On the Zeros of Riemann Ξ -function

Wiroj Homsup

Abstract: Based on functional equations of the Riemann Ξ -function and an application of the L'Hopital rule, it is shown that the Riemann Ξ -function has only real zeros.

1. Introduction

The Riemann ξ -function is the entire function defined by the formula

$$\xi(s) = \frac{1}{2} s(s-1)\pi^{-s/2} \Gamma(\frac{s}{2})\zeta(s)$$
(1)

Its zeros are exactly the non-trivial zeros of the Riemann zeta function $\zeta(s)$, those that lie in the critical strip 0 < Re(s) < 1. The Riemann Ξ -function $\Xi(z) = \xi(\frac{1}{2}+iz)$, obtained using the variable change $s = \frac{1}{2} + iz$ which send the critical line $\text{Re}(s) = \frac{1}{2}$ to the real z-axis, has the Fourier integral representation

$$\Xi(z) = 2\int_0^\infty \Phi(t) coszt dt$$
⁽²⁾

in which

$$\Phi(t) = \sum_{1}^{\infty} (4\pi^2 n^4 e^{\frac{9t}{2}} - 6\pi n^2 e^{\frac{5t}{2}}) \exp(-\pi n^2 e^{2t}), \ 0 < t < \infty,$$

is a rapidly decreasing function [1]. The Riemann Ξ -function satisfies the functional equations $\Xi(z) = \Xi(-z)$ and $\Xi(z) = \overline{\Xi(\overline{z})}$.

2. Zeros of the Riemann Ξ -function

Let us denote non-trivial zeros as $z_0 = \sigma_0 + it_0$. Its conjugate $\bar{z}_0 = \sigma_0 - it_0$. Then

$$\Xi(z_0) = 2\int_0^\infty \Phi(t) \cos z_0 t dt = 0,$$

and

$$\Xi(\bar{z_0}) = 2 \int_0^\infty \Phi(t) \cos \bar{z}_0 t dt = 0$$

From the functional equation $\Xi(z) = \overline{\Xi(\overline{z})}$, it means that $\frac{\Xi(z_0)}{\Xi(\overline{z_0})} = \frac{0}{0} = -1$

By the L'Hopital rule [2],

$$\lim_{u \to \infty} \frac{\frac{d}{du} \, 2\int_0^u \Phi(t) \cos z_0 t dt}{\frac{d}{du} \, 2\int_0^u \Phi(t) \cos \bar{z}_0 t dt} = 1$$
(3)

Thus, by the Leibniz's rule for differentiation under the integral sign,

$$\lim_{u \to \infty} \frac{\cos z_0 u}{\cos \bar{z}_0 u} = 1 \tag{4}$$

Eq. (4) is satisfied if $t_0 = 0$.

3. Conclusion

Based on functional equations of the Riemann Ξ -function, all zeros of the Ξ -function are real.

References

- [1] Lagarias, Jeffrey and Montague, David, The integral of the Riemann ξ-function. arXiv:1106.4348v3 [math.NT] 18 Aug 2011.
- [2] Gunes, Bahattin, The Analysis of the Riemann Hypothesis, 2019, hal-02077752v2.

Email: wiroj5637@gmail.com