combining these relations gives
— c? 2
W=~c, (457) V z3—?, (4.58) ./Vz?, (4.59)

and from (4.52)
w=c’/3-1. (4.60)

We have that c=+/2=1414213562; W =c and V =2. Thence, we have the following
mathematical connections with the Aurea ratio:

\/§+1)—7/7 +{\/§+1J—21/7 +(\/§+1J_35/7 B

((D)—7/7 + (q))—21/7 + ((D)—35/7 :( 2 2 2

=0,618034 + 0,236068 + 0,090170 = 0,944272 - g =1,416408;

\/g 114/7 \/g 1—14/7 2
(q>)14/7+(q>)14”:( 2*) { 2*] =2,618034+0,381966=3; -3=2;

\/§+lj21/7 +(\/§+1}7/7 +(\/§+1J_28/7 )

((D)21/7+((D)7/7+((D)—28/7 :{ 2 2 2

=4,236068 +1,618034 + 0,145898 =6 ;

-6=2;

Wk

Let S denote the proper spatial volume element associated with the spatial metric h; of t =const.

slices i.e., S =+/deth . The fractional change of S with respect to time is
I L h.o,h"
o,InS =3 o.n”,  (4.61)

which can be written as
0,InS=3N. (4.62)
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In the asymptotic regime where spatial gradients are negligible, & approaches a constant (4.54),
and thus (4.62) can be integrated to give

S_ace® w>>1 (4.63) S, ce', w=1 (4.64)

m v

where we have used (4.54) where w>>1, and note that V ~0 when w=1. Thus, at late times the
ratio R of the proper volume of matter to mixmaster-like regions of the universe grows as

~ ISmdx
- ISvdx

oc e l-85%) (4.65)

Thus, aslongas ¢ >+/6 (which is equivalentto w>1), R —>x as t— —w.
We note that /6 = 2,449489743, is related to the following mathematical connection with the
Aurea ratio:

717 —28/7 4217
(CD)J” +(q))—28/7 +(CD)742/7 _ \/g‘i‘l n \/54‘1 + \/€+1 _
2 2 2
=0,618034 + 0,145898 + 0,055728 = 0,819660 - 3 = 2,458980 .

5. On some equations concerning the approximate inflationary solutions rolling away from
the unstable maximum of p-adic string theory. [11] [16]

The action of p-adic string theory is given by

0 0
m? 1 om? 1 m? 1 1
S="5[d'% —Zgp M gr——g! =5 [d'x —Zge Mpr——g?! | (5.1
9,23'[ [2 ¢ p+1¢ } gﬁf (24159 ¢ p+1¢ J (5.1)

where 0=-07+V? in the flat space and we have defined

2m?

2
t_1p and mf,zln;. (5.2)

92 gZp-1

T N

The dimensionless scalar field ¢(x) describes the open string tachyon, m, is the string mass scale
and g, is the open string coupling constant. Though the action (5.1) was originally derived for p a

prime number, it appears that it can be continued to any positive integer and even makes sense in
the limit p — 1. Setting 0=0 in the action, the resulting potential takes the form
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m: 1 p+1
V:(g_ﬁJ(2¢ p+1¢ j (5.2b)

The action (5.1) is a simplified model of the bosonic string which only qualitatively reproduces
some aspects of a more realistic theory. That being said, there are several nontrivial similarities
between p-adic string theory and the full string theory.

The field equation that results from (5.1) is

e"'Mg=¢" (53)

We are interested in perturbing around the solution ¢ =1, which is a critical point of the potential,

representing the unstable tachyonic maximum.

One may wonder whether the field theory (5.1) naively allows for slow roll inflation in the
conventional sense. Naively one might expect that for a slowly rolling field the higher powers of [
in the Kinetic term are irrelevant and one may approximate (5.1) by a local field theory. The action
(5.1) can be rewritten as

S =J'd“xEZI]Z—V(;()+..} (5.4)

where we have defined the field y as

=18 65 =P P 0 e

2(p-1) "

and the potential is

m2 , m? pz P p+l
Viy)=—2 -—= £ . (6.7
(2) npZ g pz_l(l j (5.7)

0
In (5.4) the . . . denotes terms with higher powers of 0. Thence, the eq. (5.4) can be rewritten also
2 4

+1
p Inp p Inp m; p* (}(]p
S=[d*x m,gll— — 21 +..]. (5.7b)
J [2 0. V2(p-1) " g, \2(p-1) " lnp o2 pr -1

Working in the context of the action (5.4) let us consider the slow roll parameters describing the
flatness of the potential (5.7) about the unstable maximum y = y,. Itis straightforward to show that

M2 1 (av(y)Y
ZpV(lo)z( o1 j‘o 9
1 oV(y) 4g? p?-1(M, Y
M 2 = Pl . (5.9
"V(y,) ox* "™ Inp p> (m, 59)

With regard the approximate solution for the classical background, we must solve the Friedmann
equation
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1

H* = 2 Py
3M

(5.10)

to second order in u. To find the energy density p,, we turn to the stress energy tensor for the p-
adic scalar field. A convenient expression for T, is:

4 _i 2 1 _i _(l—‘r)[l 1 _i _(l—r)l:l
_m o 2 o dp o m | e ] 1 it | e ™
P RPN O RTNACH

p

4 _i _(lfz')El
ms 1 mxzn mnzu
o jodf[a#e ¢J[ave ¢J . (5.11)

+

22
pJIp

One may verify that the T, is symmetric by changing the dummy integration variable 7 —1-7 in
the last term. For homogeneous ¢(t) the above expression simplifies, and for T, we find

4

BLE . B VANCR
M| et : m; m;
p, = T°°_2g,§ ge ™ p+1¢ +m§jod{ue ¢J{e }L

il (lfz')El
1 ¢ e Tl
+Fjodra{e “¢}at[e p¢} . (5.12)
p

One can evaluate the above expression term by term, keeping up to O(e“‘)z u®. The final result
reads

m;

2

T:
00 ng

[1_u(1+e~1)_w+u(em_1)}+o<uz):%+o(uz). 5.13)

The O(u) terms cancel out and matching the coefficients in the Friedmann equation gives us the
simple results
,_ mi p-1
Hy =5

6M2 g2(p+1)

(5.14)

and
H,=0 (5.15)

for zeroth and first order respectively. The O(uz) contribution to T,, is quite complicated but once

we use (5.15) it simplifies greatly. Matching coefficient at order O(uz) in the Friedmann equation
gives

2

am! 1 p’lnp( m

=g en=— PRI |5 (516)
49,m M 8g; p-1{M,

66



We note that the number 8 in the eq (5.16) is a Fibonacci’s number and can be connected with the
“modes” that correspond to the physical vibrations of a superstring by the following Ramanujan
function:

o COS 77tXW'

e " dx
. 0 \142
4| antilog coﬂstzhﬂx e
- : t'w
1 € ! ¢W'(Itw')

o]

Because of our sign convention for H,, the fact that H, >0 means that the expansion is slowing as
¢ rolls from the unstable maximum, as one would expect in a conventional inflationary model.

We are approximating the background dynamics as de Sitter which amounts to working in the limit
u — 0 so that

He=hz= T Pl 517 4oy =1 (5.18)
Y eM2gi(p+l) A

We expand the p-adic tachyon field in perturbation theory as
#(t,%) = g°(t)+ 5p(t, X) =1+ 54(t, ). (5.19)

The perturbed Klein-Gordon equation (5.3) takes the form

e '™ 5p=pSp. (5.20)
One can construct solutions by taking o¢ to be an eigenfunction of the O operator. If we choose ¢
to satisfy

—06p=+Bop (5.21)

then this is also a solution to (5.20) if

B=m:Inp=2m; (5.22)

where in the second equality we have used (5.2).
For fields which are on-shell (that is, when (5.21) is solved) the field obeys

ﬁ_e—u/mﬁ )5¢ _ ﬁ_eslmﬁ )5¢ _ (]__eB/m,% )ﬁ(_ B)5¢ _ ﬁ_eB/mﬁ )ﬁﬂ&ﬁ _

Thus, for on-shell fields the kinetic term in the Lagrangian can be written as

p-1
2m?

054. (5.23)

m? 1 ( _u,mz)¢ m! p-11 1
L =—3"4gll-e "P+..=—2 — +.== +... (5.24
on—shell g ¢ glg) 2m52 2¢D¢ Z(PD(P ( )
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In (5.24) we have defined the “canonical” field
p=A¢ (5.25)

where
A="TEP - (506)

J2g,

The field ¢ has a canonical kinetic term in the action, at least while (5.21) is satisfied. Now, let us
return to the task of solving (5.21), bearing in mind that op = Adg is the appropriate canonically

normalized field. We write the quantum mechanical solution in term of annihilation/creation
operators as

Solt,X) = '[Wdzk[akgok (t)e™ + h.c.] (5.27)

and the mode functions ¢, (t) are given by

1 T L”(v+l/2) k
t)== | g2 HY 5.27b
20 2\ a’H, " | aH, ( )

where the order of the Hankel functions is

2
V= g+£2: g+2i2S (5.28)
4 H, 4 H,

and of course a=e"™". In the second equality in (5.28) we have used (5.22) and (5.2). In writing
(5.27) we have used the usual Bunch-Davies vacuum normalization so that on small scales,
k >>aH,, one has

a—l

|¢k|5 2K

which reproduces the standard Minkowski space fluctuations. This is the usual procedure in
cosmological perturbation theory. On large scales, k << aH,, the solutions (5.27) behave as

H k 3/2-v
|¢k|§?(am}

which gives a large-scale power spectrum for the fluctuations
2 ng-1
LA
v \2x)\aH,

n,—1=3-2v.

with spectral index
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From (5.28) it is clear that to get an almost scale-invariant spectrum we require m; << H,. In this

limit we have
2
n —1=—4 M| (529
3\ H,

which gives a red tilt to the spectrum, in agreement with the latest WMAP data. For n, =0.95 one
has m, = 0.2H,. Comparing (5.27) to the corresponding solution in a local field theory we see that

the p-adic tachyon field fluctuations evolve as though the mass-squared of the field was —2m?
which may be quite different from the mass scale which one would infer by truncating the infinite
series of derivatives: 0V /0y°(y = z,).

2
nqs

2

0

We note that for n, =0.95, from the eq. (5.29), we obtain that 2— =0,075. Thence, we have the

following mathematical connections with the Aurea ratio:

\/g 1 717 \/g 1 -35/7 4
0,95 ()" + (@) > = (%] J{ 2+ J =0,618034+ 090170 = 0,708204 - = 0,944272

From the eq. (5.28), we have that:

2
V= g+2i; = g+O,075 =/2,25+ 0,075 = /2,325 =1,524795068 ;
4 Hj 4
\/§+1J0+£\/§+1

2 2
We note that for the egs. (4.48b-4.48c-4.48d), we have that

-2817
152480 = (0 ) + (@) > = ( J =1+0,145898 =1,145898 -% =1,527864.

130 = “10:/_2\/5 =2 0,00284078227; 1,527864 —0,002840 = 1,525024.

We now want to fix the parameters of the model by comparing to the observed features of the CMB
perturbation spectrum. There are three dimensionless parameters, g., p and the ratio m;/M . The
important question is whether there is a sensible parameter range which can account for CMB

observations, i.e., the spectral tilt and the amplitude of fluctuations. Using (5.14) in (5.29), we can
relate the tilt to the model parameters via

s )(M,Y L (m ) 8(p+1) g
n,—1=="5~ (mJgSQ(M ] T hed (5.30)

p S p
Also for this equation, we note that the number 8 is a Fibonacci’s number and is connected with the
“modes” that correspond to the physical vibrations of a superstring by the following Ramanujan
function:
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© COSZEXW' __ 2, dx
Cench o © J142

4| antilog > COSh 7 =
A tw'
1 e * ¢W(ItWI)

el ]

Thus one can have a small tilt while ensuring that the string scale is smaller than the Planck scale,
provided that g2/ p <<1. Henceforth we will use (5.30) to determine m /M , interms of p, g,

and |n,—1/=0.05. All the dimensionless parameters in our solution, m ,/H,, A/m, ¢, and
H,/m,, are likewise functions of n,—1, p and g,. From (5.14) and (5.30) we see that for p >>1,

M~ Jog Mo~g [EMs 1 g
Hozﬁgpm g, S\3n -1 (531)

p
S pms

I
I

It may seem strange to have H exceeding m, since that means the energy density exceeds the

fundamental scale, but this is an inevitable property of the p-adic tachyon at its maximum, as shown
in eq. (5.13). This is similar to other attempts to get tachyonic or brane-antibrane inflation from

string theory, since the false vacuum energy is just the brane tension which goes like m; /g, .

Next we determine A/m_, where A is the mass scale appearing in the power series in e which
provides the ansatz for the background solutions. We consider the following equation for A4 in the
H, >>m, limit

(22+3H, )rm2

e =e =p.

The positive root for 4 gives

A 8 o
m, 3

In order to fix the amplitude of the density perturbations we consider the curvature perturbation ¢ .
We assume that

as in conventional inflation models. To evaluate the prefactor H /¢ we must work beyond zeroth
order in the small u expansion. We take ¢=1-u to evaluate the prefactor, even though the
perturbation &y is computed in the limit that ¢ =1. This should reproduce the full answer up to
O(u) corrections. The prefactor is

Hozzs/zgS 1 Em—l
A p ng-lu

~

_H
%
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With regard the egs. (5.31) and (5.31b), we have the following mathematical connections with the
Aurea ratio:

M M
M, =6y, > =g, Em—";%/3|ns— — 0,193649167;

HO B S p
-28/7
019365 = (@) *'" = (\/g; 1} =0,145898 - % =0,194531.

A fIn-4 0,129099444 ;
m, 3

-28/7 -49/7 -63/7
0,129012(®)728/7 +(q))749/7 +((D)—63/7 :(\/§2+1J +[\/gz+lJ +[\/gz+1) _

=0,145898 + 0,034442 + 0,013156 = 0,193496 - % =0,128997 = 0,1290 .

We should evaluate u at the time of horizon crossing, t,, defined to be approximately 60 e-foldings
before the end of inflation t,,, assuming that the energy scale of inflation is high. The inflation

ends when u ~1/ p*?. From egs. (5.31-5.31b) we see that H /A = 2/|nS —Jj ; therefore we can write
the scale factor a(t)=e"" in the form

alt)=u(tP’™" (5.32)
so that a, =e ™a,,, corresponds to

-30|
u,=¢€ 172

Ty, =e pi . (5.33)

We note that H,/ A = 2/|ns —]4 for n,=0.95 is equal to 40. This value can be related with the
following mathematical connections with the Aura ratio:

1417 0 -35/7
(®)14/7+(®)0+(q))—35/7 :L\E;lj J{\/g;lJ j{\/g;lj =2,618034 +1+0,090170 =

=3,708204 - % =4,944272;

\/g 1 35/7 \/g 1 717 4
(@)35’7+(c1>)7”:[ 2* j +( 2+ ] =11090170-+1,618034 =12,708204 - - =16,944272;

2
Ho/A=2/n, -1 =40; 4,9+ 16,9+ 18,2 = 40.

\/g l 35/7 \/g 1 1477 4
(@)35’7+(c1>)””=( i J +[ 2* j =11,090170-+2,618034 = 13,708204 - =18,277605
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The power spectrum of the curvature perturbation is given by

2

k
_ 2
Foo = Ag(aH

ng-1
H S
P, = ‘— J (5.34)
¢

0
where the amplitude of fluctuations A, can now be read off as

2 .60/n, ]

»_ 8 g€
=—>= . (5.35
* 37% p |ns—2q3 (5:33)
Thence, we can rewrite the eq. (5.34) as follows
2 2 60[n, 1|
p{:‘i =0 88 (53
@ 375 p |ns—1|

As an example, taking n, = 0.95 one can fix the amplitude of the density perturbations A? =107
by choosing

95 ~048x107. (5.36)

VP

Setting A? =107 and using (5.35) we obtain an expression for g, in terms of p and |n, -1

2
9. - 3%\/69—30”s‘1|n5_1|3/2x10_5. (5.37)

Combining (5.37) with (5.30), we also obtain

%: /3ﬂ2 pTHe_gons_l|ns—]1><105. (5.38)
p

The string scale is bounded from above as m;/M , <0.94 x107° and that for typical values of p, n,

it is close to m /M = 0.61x10°°. Furthermore, from (5.37) that g, is unconstrained and that g,
p are not independent parameters.
Now we define the Hubble slow roll parameters ¢,,, n,, by

1 ¢ %
= 2 (5.39 -n, =——. (5.40
8H 2M5 Hz ( ) gH 77H H(ﬂ ( )

72



These are the appropriate parameters to describe the rate of time variation of the inflaton as
compared to the Hubble scale. Using the solution ¢ =1—u (recall that o= Ag, A= msp/(x/igs))
we find that

I

. %pT”e‘w"ﬂns—JJ, (5.41) Wg—@. (5.42)

We see that the Hubble slow-roll parameters are small. This means that p-adic tachyon field rolls
slowly in the conventional sense. One reaches the same conclusion if one defines the potential slow
roll parameters using the correct canonical field, which is ¢ (5.25):

M2 10V ? 1 0% 1
p _ 2 —_~ln =
T(Va_ lpon =0, (5.43) MPVF“/’:A_ S -4 (5.44)

With regard the egs. (5.42) and (5.44), we have that:

—%Ins ~1=0,025;
(@) + (@) + (@)™ = (ﬁg 1}21” + (ﬁ;lTS” + (ﬁ; 1}70/7 _

=0,236068 + 0,090170 + 0,008131 = 0,334369 % =0,250776; % x0,250776 = 0,0250776 .

On the other hand, consider the potential slow roll parameter which one would naively define using
the derivative truncated action (5.4):

M2(1avY 1 0%V p-1)1
p _ 2 =Y v | = |=Zlh -
T(va ‘Z:ZO - 0, (545) M p V azz X=X - n 1| (546)

where in (5.46) we have used equations (5.9) and (5.30). We see that (5.46) can be enormous,
though the tachyon field rolls slowly. Taking the largest allowed value of p, p=~10", and

n,=0.95 we have M f,V‘l‘az\/ /8;(2‘ ~10". Since large values of p are required if one wants to

obtain g, ~1, it follows that it is somewhat natural for p-adic inflation to operate in the regime
where the higher derivative corrections play an important role in the dynamics.

6. On some equations concerning p-adic minisuperspace model, zeta strings, zeta
nonlocal scalar fields and p-adic and adelic quantum cosmology. [12] [13] [14] [15] [16]

Consider the standard Minkowski signature minisuperspace model of a homogeneous isotropic
universe with a cosmological constant 4. The usual parametrization of the metric

ds® =-N?dt* +a’dQ; (6.1)

leads to classical solutions which are trigonometrical functions of time. In the p-adic case we prefer
to work with rational functions. We shall use the following ansatz
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2
a5 =N 4 L a0, (62)

q(t)

Here N and a are functions of time and dQ? is the metric on the unit 3-sphere. The action for this
metric is the same as the corresponding usual case

S[q(t)]):%f:dtN[Aj\lz q—lj. (6.3)

We assume that the cosmological constant A is a rational number. The classical equations of
motions have the form

G=241. (6.4)
The solution of this equation for the boundary conditions

q0)=q,, q(T)=q,, (6.4b)

is the following
q(t)=At? + [qu % zT}qu. (6.5)

Here q(t), p(t)er. The Green function corresponding to the transition from the point g, to the
point g, has the form

Qp (ql! qz) = IQp dTKT (Q1’O|q2!T) (6.6)
where K, (ql,0|q2,T) is the propagator
Ky (0,000, T) = [ 7,(S dqt . (6.7)

In the path integral one integrates over trajectories with the boundary conditions (6.4b). One can
perform the Gaussian path integral (6.7) in the usual way using shifting to the classical solution.
One gets

Kr (0,00, T)=c(T)z,(Ss)  (68)
where S is the action calculated on the trajectories (6.5).

273

+[Aloy + ) - 2]— (G-a) (6.9)

S, =5,(0,,0,T)=—
cl cl(qz ql ) 24 8T

The factor ¢(T) is the same as for a free particle
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c(t)=m. (6.9b)

1/2
i

Therefore one has the Green function

T 2T3 _ 2
Go(h,0)= [, dT |Tp|$,2)x( AL o+ a,)- ]Z+%]- (6.10)

The corresponding wave function has the form

(@)=, ot A0, ( : {qz +(ﬂq—2)1—WD (6.11)

|T | 8T 4 24

where we restore the explicit dependence on the Planck length.
We note that the number 24 in the eq. (6.11) can be related to the physical vibrations of the bosonic
strings by the following Ramanujan function:

o cos;ztxw'e_,,xzwv dx
4| antilog = COSh 2 - 't14'2
A w
e ¢ g,(itw)

A ]

Now let us estimate the integral on T applying the stationary phase approximation. The saddle-
point equation has the form

/IZT 2 q 2 iq

1
S'=-— -——+—-==0 (6.12
8 8T2+ 4 2 (6.12)
which yields
1+1-Aq
TS, = 7 (6.12h)

As is known, for p El(mod 4) there is the square root of —1 in Q_, so we get nontrivial saddle
points. For p EB(mod 4) we have no saddle point at all. To make sense of the saddle points in the
case p zl(mod 4) we should be sure that the square root m also has a sense. For this purpose
we have to assume that |/”tq|p <1. The corresponding actions have the form

__%bi(l_zq)sm], S :i[li(l—/iq)m], (6.13)
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In order that these expressions be rational we have to assume that A is rational as well as that
Aq = £ is such a rational that the solution of the equation

E+n*=1 (6.14)

in respect to 7 is also rational. Let us consider the Euclidean metric

2
a5t =N 4 4 g0z, (6.15)

q(t)

The Euclidean action for this metric is the same as the corresponding action in the usual case

1 q° 2
S[q(t)) ‘EL dtN(— IR —1) (6.16)
We shall prove that it is possible to restore
27
‘I’E(q):JdTJ.exp(ITSEdeq (6.17)
PI

when 1, — 0 in the corresponding p-adic wave function. Indeed, in the p-adic case for Euclidean
metric, we get a basic Green function

2,(T) [fTS

gp(leqz):JdT |_|_|1/2 Zp 24
p

+[A(a, - a,)- 2]%—%} (6.18)

Now let us estimate the integral on T in

05

jdeT T | Syt 2———J (6.19)

applying the stationary phase approximation. Formally there are the following saddle points
1 /2 1 /2
T=— 1+(1-4q)"?], T= - 1+(1-Aq)"*|, (6.19b)

for
Aq|, <1

with corresponding actions

S:—S%[li(l—ﬂq)slz], st%[li(l—ﬂq)slz]. (6.20)
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Note that now these stationary points have sense for all p and for g satisfying (6.15) according our
general formula for the wave function of the universe

2Tzl 120,.),. ©21)

we write

6.1 Zeta strings and zeta nonlocal scalar fields.

The exact tree-level Lagrangian for effective scalar field ¢ which describes open p-adic string
tachyon is

1 p*| 1 = 1 L
L =— " | -Zgp2p+——p""|, (6.23
P g2 p—l[ 5 » p+1¢’ } (6.23)

where p is any prime number, 0=-07+V? is the D-dimensional d’Alambertian and we adopt

metric with signature (— +...+). Now, we want to show a model which incorporates the p-adic
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian

n-1 __{—_¢Zn 2¢+Z 1} (6.24)

n>1 n>1 n® >l o1 N

Recall that the Riemann zeta function is defined as

§(S)=Z%=Hl_1_s’ s=o+ir, o>1. (6.25)
nx1 p p

Employing usual expansion for the logarithmic function and definition (6.25) we can rewrite (6.24)
in the form

1)1 O
_?[EM(EJW @+ In(l—¢)} . (6.26)

where |¢| <1.¢ (gj acts as pseudodifferential operator in the following way:

2

O 1 ixk _k_z‘“ K2 k2 _ 2
((—j¢(x)_W_[e ;( Zj(z)(k)dk, k2=k2-k?>2+¢, (6.27)
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where ¢ (k je “9g(x)dx is the Fourier transform of ¢(x).

Dynamics of this f|eId ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.

When the d’Alambertian is an argument of the Riemann zeta function we shall call such
string a “zeta string”. Consequently, the above ¢ is an open scalar zeta string. The equation of
motion for the zeta string ¢ is

E = 1 ixk _k_2 7 :ﬁ
§(2j¢_(27[)DJ.k§—RZ>2+ge 5( 2J¢(k)dk , 62

which has an evident solution ¢ =0.

For the case of time dependent spatially homogeneous solutions, we have the following equation of
motion

_63 1 —ikot k02 p _ ¢
§(7j¢(t)= 20 [ 4“[7}5 (ko )k, = 1_% . (6.29)

With regard the open and closed scalar zeta strings, the equations of motion are

c@}s -5 -

R

ixk

nx=1

2\ _ n(n-1)
(—k?j(é(k)dk:fﬁ 2 4", (6.30)

e

and one can easily see trivial solution ¢ =6 =0.

nx1

The exact tree-level Lagrangian of effective scalar field ¢, which describes open p-adic string
tachyon, is:

L =

p

m° p? oy
D P Tpmipr Lopril (632)
g, p-1 p+1
where p is any prime number, 0=-07 +V? is the D-dimensional d’Alambertian and we adopt

metric with signature (~+...+), as above. Now, we want to introduce a model which incorporates
all the above string Lagrangians (6.32) with p replaced by ne N . Thence, we take the sum of all
Lagrangians £, in the form

L=Fce =30, ™ M Lpmis, Lol (6
o ST gln-1 2 n+1” |0

whose explicit realization depends on particular choice of coefficients C_, masses m, and coupling
constants g, .
Now, we consider the following case
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C :n—l

n n2+h !

(6.34)

where h is a real number. The corresponding Lagrangian reads

mD 1 & ,iz,h +00 nfh
L=—|—-= n2m +y —— g™ 6.35
=] T e (639)

and it depends on parameter h. According to the Euler product formula one can write

O

St [t — - (636)

n=1

((S)zi%znl_lp_s, s=o+ir, o>1, (6.37)
p

which has analytic continuation to the entire complex s plane, excluding the point s =1, where it
has a simple pole with residue 1. Employing definition (6.37) we can rewrite (6.35) in the form

mP| 1 O 2n" g
Lh—?[—z¢§{2m2+hj¢+§m¢ } (6.38)

O
2m?

Here ;(

+ hj acts as a pseudodifferential operator

;( = +hj¢(x)=

2m (gi)n Jere [‘%+ h};(k)dk . (6.39)

where ¢(k)= I e™g(x)dx is the Fourier transform of ¢(x).

We consider Lagrangian (6.38) with analytic continuations of the zeta function and the power series
~h
n n+l
—¢" e
z n +l¢
L 7 (= B P Acfn—_hqﬁ”” (6.40)
" g2 277\2m? “~n+1 Lo

where AC denotes analytic continuation.
Potential of the above zeta scalar field (6.40) isequal to — L, at 1=0, i.e.

-h

v,(0)- m—z(%é(h)— Aﬁhw”} . (6
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where h#1 since ¢(1)=co. The term with ¢ -function vanishes at h =-2,-4,-6,.... The equation
of motion in differential and integral form is

2m?

ﬁ .. eixkg(—% ; hj&(k)dk _ Acgn%” . (6.43)

{;( = +hj¢: ACfn’h(p” . (6.42)

respectively.

Now, we consider five values of h, which seem to be the most interesting, regarding the
Lagrangian (6.40): h=0, h=+1 and h=+2. For h=-2, the corresponding equation of motion
now read:

B P S BENLSUPY 1 WO
:[Zmz 2j¢— o e c( o Z}zﬁ(k)dk—(l_ PG

This equation has two trivial solutions: ¢(x)=0 and ¢(x)=—1. Solution ¢(x)=-1 can be also
shown taking ¢ (k)=-6(k)27)° and ¢(-2)=0 in (6.44).
For h=-1, the corresponding equation of motion is:

1
o
The equation of motion (6.45) has a constant trivial solution only for ¢(x)=0.
For h=0, the equation of motion is

where ¢(-1)=

2m? 2m?

= __1 ik | k? |~ 4
g[ j¢_(27z)D.[RDe 4{ j¢(k)dk—l_¢. (6.46)

It has two solutions: ¢ =0 and ¢ =3. The solution ¢ =3 follows from the Taylor expansion of the
Riemann zeta function operator

:( = j=¢(0)+24(n)(0)( qu (6.47)

2m?

as well as from ¢ (k)= (27)°35(k).
For h =1, the equation of motion is:

1 ixk kz - __E A
WIRDE ;(— 2m2+1j¢(k)dk_ 2|n(1 #), (6.48)

where £(1)=co gives V,(g)=oo.
In conclusion, for h =2, we have the following equation of motion:

80



1 ixk k? = _ ¢In(1—w)2
WJ.RDG 5(—W+ZJ¢(k)dk— '[O—ZW dw. (6.49)

Since holds equality
1In(1-w) - 1
- [ dw= Z‘MF =¢(2)

w

one has trivial solution ¢ =1 in (6.49).

Now, we want to analyze the following case: C, = 2_1. In this case, from the Lagrangian (6.33),

_m’l 1 O O ¢
L_gz{ 2¢{§[2m2 1j+§(2mzj}¢+l_¢] (6.50)

The corresponding potential is:

we obtain:

Vv :m317¢ (651
W= g?

The equation of motion is:

H =) _1)+;(2§2H¢= o~ 1] e

2m (4-1)

Its weak field approximation is:

0 U
{((Zmz —1j+§[2m2j—2}¢20, (6.53)

which implies condition on the mass spectrum

2o 22 s
2m?

From (6.54) it follows one solution for M? >0 at M?* ~ 2.79m* and many tachyon solutions when
M? < -38m?°.
With regard the extension by ordinary Lagrangian, we have the Lagrangian, potential, equation of

2
motion and mass spectrum condition that, when C_ = n n_l , are:
m°|¢] O O O oo,
L=—|59—-— -1|- -1:¢+—Ingp*+—|, (6.55
gz[z{mz {aw MWJ o +if) e
m°® 1
)=— 0)+1-Ing’ ———|, (6.56
o’ { ’ 1—¢} (650
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In addition to many tachyon solutions, equation (6.58) has two solutions with positive mass:
M?~2.67m* and M? ~ 4.66m>.

L Here u(n) is the Mobius function, which is defined

Now, we describe the case of C, = y(n)n 5
n

for all positive integers and has values 1, 0, — 1 depending on factorization of n into prime numbers
p . Itis defined as follows:

0, n=p°m
p(n)=4(-1), N=pp,P. P %P, (659
. n=1(k=0)

The corresponding Lagrangian is

+00

mD +00 n+
L =Cobo+ 7| =5 2; Z0) Z "l (6.60)
n=l 2m

1

Recall that the inverse Riemann zeta function can be defined by

+00

ﬂ?, s=o+it, o>1. (6.61)
~n

S

Now (6.60) can be rewritten as

D

m 1 1 oo
L, =Coky g E¢ﬁ¢+jo M(g)dg |, (6.62)

2m

where M(¢)=>" " 1(n)p" = —¢* —¢° - 4° + $° — ¢" + ¢"° — ¢" — ... The corresponding potential,
equation of motion and mass spectrum formula, respectively, are:

vﬂ(¢)=—Lﬂ(m=o)=—2[C¢ ~Ing?)-¢* - [ M dﬂ. (6.63)

6 — M(p)- Co%gzﬁ— 2C,4Ing=0, (6.64)
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Lo M

c M 2 m
2m?

where usual relativistic kinematic relation k?=—k2+k?=-M? is used.
Now, we take the pure numbers concerning the egs. (6.54) and (6.58). They are: 2.79, 2.67 and

\/§+l

4.66. We note that all the numbers are related with ® = — thence with the aurea ratio, by the

+2C,-1=0, |¢[<<1, (6.65)

following expressions:

279= (@) 267=(@)f +(@)*";  466=(@)f +(@)*". (6.66)

6.2 p-Adic and adelic quantum cosmology

Adelic quantum cosmology is an application of adelic quantum theory to the universe as a whole. In
the path integral approach to standard quantum cosmology starting point is Feynman’s idea that the

amplitude to go from one state with intrinsic metric h;, and matter configuration ¢ on an initial

hypersurface X, to another state with metric h'., and matter configuration ¢' on a final

ij?
hypersurface X', is given by a functional integral of ;(w(— S., lgﬂv,GJJ) over all four-geometries g
and matter configurations @, which interpolate between the initial and final configurations, i.e.

pv?

(.0, Thy,8%) =[2(g,,) @), 7.(-8.]9,. @) (©67)

The Sm[g CDJ is the usual Einstein-Hilbert action

uv?

s[g,, @)= Ud“xﬁ(R—ZAHZjdsx\/ﬁKj—%jd“xﬁ[g”a#@aV@+V(CD)] (6.68)

167G

for the gravitational field and matter fields @. In (6.68), R is scalar curvature of four-manifold M ,
A is cosmological constant, K is trace of the extrinsic curvature K; at the boundary oM of the

manifold M . To perform p-adic and adelic generalization we first make p-adic counterpart of the
action (6.68) using form-invariance under change of real to the p-adic number fields. Then we
generalize (6.67) and introduce p-adic complex-valued cosmological amplitude

(h, ,¢',2'\hij,¢,z>p = [9(0,.), 2(®), 7,(-S, g, ®]). (6.69)

The space of all 3-metrics and matter field configurations (h; (X),#(X)) on a 3-surface is called

superspace (this is the configuration space in quantum cosmology). Superspace is the infinite
dimensional one with a finite number of coordinates (h; (X),#(X)) at each point X of the 3-surface.

One useful approximation is to truncate the infinite degrees of freedom to a finite number, thereby
obtaining some particular minisuperspace model. Usually, one restricts the four-metric to be of the

form ds” =—N?(t)dt> + hydx'dx’, where N(t) is the laps function. For such minisuperspaces,
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functional integrals (6.67) and (6.69) are reduced to functional integration over three-metrics,
matter configurations and to one usual integral over the laps function. If one takes boundary

condition q“(t,)=q%,q*(t,)=q” then integral in (6.67) and (6.69), in the gauge N =0, is a
minisuperspace propagator. In this case it holds

(o

6.0, (6.70)

), = AN (o N

where

%[0z Njoe 0)= [ a7z, (-s.[a])  6.70)

is an ordinary quantum-mechanical propagator between fixed q“ in fixed time N . For quadratic
classical action S (g, N|q1,0), (6.71) becomes

1/2

_o'sy oSy
200,06, 00,00,

‘%p(qzv N|q1,0): ﬂp[ Zp(_ Sp (qz’ N|q1,0)). (6.72)

)

If system has n decoupled degrees of freedom, its p-adic kernel is a product

1/2

2,590z Njgz 0)).  (6.73)

p

; 8ZSCI azscl
H, (0, Na,.0)= H’z{_ zaqg’aqu J| aq; 6?11“

a=1
p-Adic and adelic wave functions of the universe may be found by means of the following equation
U(thy.s(x)= 2(Et,,(x),  (6.73b)

where ://aﬂ(x) are adelic wave eigenfunctions, E :(Em,Ez,...,Ep,...) is the corresponding adelic
energy, a:( w,az,...,ap,...) and ﬂ:(ﬂw,ﬂz,...,ﬂp,...) are indicies for energy levels and their

degeneration, respectively.
The corresponding adelic eigenstates have the form

#lo)=velaz ) Tvslap Tk,

peS

). (6.74)

A necessary condition to construct an adelic model is existence of the p-adic (vacuum) state
Qtjq“ p), which satisfies

| %o Njor okiar = ofas

<1
p

p) (6.75)

ar

for all but a finite number of p.

Now we describe the p-adic and adelic model with cosmological constant in D = 3 dimensions. This
model have the metric
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ds? = o(- N2(t)dt? + a*(t)do? +sin? &dg?)), (6.76)

where o =G . The corresponding v -adic action is
17 a2 1
S lal==|dtNa*(t) -——+—=-1|, (6.77
| ({ T j 6.7

where 1= Ao?’. The Euler-Lagrange equation of motion
d-N%al1=0
has the solution

a(t):mzm((az —ale"“ﬁ)a“ﬁt +(a1eNﬁ —az)e"”z‘), (6.78)

where the boundary conditions are a(0)=a,, a(l)=a,. For the classical action it gives

a _ 1 208, @& +a,
8! (22: NJav.0)= ﬁ{Nﬁ M(Smh(N ) il ﬁ)ﬂ' (6.79)

Quantum-mechanical propagator has the form

ifv(az,Nlai,O)%(—ZSimﬁ m}smhﬁ mL #(-52(@,,N[a,0)).  (6.80)

The equation (6.75), in a more explicit form, reads

R IOY M T L T S
o7 2sinh(NY2 ) Jsinh(NVA ) ol 72 T 2tanh(NV2)™
. A2

Jz
Xaif‘"(manh(w)aﬂ‘sinhm)azaﬂda« N

We note that the p-adic Gauss integral over the region of integration |x|p <p'is

I;gp(axz + ,Hx)dx = p’VQ(p’V|ﬂ|p)|oc|p p?<1; (6.8la)

x|, =<p™

I Zp(aX2 + ,BX)dx = /lp(a)|2a|;“2;{{ S jﬂ( o'

o da
x|, <p

v
20

],|a|p p?>1; (6.81b)
p

where Q(u) is defined as follows:
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Using (6.81b), for v=0, we obtain

QQa2|p): gp(—%+%tanh(N \/Z)aZZJQQaJp) (6.82)

Ja
2tanhiN\/ﬂp

|/1|p <1 holds. Applying also the (6.81a) to (6.81), we have

with condition >1, ie. |N|p <1. For p#2, left hand side is equal to Quaz|p) if

_ AR B N, Vaak o[ Ve
Qﬂa2| )_lp(_ Zsinh(Nﬁ))‘sinh(N\/ij XZp(_E+Zcoth(N\/Z)J [‘smh(N\/_)‘p - (6.83)

It becomes an equality if condition |N|p <1 take place.
Thence, we can rewrite the eq. (6.81) as follow:

QQa| )_ﬂ, — \/7 \| \/7 |l/2 N \/7 a2 )

0)7 % " 2sinn(NZ) Jsinn(NZ), “PL T2 " 2tann(NZ)
Vi , A )

al-[gj_ p(Ztanh(Nﬂ)ai _Sinh(Nﬂ)azaijdai_

Y

- : |
zam) i), <2 2o ), |0

The de Sitter minisuperspace model in quantum cosmology is the simplest, nontrivial and exactly
soluble model. This model is given by the Einstein-Hilbert action with cosmological term (6.68)
without matter fields, and by Robertson-Walker metric

ds? = o2(— N2(t)dt? + a%(t)d?), (6.85)

where ¢ = :23—6 and a(t) is the scale factor. Instead of (6.85) we shall use
T

dsz=az( ’\;(())dt +q(t)do J (6.86)

The corresponding v -adic action for this one-dimensional minisuperspace model is

qz
s,[a]= IdtN[ N ] (6.87)
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where A = Ao . The classical equation of motion (N =1) ¢ =24, with the boundary conditions

q0)=q, and g(T)=q,, (T=t,—t,) gives

q(t)=At? + [@ _aT jt +q,. (6.89)
After substitution (6.88) into (6.87) and integration, one obtains that the classical action is

T8 T (9,-q)
cl _ _ _ - 2 1
SRS oMo+ a,)-2l - (689)

Since (6.89) is quadratic in g, and ¢,, quantum-mechanical propagator has the form

%(0,710,0)= 28 4 (Cs2(q,,Tia,0)). (6.90)

47,

The equation (6.75) reads

/1(—8T) AT T 29,7 ¢ q> (AT q
Oay|) )= o 5~ 5Tt L4 =g dg,. (6.91
q%'p) aTf” Z"( 24 2 4 8T qujfp 8T+(4 4qu1 G- (6.91)

p

7. Mathematical connections.

Now, we describe some possible mathematical connections. We take the eq. (1.26) of Section 1.
We note that can be related with the egs. (5.11), (5.12) of Section 5, hence we have the following
connections:

87



Thence, mathematical connections between the slow-roll formula regarding the number of e-
foldings N, of inflation and the equations of the stress energy tensor for the p-adic scalar field in p-

adic inflation.
Now, we take the egs. (2.4), (2.6), (2.72b) and (2.74) of Section 2. We note that can be related with
the eq. (6.91) of Section 6, hence we obtain the following connections:

S= Idtdsx{—BM;L(a2 -~ Ka2)+%a2¢2} +8 =

2,(-8T) AT T 9,7 ¢ o’ (AT q j
; p _ — + 2 +_2 1 +| — 2 d y 7.2
|4T|1p/2 Z"( 24 2 4 8T qujfp eT "\ a3 Sh [ (72)

§=[d* x\/_[ 4 R——(8/,¢)ZJ+S o +s:lo]=
:/1(3:)1[ /12T3_I+/’“4_2T+Q_22]x | Z{ql (’ITT qZJq}dql, (7.3)

4t 24 2 4 er) ) Pler aT
_ jl I'])(4540 Xida) _ 264_54)(2?)(24) _
_ le_l [%Ex4(pb30(|2x4)+ ByY, (kx, ))— 4(A, (kx, )+ BOYl(IZx‘l))} =
4

A, (=8T AT T q,T 2 (AT
= (1,2 );([ M +q—2}< I ;({q—lj{——i]ql}dql; (7.4)

atf 24 2 4 ) ) "ler (4
ajm _ [ _ 454 2
T— - ntFLdy _J.—l b2 e da)j

A,(~8T) 2T T aq,T 2 9 (xlT qzj
- 2 — da,; (7.5
= 4Tl « ( 24 2 4 'ar qujfp 8T | 4 % 0o (7:5)

Thence, mathematical connections between some equations concerning cosmological perturbations
in a Big Crunch/Big Bang space-time and M-theory model of a Big Crunch/Big Bang transition
(2.4-2.6), some equations concerning the solution of a braneworld Big Crunch/Big Bang cosmology
(2.72b-2.74) and the equation concerning the de Sitter minisuperspace model in p-adic quantum
cosmology (6.91).

Now, we take the egs. (5.11), (5.12), (5.29), (5.35) and (5.46) of Section 5. We note that can be
related with the egs. (3.30), (3.32), (3.34), (3.87), (3.96) and (3.98) of Section 3, hence we obtain
the following mathematical connections:
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2 2
oot ] < 2o 2 )

2V
m? - 2 1 p = Lo 1 q = Lk
jz_gsf,g‘” de p¢—m¢p*l+m—;jodr(ne "¢ (e K ¢}+m—§Ldr(8ae D¢J o%e ™ ¢J]+
m4 _m;ﬂz _(1;12)u s _iz X _mié _(1;;)1
mﬁgﬁjd{a ”¢J{5ve i ¢J:> ngz ge P p+1¢p” e od{[le ”¢][e ’ ¢J+

il (l—r)l:l
1 g e
+m—§jodfat e ™gple ™ gl (7.6)

2 2
dlogjo,
n —1;—%(”15) jg_dlng = -0 03i :>1+Mz1+ix

: H, & dN 1+ d logk m
2 m’a |ve™ 17 % : 2 2D} 2
x1/[—lo :>—[ D(Y' maY/de'} ~ 0 1- v (1.7
[m g[ 2k 2 J] 2v IO () m’?ve ™ | mD, (1)
2 Go\ns—l\ 2 4c
. B gle 2_dinz _ 40+y) 4, 0 B

=== =
© 3t pin -1t e dw c’MZ ¢ 1+ 4

dlog|5| ><1/[ mZa ve™ 1=
dlogk m 2k 2

1 maY'/ 2 ~ 2D2 2 .
Y U D(Y')e dY} ~ 2 O‘m“YO(l_mDoj’ (7.8)

2V mave
_ 4c
Miiaz\/z _ :_p_l £|n _]_I:g_dln€:>4(];+7;) ¢ —0.03- 2 B
V oy lFr Inp e dN c‘Mg, c? +,6’
dl 2 mC
L dloga[” ><1/[—Io ma Ve h
dlogk m 2k 2

1 maY'l 2 ~ 2D2 2
- U D(Y") dY} v 2 O‘m“YO(l_mDoj' (7.9)

2V mea“ve

Thence, mathematical connections between some equations concerning the generating ekpyrotic
curvature perturbations before the Big Bang, some equations concerning the colliding branes and
the origin of the hot Big Bang and some equations concerning the approximate inflationary
solutions rolling away from the unstable maximum of p-adic string theory.

Now, we take the egs. (5.2), (5.11) and (5.12) of Section 5 and the egs. (6.28), (6.43) and (6.62), of
Section 6. We obtain the following mathematical connections:
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Lr ™ om oy, 1 ik _k_z“ _ ¢
+ = jodrat{e ¢}t[e ¢ﬂ:> ((2}15— 2] fkg_ﬁzmge g“( > j¢(k)dk 5>
1 ixk k’ AR ohgn
:WIRDe g{ 2m2+h}b(k)dk_ACnZ;n " =

S
-M\D

= Coy+ 0 %qﬁ%]w [ (pdg|. (7.20)

éa(Zmz

Thence, mathematical connections between some equations concerning the approximate
inflationary solutions rolling away from the unstable maximum of p-adic string theory and some
equations concerning the zeta strings and the zeta nonlocal scalar fields.

In conclusion, with regard the Section 6 we have the following mathematical connections between
the egs. (6.84) and (6.91) and the eq. (3.87) of the Section 3:

_ oLV (N N
Qﬂazh)_lp(_ Zsinh(Nﬁ)}‘sinh(Nﬂ)‘p Z"[_?+ 2tanh(NV A asz

NN )
aI<llp[2tanh(N\/_) Sinh(Nﬁ)azainai—

~12 Ji \| VA |l/2 _ﬂ+ Vg Q| Vi, |
o 25|nh(N\/_))‘smh(N\/_)‘ 2 2coth(N\/7) ‘smh(Nﬁ)‘

1 a2 } 2D? 2
= Y'e" ' edY'| & g 1- ;o (7.11
ZVU D(') 2o Pve Yo mD, (7.11)

m-a-ve

A,(-8T) 2T T aq,T ¢} o g,
aolal, - atf”? 7‘( w2 4 e ) ) blar (4 qu 0% =

AP

L% ~pyoamarizger | 2Dg 2
:EUO D(Y')e dY} e s (7.12)

m-a-ve
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Thence, mathematical connections between the some equations concerning the p-adic quantum
cosmology and the fundamental equation concerning the colliding branes and the origin of the hot
Big Bang.
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