Three-Dimensional Flow Impinging Obliquely on a Rigid Cylinder

A. Dowgialo
Tuvinian Institute for Exploration of Natural Resources
SD RAS, Russia

An exact solution of the Navier-Stokes equation is given which represents steady three-dimensional flow of a viscous fluid impinging on Rigid Cylinder obliquely. Numerical discussions of the relevant functions as well as the structure of the flow field are made. A comparison with an existing theory is also given.

Key words. Navier-Stokes equations, exact solutions.
AMS subject classifications. 76D05, 35Q30, 74F10
Due to the inherent nonlinearity of the Navier-Stokes equation, only three true exact threedimensional solutions are known. Namely:

- Homan flow [2], modified by Karman [3] for the case of a rotating disk;
- the conical jet of Slezkin [4], generalized to the case of swirling flow by Holstein [5] and Yih [6];
- Himenz flow [1], generalized to the case of an oblique flow by Stuart [7] and Dowgialo [8].

This note presents a new exact solution to the Navier-Stokes equation, which belongs to the same class as the three listed above. This is the case of a spatial flow obliquely running onto a rigid cylinder.

To construct a solution of this class, the corresponding ideal fluid flow is used as a basis, which is at the same time a solution of the Navier-Stokes equation, which is nonlinear, and a simpler, linear equation of the vortex-free flow

$$
\begin{equation*}
\vec{\Omega}=\vec{\nabla} \wedge \vec{u}^{0}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

in which the velocity field, represented as a vector product of the gradients of its integral surfaces $\psi_{i}^{0}, i=1,2$

$$
\begin{equation*}
\vec{u}^{0}=\vec{\nabla} \psi_{1}^{0} \wedge \vec{\nabla} \psi_{2}^{0} \tag{2}
\end{equation*}
$$

With a special view of surfaces ψ_{i}^{0}

$$
\begin{equation*}
\psi_{1}^{0}=f_{0}^{0}\left(x_{1}\right)+f_{1}^{0}\left(x_{1}\right) f_{2}^{0}\left(x_{2}\right), \psi_{2}^{0}=x_{3}-\int \frac{f_{3}^{0}\left(x_{1}\right)}{f_{1}^{0}\left(x_{1}\right)} d x_{1} \tag{3}
\end{equation*}
$$

the variables in equation (1) are separated, which makes it possible to reduce it to a system of ordinary differential equations.

Further, in order to extend the ideal solution (3) to the case of a viscous flow, the form of the function $f_{2}^{0}\left(x_{2}\right)$ is preserved, and the remaining functions are searched again, assuming their asymptotic desire for their "ideal" analogues:

$$
\begin{equation*}
\psi_{1}=f_{0}\left(x_{1}\right)+f_{1}\left(x_{1}\right) f_{2}^{0}\left(x_{2}\right), \psi_{2}=x_{3}-\int \frac{f_{3}\left(x_{1}\right)}{f_{1}\left(x_{1}\right)} d x_{1} \tag{4}
\end{equation*}
$$

We choose the Cartesian coordinates (x, y) in the plane of the cylinder section and the coordinate z in the direction of its axis. A non-viscous version of the current stream given in terms $\psi_{i}{ }^{0}, i=1,2$ of the coordinates of the source function, $[x, y, z] \rightarrow[l, o, z]$, where

$$
l=\frac{\ln \left(x^{2}+y^{2}\right)}{2}, o=\arctan (y, x)
$$

after substituting (3) into the vortex-free flow equation (1), the differential equations for
$f_{0}^{0}(l), f_{1}^{0}(l), f_{2}^{0}(o), f_{3}^{0}(l)$ take the form

$$
\begin{equation*}
f_{0}^{0^{\prime \prime}}=0, f_{1}^{0^{\prime \prime}}=0, f_{3}^{0^{\prime}}=2 f_{3}^{0}, \frac{d^{2} f_{2}^{0}}{d o^{2}}=0 \tag{5}
\end{equation*}
$$

As a result, for the flow of an ideal fluid, we obtain

$$
\psi_{1}^{0}=a l+(l+b) o, \psi_{2}^{0}=z-c \int \frac{e^{2 l}}{l} d l
$$

where, a, b and c are scale constants. The ideal flow functions are shown in Fig. $1 \& 2$. The velocity field of the ideal flow in this case has the form

$$
\begin{equation*}
\vec{u}^{0}=\left[((a+o) \sin (o)+(l+b) \cos (o)) e^{-l},((b+l) \sin (o)-(a+o) \cos (o)) e^{-l}, c\right] \tag{2’}
\end{equation*}
$$

Fig. 1. $\psi_{1}^{0}, z=0$

Fig. 2. $\psi_{2}^{0}, y=0$.

If fluid viscosity is taken into account, a boundary layer appears along the wall. We assume a generalization of (3') in the form of (4), assuming $f_{2}^{0}(o)=o$:

$$
\operatorname{Re} \cdot \psi_{1}=f_{0}(l)+f_{1}(l) \cdot o, \psi_{2}=z-\int \frac{f_{3}(l)}{f_{1}(l)} d l
$$

Where $\operatorname{Re}=\frac{u_{s} d}{v}$ is the Reynolds number.
Then the stationary Navier-Stokes equation

$$
\vec{\nabla} \wedge(\operatorname{Re} \cdot \vec{\Omega} \wedge \vec{u}+\vec{\nabla} \wedge \vec{\Omega})=\overrightarrow{0}
$$

gives ordinary differential equations for $f_{0}(l), f_{1}(l), f_{3}(l)$:

$$
\begin{align*}
& f_{1}^{\prime \prime \prime \prime}-\left(f_{1}+4\right) f_{1}^{\prime \prime \prime}+\left(f_{1}^{\prime}+2 f_{1}+4\right) f_{1}^{\prime \prime}=0 \tag{6}\\
& f_{0}^{\prime \prime \prime}-\left(f_{1}+1\right) f_{0}^{\prime \prime}-f_{0}^{\prime}+\left(f_{1}^{\prime \prime}+f_{1}+1\right) f_{0}=0 \tag{7}\\
& f_{2}^{\prime \prime \prime}-\left(f_{1}+2\right) f_{2}^{\prime \prime}-\left(f_{1}^{\prime}-2 f_{1}\right) f_{2}^{\prime}=0
\end{align*}
$$

where the dashes denote differentiation by l. Suitable boundary conditions follow from the expression for the flow rate

$$
\begin{equation*}
\operatorname{Re} \cdot \vec{u}=\left[\left(\left(o f_{1}^{\prime}+e^{l} f_{0}\right) \sin (o)+f_{1} \cos (o)\right) e^{-l},\left(f_{1} \sin (o)-\left(o f_{1}^{\prime}+e^{l} f_{0}\right) \cos (o)\right) e^{-l}, f_{3}\right] \tag{9}
\end{equation*}
$$

and have the form:

$$
\begin{aligned}
& f_{0}(0)=0, f_{1}(0)=0, f_{1}^{\prime}(0)=0, f_{3}(0)=0 \\
& f_{0}(\infty)=0, f_{1}(\infty) \rightarrow 0, f_{1}^{\prime}(\infty)=1, f_{3}(\infty)=v_{3}
\end{aligned}
$$

The solutions of equations (6) - (8) and the components of the velocity field are presented in Figs. 3 \& 4 .

References

1. Hiemenz, K.,1911. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J. 326: 321-24
2. Homann, F., 1936. Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel.

ZAMM 16: 153-164, doi: 10.1002/zamm. 19360160304
3. Kármán, T. V., 1921. Über laminare und turbulente Reibung. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 1(4), 233-252. doi:10.1002/zamm. 19210010401
4. Slezkin, N. A., 1934. On the motion of viscous fluid between two cones. Res. Rep., Moscow State Univ., USSR, 2: 89-90 (In Russian)
5. Gol'dshtik, M.A., 1960. A paradoxical solution of the Navier-Stokes, PMM vol. 24, no. 4, pp. 610621, doi: 10.1016/0021-8928(60)90070-8
6. Yih C.S.,Wu F., Garg, A. K. and Leibovich, S., 1982 Conical vortices: A class of exact solutions of the Navier-Stokes equations, Phys. Fluids 25, 2147-2158. DOI: 10.1063/1.863706
7. Stuart, J.N., 1959. The Viscous Flow near a Stagnation Point when External Flow has Uniform Vorticity, Journal of the Aerospace Sciences, 26(2), 124-125. doi:10.2514/8.7963
8. Dowgialo, A., 2020. Three-Dimensional Flow Impinging obliquely on a Plane Wall.
vixra.org/abs/2003.0332

