
AN INTRODUCTION TO MULTIVARIATE EXPANSION

T. AGAMA

Abstract. We introduce the notion of an expansion in a specified and mixed

directions. This is a piece of an extension program of single variable ex-

pansivity theory developed by the author.

1. Introduction

The notion of a single variable expansion had been developed earlier on by
the author [2]. This notion surprisingly turns out to be useful in studying the
sendov conjecture. For the paper detailing this study, see ([1]). This theory also
has a wide range of applications in determining the insolubility of certain systems of
single variable differential equations. In the current paper, We launch an extension
program where the problem is studied in the ring C[x1, x2, . . . , xn] with the complex
base field C. It turns out that the basic notions under study in the single variable
mostly carry over to this setting. As an application, we obtain one of the many
potential results

Theorem 1.1. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Let (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) for all 1 ≤ i ≤ n be destabilized stage k ≥ 1 and

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)] = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] = w

for all 1 ≤ i, j ≤ n. Consider the function

−→
OS ·

−−→
OSe : Rn −→ N ⊂ C.

Then any h ∈ N has the representation

h := aw1 + aw2 + · · ·+ awn .

Throughout this paper, we keep the usual standard notion S for all tuples whose
entries belong to the ring C[x1, x2, . . . , xn]. Occasionally we might choose to index
these tuples by Sj over the natural numbers N if we have two or more and we
want to keep them distinct from each other. The tuples S0 = (0, 0 . . . , 0) and
Se = (1, 1, . . . , 1) are still reserved for the null and the unit tuple respectively.
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2. Expansion in mixed and specified directions

In this section we introduce the notion of an expansion in a mixed and a specified
direction. We launch the following languages.

Definition 2.1. Let F := {Si}∞i=1 be a collection of tuples of C[x1, x2, . . . , xn].
Then by an expansion on F := {Si}∞i=1 in the direction xi for 1 ≤ i ≤ n, we mean
the composite map

(γ−1 ◦ β ◦ γ ◦ ∇)[xi] : F −→ F ,

where

γ(S) =


f1

f2

...
fn

 and β(γ(S)) =


0 1 · · · 1
1 0 · · · 1
...

... · · ·
...

1 1 · · · 0



f1

f2

...
fn


with

∇[xi] =

(
∂f1

∂xi
,
∂f2

∂xi
, . . . ,

∂fn
∂xi

)
.

The value of the lth expansion at a given value a of xi is given by

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](a) ∈ C[x1, . . . xi−1, xi+1, . . . , xn].

Similarly by an expansion in the mixed direction we mean

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=2[xσ(i)]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(1)]

for some permutation σ : {1, 2, . . . , l} −→ {1, 2, . . . , l}. The value of this expansion
on a given value ai of xσ(i) for all σ(1) ≤ i ≤ σ(l) is given by

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](ai)
(S) ∈ C.

Remark 2.2. Next we prove a fundamental result which shows that an expansion
is commutative. This reinforces the very notion that there is no need to give
precedence to the direction of an expansion. In essence, it gives some flexibility to
the way and manner an expansion could be carried out.

Proposition 2.1. An expansion is commutative.

Proof. Consider F := {Si}∞i=1 the collection of tuples of the ring C[x1, x2, . . . , xn].
It suffices to show that for any S ∈ F then the relation

(γ−1 ◦ β ◦ γ ◦ ∇)[xi]⊗[xj ](S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xj ]⊗[xi](S)



AN INTRODUCTION TO MULTIVARIATE EXPANSION 3

is valid. We observe that

(γ−1 ◦ β ◦ γ ◦ ∇)[xj ]⊗[xi](S) =

(
∂

∂xj

( ∑
t∈[1,n]
t 6=1

∑
k 6=t

∂fk
∂xi

)
, . . . ,

∂

∂xj

( ∑
t∈[1,n]
t6=n

∑
k 6=t

∂fk
∂xi

))

=

( ∑
t∈[1,n]
t 6=1

∑
k 6=t

∂2fk
∂xj∂xi

, . . . ,
∑
t∈[1,n]
t 6=n

∑
k 6=t

∂2fk
∂xj∂xi

)

=

( ∑
t∈[1,n]
t 6=1

∑
k 6=t

∂2fk
∂xi∂xj

, . . . ,
∑
t∈[1,n]
t 6=n

∑
k 6=t

∂2fk
∂xi∂xj

)

=

(
∂

∂xi

( ∑
t∈[1,n]
t6=1

∑
k 6=t

∂fk
∂xj

)
, . . . ,

∂

∂xi

( ∑
t∈[1,n]
t 6=n

∑
k 6=t

∂fk
∂xj

))

= (γ−1 ◦ β ◦ γ ◦ ∇)[xi]⊗[xj ](S)

since each entry of the tuple is contained in the polynomial ring C[x1, x2, . . . , xn].
�

3. The totient and the residue of an expansion

In this section we introduce the notion of the residue and the totient of an
expansion. These two notions are analogous to the notion of the rank and the
degree of an expansion under the single variable theory. We launch more formally
the following languages.

Definition 3.1. Let F = {Si}∞i=1 be the collection of tuples of the ring C[x1, x2, . . . , xn].
Then we say the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) is free with totient k, denoted

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)], if

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](S) = S0.

We call the expansion (γ−1 ◦β ◦γ ◦∇)k−1
[xi]

(S) the residue of the expansion, denoted

Θ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)]. Similarly we say a mixed expansion is free with totient

k, denoted Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] if

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1⊗kl=1[xσ(i)]
(S) = S0

for k ≥ l.

3.1. The dropler effect induced by an expansion. In this section we introduce
the notion of the dropler effect induced by an expansion. This phenomena is mostly
induced by expansion on several other expansions in a specific direction.

Definition 3.2. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Then the expansion (γ−1◦β◦γ◦∇)⊗li=1[xσ(i)]

(S) is said to induce a dropler effect with

intensity k, denoted I[(γ−1◦β◦γ◦∇)[xj ](S)] on the expansion (γ−1◦β◦γ◦∇)[xj ](S)
if

(γ−1 ◦ β ◦ γ ◦ ∇)k[xj ] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

is free with k < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] and k is the smallest such number.

In other words, we say the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) admits a dropler
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effect from the source (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) with intensity k. The energy

E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] saved by the expansion under the dropler effect is given
by

E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)]− I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)].

This is the energy-dropler effect intensity equation.

Proposition 3.1. Let F := {Si}∞i=1 be the collection of tuples of the ring C[x1, x2, . . . , xn].
If the expansions (γ−1 ◦ β ◦ γ ◦∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦∇)[xt](S) each admits a
dropler effect from the same source with intensity k1 and k2, respectively, then the
expansion

[(γ−1 ◦ β ◦ γ ◦ ∇)[xs] + (γ−1 ◦ β ◦ γ ◦ ∇)[xt]](S)

admits a dropler effect from the same source with intensity max{k1, k2}.

Proof. Suppose the expansions (γ−1◦β◦γ◦∇)[xs](S) and (γ−1◦β◦γ◦∇)[xt](S) each
admits a dropler effect from the same source with intensity k1 and k2, respectively,
and let (γ−1 ◦β ◦ γ ◦∇)⊗li=1[xσ(i)]

(S) be the source. Then it follows from Definition
3.2

(γ−1 ◦ β ◦ γ ◦ ∇)k1[xs]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0

and

(γ−1 ◦ β ◦ γ ◦ ∇)k2[xt]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0

with k1 < Φ[(γ−1◦β◦γ◦∇)[xs](S)] and k2 < Φ[(γ−1◦β◦γ◦∇)[xt](S)]. By replacing

k1 and k2 with max{k1, k2} < Φ[{(γ−1 ◦ β ◦ γ ◦ ∇)[xs] + (γ−1 ◦ β ◦ γ ◦ ∇)[xt]}(S)],
we see that[

(γ−1 ◦ β ◦ γ ◦ ∇)
max{k1,k2}
[xs]

+ (γ−1 ◦ β ◦ γ ◦ ∇)
max{k1,k2}
[xt]

]
◦ (γ−1 ◦ β ◦ γ◦

∇)⊗li=1[xσ(i)]
(S) = S0

and it is easy to see that[
(γ−1 ◦ β ◦ γ ◦ ∇)

max{k1,k2}−r
[xs]

+ (γ−1 ◦ β ◦ γ ◦ ∇)
max{k1,k2}−z
[xt]

]
◦ (γ−1 ◦ β ◦ γ◦

∇)⊗li=1[xσ(i)]
(S) 6= S0

for any r, z ≥ 1. This completes the proof. �

3.2. Destabilization of an expansion. In this section we introduce the notion
of destabilization induced by an expansion. This notion will form an essential tool-
box in proving some result in this sequel. We launch more formally the following
languages.

Definition 3.3. Let F := {Si}∞i=1 be a collection of tuples of C[x1, x2, . . . , xn].
Then we say the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) is said to undergo natural

destabilization if (γ−1 ◦ β ◦ γ ◦ ∇)0
[xi](0)(S) 6= S0. We say the expansion (γ−1 ◦ β ◦

γ ◦ ∇)[xi](S) is said to undergo a destabilization at stage k ≥ 1 if (γ−1 ◦ β ◦ γ ◦
∇)j[xi](0)(S) = S0 for all 1 ≤ j ≤ k− 1 and (γ−1 ◦ β ◦ γ ◦∇)k[xi](0)(S) 6= S0. In other

words, we say the expansion (γ−1 ◦β ◦γ ◦∇)[xi](S) admits a destabilization at stage

k ≥ 0. We say it is strongly destabilized if Idm[(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](0)(S)] 6= 0 for

all 1 ≤ m ≤ n.
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Remark 3.4. Next we prove a result that tells us that destabilization should by
necessity happen in an expansion. The following result confines this stage to a
certain range.

Proposition 3.2. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Then the stage of destabilization k ≥ 0 of the expansion (γ−1 ◦β ◦γ ◦∇)[xi](S) must
satisfy the inequality

0 ≤ k < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)].

Proof. If the expansion (γ−1◦β◦γ◦∇)[xi](S) admits a natural destabilization, then

the stage k = 0. Thus we may assume that the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)
do not admit a natural destabilization. Suppose on the contrary that the stage of
destabilization satisfies k ≥ Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)]. Then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xi](S)]−1

[xi](0) (S) = S0.

This is absurd since the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xi](S)]−1

[xi]
(S)

is the residue of the expansion in the direction xi. �

Remark 3.5. Next we relate the dropler effect of an expansion with a given intensity
to the stage of destabilization in the following proposition.

Proposition 3.3. Let F := {Si}∞i=1 be a collection of tuples of C[x1, x2, . . . , xn].
Suppose the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) admits a dropler effect from the

source (γ−1 ◦ β ◦ γ ◦∇)⊗li=1[xσ(i)]
(S). Then the expansion (γ−1 ◦ β ◦ γ ◦∇)[xj ](S) is

destabilized at stage E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] if and only if

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](0)(S) 6= S0

and

(γ−1 ◦ β ◦ γ ◦ ∇)−t[xj ]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](0)(S) = S0

for all 1 ≤ t ≤ E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)]− 1.

Proof. Pick S ∈ F and suppose the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) admits a

dropler effect from the source (γ−1 ◦β ◦γ ◦∇)⊗li=1[xσ(i)]
(S). Then by definition 3.2,

It follows that

(γ−1 ◦ β ◦ γ ◦ ∇)
I[(γ−1◦β◦γ◦∇)[xj ](S)]

[xj ]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0

= (γ−1 ◦ β ◦ γ◦

∇)
Φ[(γ−1◦β◦γ◦∇)[xj ](S)]

[xj ]
.

It follows that

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ◦

∇)
Φ[(γ−1◦β◦γ◦∇)[xj ](S)]−I[(γ−1◦β◦γ◦∇)[xj ](S)]

[xj ]

since an expansion is a bijective map. Since

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](0)(S) 6= S0



6 T. AGAMA

and

(γ−1 ◦ β ◦ γ ◦ ∇)−t[xj ]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](0)(S) = S0

for all 1 ≤ t ≤ E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] − 1, the result follows by appealing to
definition 3.3. �

Next we expose an important relationship that exists between the totient of the
mixed expansion and the underlying expansion in specific directions. One could
view this result as a sub-additivity property of the totient of an expansion.

Proposition 3.4. Let F =: {Si}∞i=1 be the collection of tuples of the ring C[x1, x2, . . . , xn].
Then we have

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] ≤

Φ[(γ−1◦β◦γ◦∇)⊗l
i=1

[xσ(i)]
(S)]∑

i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)].

4. Diagonalization and sub-expansion of an expansion

In this section we introduce the notion of diagonalization of an expansion and
sub-expansion of an expansion. This notion is mostly applied to expansions in
mixed directions. We launch the following languages to ease our work.

Definition 4.1. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Then for any S ∈ F , we say the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) is

diagonalizable in the direction xj (1 ≤ j ≤ n) of order k at the spot Sj ∈ F with
S 6= Sj if

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sj).

Remark 4.2. Next we launch the notion of the sub-expansion of an expansion. The
same notion under the single variable theory still carries over to this setting.

Definition 4.3. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Then we say the expansion (γ−1 ◦β ◦γ ◦∇)k[xj ](Sz) is a sub-expansion of the expan-

sion (γ−1◦β◦γ◦∇)l[xj ](St) denoted (γ−1◦β◦γ◦∇)k[xj ](Sz) ≤ (γ−1◦β◦γ◦∇)l[xj ](St)
if there exist some 0 ≤ m < l such that

(γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sz) = (γ−1 ◦ β ◦ γ ◦ ∇)k+m
[xj ]

(St).

We say the sub-expansion is proper if m ≥ 1. We denote the proper sub-expansion
by (γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sz) < (γ−1 ◦ β ◦ γ ◦ ∇)l[xj ](St)

Remark 4.4. Next we relate the notion of the sub-expansion of an expansion to
the notion of Diagonalization of a mixed expansion. We expose this profound
relationship in the following proposition.

Proposition 4.1. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
If the mixed expansion (γ−1◦β◦γ◦∇)⊗li=1[xσ(i)]

(S) is diagonalizable in the direction

xj (1 ≤ j ≤ n) at the spots St,Sr ∈ F with orders kr and kt, respectively, with
St 6= Sr and kr > kt, then

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) ≤ (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr).
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Proof. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn] and
suppose the mixed expansion (γ−1 ◦ β ◦ γ ◦∇)⊗li=1[xσ(i)]

(S) is diagonalizable in the

direction xj (1 ≤ j ≤ n) at the spots St,Sr ∈ F with orders kr and kt, respectively.
Then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr)

and

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]

(St).

It follows that

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) = (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr).

Since kr > kt, it follows that there exist some m ≥ 1 such that

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) = (γ−1 ◦ β ◦ γ ◦ ∇)kt+m[xj ]

(Sr)

and It follows that

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) ≤ (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr).

This completes the proof. �

5. The kernel of an expansion

In this section we introduce the notion of the kernel of an expansion. One
could draw some parallels with this notion and the notion of the boundary points
of an expansion under the single variable theory. This choice of terminology is
appropriate for this context, since we are no longer considering points as being
solutions to our tuple equation but instead tuples consisting of solutions to certain
partial differential equation. We launch formally the following languages.

Definition 5.1. Let F = {Si}∞i=1 be the collection of tuples of C[x1, x2, . . . , xn].
Then by the kernel of the expansion (γ−1 ◦ β ◦ γ ◦∇)l[xi](S) denoted Ker[(γ−1 ◦ β ◦
γ ◦ ∇)l[xi](S)], we mean solutions to the equation

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](S) = S0.

Let us denote the associated quotient ring of C[x1, x2, . . . , xn] by C[x1, x2, . . . , xn].
Then it is easy to notice that

Ker[(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](S)] ⊂ C[x1, x2, . . . , xj , xj+1 . . . , xn].

The kernel is a useful tool to study and could as well has a broad range of applica-
tion. We do not study this into detail in the current paper, since this is the first of
the series of papers carefully charted to study these things.
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6. Applications

In this section we give one striking application of the theory to the area of number
theory. We state the application in the following result.

Theorem 6.1. Let F := {Si}∞i=1 be a collection of tuples of the ring C[x1, x2, . . . , xn].
Let (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) for all 1 ≤ i ≤ n be destabilized stage k ≥ 1 and

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)] = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] = w

for all 1 ≤ i, j ≤ n. Consider the function
−→
OS ·

−−→
OSe : Rn −→ N ⊂ C.

Then any h ∈ N has the representation

h := aw1 + aw2 + · · ·+ awn .

1.
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