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An exact solution of the Navier-Stokes equation is given which represents steady three-dimensional flow of a viscous 
fluid impinging on Rigid  Cylinder obliquely. Numerical discussions of the relevant functions as well as the structure of 
the flow field are made. A comparison with an existing theory is also given. 
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Due to the inherent nonlinearity of the Navier-Stokes equation, only three true exact three-
dimensional solutions are known. Namely: 
- Homan flow [2], modified by Karman [3] for the case of a rotating disk; 
- the conical jet of Slezkin [4], generalized to the case of swirling flow by Holstein [5] and Yih [6]; 
 - Himenz flow [1], generalized to the case of an oblique flow by Stuart [7] and Dowgialo [8]. 
This note presents a new exact solution to the Navier-Stokes equation, which belongs to the same 
class as the three listed above. This is the case of a spatial flow obliquely running onto a rigid 
cylinder. 
     To construct a solution of this class, the corresponding ideal fluid flow is used as a basis, which is 
at the same time a solution of the Navier-Stokes equation, which is nonlinear, and a simpler, linear 
equation of the vortex-free flow 
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in which the velocity field, represented as a vector product of the gradients of its integral surfaces 
2,1,0 ii  

(2)                   0
2

0
1

0  
u  

With a special view of surfaces 0
i  

(3)                  1
1

0
1

1
0

3
3

0
22

0
21

0
11

0
0

0
1 )(

)(
),()()( dx

xf
xf

xxfxfxf    

the variables in equation (1) are separated, which makes it possible to reduce it to a system of 
ordinary differential equations. 
     Further, in order to extend the ideal solution (3) to the case of a viscous flow, the form of the 
function )( 2

0
2 xf  is preserved, and the remaining functions are searched again, assuming their 

asymptotic desire for their “ideal” analogues: 
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We choose the Cartesian coordinates  yx,  in the plane of the cylinder section and the coordinate 
z in the direction of its axis. A non-viscous version of the current stream given in terms 2,1,0 ii  
of the coordinates of the source function, ],,[],,[ zolzyx  , where 
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after substituting (3) into the vortex-free flow equation (1), the differential equations for 
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As a result, for the flow of an ideal fluid, we obtain 
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where, a , b  and c are scale constants. The ideal flow functions are shown in Fig. 1 & 2. The velocity 
field of the ideal flow in this case has the form 
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If fluid viscosity is taken into account, a boundary layer appears along the wall. We assume a 
generalization of (3 ’) in the form of (4), assuming oof )(0

2 : 
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Where 


du sRe  is the Reynolds number. 

Then the stationary Navier-Stokes equation 
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gives ordinary differential equations for )(),(),( 310 lflflf : 
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where the dashes denote differentiation by l  . Suitable boundary conditions follow from the 
expression for the flow rate 
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and have the form: 
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The solutions of equations (6) - (8) and the components of the velocity field are presented in Figs. 3 
& 4. 

  
Fig.3.                                                                         Fig.4. 
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