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Abstract. We describe the arithmetic or computational Islamic calendar of medieval Muslim
astronomers. We classify the different calendars of this type, also called tabular, finding the
possible intercalation criteria. With the chronological Julian day, we obtain precise rules to convert
this tabular calendar to the Julian or Gregorian calendar and vice versa. The Islamic tabular
calendar is, on average, very close to astronomical reality; however, there is an error that is
accumulative and that we determine precisely. This paper analyzes the Islamic era and its
relationship with the pre-Islamic calendar that existed in Arabia before the arrival of Islam.

1. Introduction
Strictly speaking, the Islamic calendar is observational, that is, physical observation of the

crescent Moon is needed to declare the beginning of the new month. However, there are visibility
criteria, some exclusively astronomical and others astronomical and physical, to anticipate when
the Moon will be visible after having been in conjunction with the Sun.

The lunar calendar is local, that is to say, that the observation depends on the place where the
view is made, depending on the geographical coordinates, height, clarity of the sky, time of year,
etc.

Besides, different techniques are applied in each territory to establish the time when the new
month begins. Therefore it is impossible to ensure in advance when a new month will start in a
particular place in the world.

There is a problem to date an event from the past. That is, to know the Julian or Gregorian
date of an Islamic date. Although the Julian and Gregorian calendars comply with well-established
rules, the same is not valid with the Islamic calendar because, for historical dates, we do not know
the techniques that were used to determine the beginning of the month, nor is it known whether
those rules were applied correctly.

In order to convert from Julian (or Gregorian) date to Islamic date and vice versa, Muslim
astronomers of the Middle Ages devised a computational lunar calendar, which we call the Islamic
tabular calendar, which although it does not precisely reproduce Islamic dates, at least there is an
average match [1], [2], [3], [4], [5]. In historical periods the dates of the tabular calendar depart at
most one day from the Islamic dates obtained by a correct observation of the first crescent.

The Islamic tabular calendar is of great importance in chronology; it also allows us with an
excellent approximation to give us the Julian or Gregorian dates of a future Islamic date; therefore,
it is appropriate to do this research. [6], [7], [8].

The tabular calendar that we expose next has years of 12 lunar months, that is to say, months
that begin a little after the astronomical New Moon. The duration of the months is alternately 30
and 29 days. The first of the year has 30 days.With this structure, the calendar year would have
354 days, but since the astronomical lunar year is something more than those days, it is necessary
to add from time to time one more day per year, which is added to the last month of the year. These
extraordinary years, called abundant or embolismic, have 355 days.

Since the lunar year is shorter than the solar year, it happens that a solar year is normally
found in two lunar years and on some occasion in three years. While the lunar year normally
belongs to two solar years and is occasionally included exclusively in a single solar year.

The names of the months of the tabular calendar are the same as those used in the usual
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practice of Muslims and they are the same as the calendar that existed in Arabia before Islamization.
These names are from the first onwards: Muharram, Safar, Rabi I, Rabi II, Jumada I, Jumada II,
Rajab, Shaban, Ramadhan, Shawwal, Zul-Qida y Zul-Hijja.

The Islamic calendar use the week, a seven-day period that matches the Jewish and Christian
weeks. The days of the week are numbered, except the Friday, which is called the day of the
meeting; and the Saturday receives the Jewish name of the sabbath.

An important issue to keep in mind when investigating the Islamic calendar is that Muslim
days begin with the sunset, differently than the civil day that begins at midnight. This means that the
same Muslim day belongs to two different civil days and vice versa. For about six hours (from
sunset to 0 hours), there is a match between civil and Muslim days, and for the remaining 18 hours,
there is another different match. As a usual practice, we will identify the Muslim day with the civil
day with which it coincides from the 0 hours.

2. Synodic month
We define the moments of the New Moon, first quarter, Full Moon, and last quarter as

those in which the difference between the apparent ecliptic longitudes of the Moon and the Sun *
are 0º, 90º, 180º and 270º respectively [9].

At the time of the New Moon, which is when the Sun and the Moon have the same ecliptic
longitude, it is called a conjunction. Calling opposition when the difference between its longitudes is
180º, then it is the full Moon.

It is called elongation between the Sun and the Moon at the angle

L L  
where L  is the ecliptic longitude of the Moon, and L is the ecliptic longitude of the Sun, both
corrected by nutation and aberration. So when is 0º, 90º, 180º, and 270º, the Moon is in New
Moon, crescent, full Moon, and waning. The nutation is counteracted when the longitudes difference
is made; therefore, it does not intervene for the determination of the lunar phases.

The astronomical synodic month or lunation is the time between two consecutive conjunctions
of the Sun and the Moon, that is, the period between two New Moons. We distinguish between true
and mean lunation.

The true lunation is the time between two conjunctions of the Sun and the Moon. By the
periodic terms of the movements of the Sun and the Moon, the true synodic month or astronomical
lunation is variable with time.

The astronomical mean lunation or synodic month sm  is the time that has to elapse for the
mean elongation between the Sun and the Moon increases by 360º. This mean synodic month has
a secular variation with time but does not contain periodic terms. Its value is

729 .530 588 85 2 .163 10d d
sm T  

T is the centuries of 36,525-days (called Julian centuries) that have elapsed since the beginning of
the year 2000 of the common era. The synodic month (1) is expressed in units of terrestrial time
(TT), a uniform time scale, which does not match the universal time (UT). The UT is the time scale
used for civil purposes and therefore for use in calendars **.

The synodic month or lunation is a period that varies very slightly over time. As calculated

* Ecliptic longitude is the angle measured in the ecliptic (the plane in which the Earth moves) from the point
where the Sun is in the spring equinox (ascending node of Earth's orbit) and the center of the Sun or the
Moon, measured in the sense of its movements as observed from Earth.
The apparent ecliptic longitude is corrected by nutation and aberration. Nutation is a small movement of the
Earth's axis of rotation, which affects all celestial bodies equally. Aberration is caused by the time it takes for
light to reach Earth. The geometric position is the one that the Sun or the Moon have when their light reaches
the Earth, and the apparent position is the one they occupied when they emitted the light we observe. The
distance from Earth to Sun is greater than between our planet and Moon, therefore, the correction for
aberration is higher for the Sun than for the Moon.
** In reality, the civil time scale is Coordinated Universal Time, UTC, a combination between the uniform
atomic time scale and the rotational time UT. However, since the UTC can only depart a maximum of 0.9
seconds from the universal time UT, we can consider both scales identical for calendar purposes.

(1)
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from (1), each century the synodic month increases by 0.0187 seconds, so for periods that are not
excessively long, we can consider the astronomical lunation to be constant.

3. Normal and embolismic years
We look for lunar calendars computational, that is, calendars constructed using defined

mathematical rules. These calendars intended to be as close as possible to astronomy, so the
average duration of the calendar month should be as close as possible to the astronomical synodic
month (1).

The lunar calendars computational are grouped into cycles composed of A lunar years, which
are formed by twelve months of the calendar. Another concept is the astronomical lunar year
composed of twelve astronomical lunations and its mean duration for the year 2000 CE (comun
era) is

12 354 .367 0662 354 8 48 34 .52d d h m s
a sa m   

with a small increase for later years. As we want to make a regular calendar, that is to say, close to
astronomy, the calendar year must have 354 or 355 days, and its duration on average to be as close
as possible to (2). By (2), we see that the years of 354 days are more frequent than those of 355.
Therefore the normal year is

354 .d
na 

We have normal years of 354 days, and occasionally years of 355 days. These extraordinary
years are called generically embolismic or abundant and, in the case of the Islamic calendar, Kabisa
years. The embolism D are the days to be added to form the abundant years, which for the lunar
calendar is 1D   *.

The number of abundant years B, of a cycle of A years, where abundant years are formed by
adding D days is [10]

   cint cint 354.367 0662 354 ,a na a A
B B A

D

  
        

 
cint is the round function. Formula (3) makes the average calendar year as close as possible to the
astronomical year. Formula (3) applies when the normal year is less than the astronomical year, but
(3) can be extended to the opposite case, getting the same results.

The embolism is placed at the end of a month of 29 days, which would has 30 days, avoiding
that there are months of 31 days, which is considerably higher than the average value of the
astronomical lunation.

The following formulas calculate the number of months of 30 and 29 days

30 296 ; 6m A B m A B   
reversing the formulas (4)

30 29 30 29; .
12 2

m m m m
A B

 
 

The duration of the lunation of a cycle of A years with B embolisms of 1D  is

354 354
.

12 12m m

A BD A B
m m

A A

 
  

Table 1 gives a list of possibles lunar cycles computational derived from formula (3).

4. The natural order of intercalation of embolisms
It is necessary to establish the rule of intercalation of embolisms to define a lunar calendar

computational, that is, to say what years of the cycle are embolisms or years of 355 days. Let k be
a whole number and kY  the position of the embolismic year in the cycle; then if kA B  were a

3

* Theoretically, it is possible to take another value for the typical year of the calendar month, for example, a
duration of 353 days. We can also take another duration of the embolismic year, that is, the embolism is
several days. The text proposal has always been used because it is more regular.

(2)

(3)

(4)
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whole number, the year would be embolismic

.k

A
Y k

B


If kA B  were not a whole number, then we would have two ways of choosing the position of the
embolismic years: choose the whole number immediately below or choose the number immediately
above, that is, we can choose two intercalation rules

int ; int 1k k

A A
Y k Y k

B B
        
   

if we choose the second possibility, the law that determines if a year is embolismic is

int 1 int intk

A B kA
Y k

B kA B

              
the last sum is 1 in the case that kA B  is whole, otherwise, it is null.

The order of intercalation of embolisms derived from (5) is called the natural order, to distinguish
it from other criteria that we will analyze next.

By applying formula (5) to the 30-year cycle, we obtain Table 2, where the embolismic years
in the cycle are according to the natural order of intercalation.

5. Number of embolismic years elapsed
The rule (5) that we are using to find out the position of the embolismic years tells us that for

a value of k, the position of the embolism that is associated fulfill the inequality

1 .k

A A
k Y k

B B
  

Since kY  is an integer, the above means that if kA B  is a whole number, then it gives us the
position of embolism; otherwise, the embolism will be the following year.

Multiplying (6) by B and dividing by A we get

4

Years
of the cycle

Years
abundants

Months of
30 days

Months of
29 days

Mean lunation
of the calendar

5

8

11

19

30

79

2

3

4

7

11

29

32

51

70

121

191

503

28

45

62

107

169

445

29d 12h 48m 0s.00

29d 12h 45m 0s.00

29d 12h 43m 38s.18

29d 12h 44m 12s.63

29d 12h 44m 0s.00

29d 12h 44m 3s.04

- 3m 57s.12

- 0m 57s.12

0m 24s.69

- 0m 9s.75

0m 2s.88

- 0m 0s.16

Table 1.- Examples of computational lunar calendars obtained from formula (3). The last column gives the
difference between astronomical lunation and the average calendar lunation.

s mm m

1 2 3 4 5 6 7 8 9 10 11

3 6 9 11 14 17 20 22 25 30

k

Table 2.- Natural order of intercalation of embolisms of a lunar calendar of 30 years. The coefficient k is the
order number of the embolism, and kY  is its position in the 30-year cycle.

28
kY

(5)

(6)
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k

B B
k Y k

A A
  

as kY  must be an integer, then

int k

B
Y k

A
   
 

the equality that will be maintained for the years after, until the next year embolismic is reached. If
we call E the number of embolismic years elapsed in the cycle until year Y included, then from (8)
we find

int
B

E Y
A

   
 

Y is a year of the cycle.

6. Method to know if a year is embolismic
Given a year Y of the cycle, we want to find a method to know if it is embolismic or not. With

formulas (7) and (8) we find

int intk k k k

B B B B B B
Y Y Y Y

A A A A A A
          
   

by the definition of the mod function

 mod
intk

k k

Y B A B B
Y Y

A A A
    
 

inserting this result to (10)

 modYB A B
which is the condition for the year Y to be embolismic

7. Intercalation criteria
The natural order of intercalation can be shifted, and then other intercalation criteria are

obtained. Indeed, we can begin to count the years of the cycle, not from year 1 of the natural order,
but another different year, we will have a displacement of the order in which the embolismic years
occur.

Let  be the number of years since first of the natural order until the beginning of the year
that we will now use as the beginning of the displaced cycle, and  is number of embolisms that
have elapsed between the two years. By (9)

int .
B

A
    

 
To know the embolismic years in the displaced order, we make in (5) and (11) the substitutions

;k kY Y k k    

5

1 2 3 4 5 6 7 8 9 10 11

3 6 9 11 14 17 20 22 25 30

k

28kY

3 6 8 11 14 17 19 22 25 3027kY

Table 3.- The table shows three intercalation criteria of the Islamic calendar. In the second row is what we
have called normal intercalation (Table 2). The third row gives us the intercalar years when the beginning
of the cycle years is 3 years ( 3  ) with respect to the normal cycle, and the last row is intercalation when
the years begin to be counted 6 years later ( 6  ) in relation to the normal cycle.

3 5 8 11 14 16 19 22 24 3027kY

(7)

(8)

(9)

(10)

(11)

(12)
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of (5) we get that the new intercalation rule of the abundant years is

   
 

int 1 int intk

k AA B
Y k

B k A B


 


                  

while the rule to know if a year is embolismic is

  mod .Y B A B    

8. 30-year calendar subcycles
In the 30-year cycle, 11 of them are abundant. As the calendar is regular, the distribution of

the two types of years should be as homogeneous as possible. Since 30 11  is between 2 and 3,
then the abundant years should be every two or three years.

Let u be the number of times the embolismic day is inserted in the third year after another
embolismic day and v the corresponding number for periods of two years

3 2 ; 2 ; 3 .u v A u v B u A B v B A        
For the 30-year cycle calendar

8; 3,u v 
that is, eight times the embolism will come after three years and three times after two years.

We look for the regularity of the calendar; therefore, these periods of 3 and 2 years must be
homogeneously spaced; that is to say in the following order

2 3 3 2 3 3 3 2 3 3 3 
alternatively, in an order shifted from the previous. The previous distribution means that the first
embolism will come in year 2 (ie, two years after the previous embolism), the next in 5, then it will
be on 8, 10, 13, 16, 19, 21, 24, 27, 30.

The 30-year cycle consists of two subcycles. One of them formed by 8 years, 3 of them
embolismic. The other subcycle, which is repeated twice, is made up of 11 years, with 4 of them
embolismic.

As we have said, the distribution of the intercalar years obeys the rule (15) or any other
order displaced from the previous one, this is

2 3 3 2 3 3 3 2 3 3 3
3 2 3 3 2 3 3 3 2 3 3
3 3 2 3 3 2 3 3 3 2 3
3 3 3 2 3 3 2 3 3 3 2
2 3 3 3 2 3 3 2 3 3 3
3 2 3 3 3 2 3 3 2 3 3
3 3 2 3 3 3 2 3 3 2 3
3 3 3 2 3 3 3 2 3 3 2
2 3 3 3 2 3 3 3 2 3 3
3 2 3 3 3 2 3 3 3 2 3
3 3 2 3 3 3 2 3 3 3 2

I
II
III
IV
V
VI
VII
VIII
IX
X
XI

   
   
   
   
   

   
   
   
   

   
   

in total, 11 possibilities, which will lead to different calendars and that we have numbered with
Roman numerals to define later the types of calendars that can be formed.

The last years of the cycle that can be embolismic are 28, 29, and 30. It cannot be the 27 or
the previous ones, because in this case, the embolism would be the year 30 or earlier, and it would
no longer be the last of the abundant years. Then, the first years that can be embolismic are 1 (for
the combination of 28 3  or 29 2 ), year 2 (combining 29 3  or 30 2 ) and year 3 (result of
30 3 ) .

If the cycle begins with an embolismic year at number 1 of the 30-year cycle, we will have
a type of calendar that we will identify with the letter a; if the first embolism were year 2, we would
give it the letter b and finally if the beginning of the abundant years were 3, we would assign the
letter c.

At first, we might think that we would have 33 different calendars, the result of multiplying
the 11 kinds of calendars according to the order of intercalation by the three types according to the
first abundant year. We will see that only 30 different calendars are possible.

(13)

(14)

(15)
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9. Classification of lunar calendars
Formula (14) tells us the order in which the embolismic years follow according to parameter

. Next, we will examine all the possibilities.
- We assume 0  , by (12) we calculate that 0  . The criterion of the intercalations that we
find by application of (14) is

3, 6, 9, 11, 14, 17, 20, 22, 25, 28, 30 VIII c 
the numbers are the years that are embolismic in the 30-year cycle. The first number, that is, 3,
indicates the years that have elapsed since the last embolism of the previous cycle. The order of
the intercalation is 3 3 3 - 2 3 3 3 - 2 3 3 - 2, that is, it is of type VIII, and since the first intercalar
year is 3, it is of class c, we have therefore the calendar VIII-c. Los demás tipos de calendarios son

- 1, 0  

2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29
3 3 3 2 3 3 3 2 3 3 2

VIII b 
  

- 2, 0  

1, 4, 7, 9, 12, 15, 18, 20, 23, 26, 28
3 3 3 2 3 3 3 2 3 3 2

VIII a 
  

- 3, 1  

3, 6, 8, 11, 14, 17, 19, 22, 25, 27, 30
3 3 2 3 3 3 2 3 3 2 3

VII c 
  

- 4, 1  

2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
3 3 2 3 3 3 2 3 3 2 3

VII b 
  

- 5, 1  

1, 4, 6, 9, 12, 15, 17, 20, 23, 25, 28
3 3 2 3 3 3 2 3 3 2 3

VII a 
  

- 6, 2  

3, 5, 8, 11, 14, 16, 19, 22, 24, 27, 30
3 2 3 3 3 2 3 3 2 3 3

VI c 
  

- 7, 2  

2, 4, 7, 10, 13, 15, 18, 21, 23, 26, 29
3 2 3 3 3 2 3 3 2 3 3

VI b 
  

- 8, 2  

1, 3, 6, 9, 12, 14, 17, 20, 22, 25, 28
3 2 3 3 3 2 3 3 2 3 3

VI a 
  

- 9, 3  

2, 5, 8, 11, 13, 16, 19, 21, 24, 27, 30
2 3 3 3 2 3 3 2 3 3 3

V b 
  

- 10, 3  

1, 4, 7, 10, 12, 15, 18, 20, 23, 26, 29
2 3 3 3 2 3 3 2 3 3 3

V a 
 

- 11, 4  

3, 6, 9, 11, 14, 17, 19, 22, 25, 28, 30
3 3 3 2 3 3 2 3 3 3 2

IV c 
  
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- 12, 4  

2, 5, 8, 10, 13, 16, 18, 21, 24, 27, 29
3 3 3 2 3 3 2 3 3 3 2

IV b 
  

- 13, 4  
1, 4, 7, 9, 12, 15, 17, 20, 23, 26, 28
3 3 3 2 3 3 2 3 3 3 2

IV a 
  

- 14, 5  
3, 6, 8, 11, 14, 16, 19, 22, 25, 27, 30
3 3 2 3 3 2 3 3 3 2 3

III c 
  

- 15, 5  

2, 5, 7, 10, 13, 15, 18, 21, 24, 26, 29
3 3 2 3 3 2 3 3 3 2 3

III b 
  

- 16, 5  
1, 4, 6, 9, 12, 14, 17, 20, 23, 25, 28
3 3 2 3 3 2 3 3 3 2 3

III a 
  

- 17, 6  
3, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30
3 2 3 3 2 3 3 3 2 3 3

II c 
  

- 18, 6  

2, 4, 7, 10, 12, 15, 18, 21, 23, 26, 29
3 2 3 3 2 3 3 3 2 3 3

II b 
  

- 19, 6  
1, 3, 6, 9, 11, 14, 17, 20, 22, 25, 28
3 2 3 3 2 3 3 3 2 3 3

II a 
  

- 20, 7  
2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 30
2 3 3 2 3 3 3 2 3 3 3

I b 
 

- 21, 7  

1, 4, 7, 9, 12, 15, 18, 20, 23, 26, 29
2 3 3 2 3 3 3 2 3 3 3

I a 
 

- 22, 8  

3, 6, 8, 11, 14, 17, 19, 22, 25, 28, 30
3 3 2 3 3 3 2 3 3 3 2

XI c 
  

- 23, 8  

2, 5, 7, 10, 13, 16, 18, 21, 24, 27, 29
3 3 2 3 3 3 2 3 3 3 2

XI b 
  

- 24, 8  

1, 4, 6, 9, 12, 15, 17, 20, 23, 26, 28
3 3 2 3 3 3 2 3 3 3 2

XI a 
  

- 25, 9  

3, 5, 8, 11, 14, 16, 19, 22, 25, 27, 30
3 2 3 3 3 2 3 3 3 2 3

X c 
  
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- 26, 9  

2, 4, 7, 10, 13, 15, 18, 21, 24, 26, 29
3 2 3 3 3 2 3 3 3 2 3

X b 
  

- 27, 9  
1, 3, 6, 9, 12, 14, 17, 20, 23, 25, 28
3 2 3 3 3 2 3 3 3 2 3

X a 
  

- 28, 10  
2, 5, 8, 11, 13.16, 19, 22, 24, 27, 30
2 3 3 3 2 3 3 3 2 3 3

IX b 
 

- 29, 10  
1, 4, 7, 10, 12, 15, 18, 21, 23, 26, 29
2 3 3 3 2 3 3 3 2 3 3

IX a
 

Therefore, we find 30 different calendars, as far as their order of intercalation is concerned. The
most used criterion is VII-b that we will call al-Khwarizmi or al-Battani style (9th century). The
style of al-Burini (11th century) is VIII-b. Type V-b is associated with al-Hasib (10th century), III-
b with Ulugh Beg (14th century). Ibn Futuh «Sevillian» (13th  century) is associated with another
calendar, not regular, which has embolismic years of the following order 2, 5, 8, 10, 13, 16, 18, 21,
24, 26 y 29 [11].

10. Pre-Islamic calendar
In the year 10 of the Hijrah Muhammad implanted the lunar calendar that the Muslims have

used since then. Before this time, the Arabs followed a calendar we call pre-Islamic. According to
numerous ancient authors, this calendar was lunisolar, that is to say, that it had years formed by
twelve lunar months and occasionally, every two or three years, they intercalated a month or
embolism, so that the months remained adjusted to the seasons, especially the last month of the
year in which the pilgrimage to Mecca was made, which was in spring, making it coincide with the
Jewish Passover and Christian Easter [14], [15].

The names of the months of the pre-Islamic calendar were the same as the current, but no
ancient author gives a name to the embolismic month, which leads us to assume that this month did
not have a proper name.

Following Abu Ma’shar, an astronomer of the ninth century who is the oldest author dealing
with this matter, the pre-Islamic Arabs had a peculiar system of intercalation of embolismic months,
which has made some think that the calendar was only lunar *.

As many old references cite, the intercalation operation was called nasi, a word that means
to postpone and which consisted of transferring the sacred character from one month to the following
month.

The last two months of the year and the first of the following year were considered sacred.
So when they wanted to make intercalation, the first month of the year was included in the previous
year, so that this last year was thirteen months while the second month became the first of the
following year and was also given the character of sacred.

For example, suppose the first month of the year was Muharram. If the year became abundant,
the month of Muharram of the following year was included in that year, and then the month of

* Al-Tabari Persian historian of the ninth century thinks that in pre-Islamic times there was intercalation:
«They would go on a pilgramage in Zul-Hijja for two years, Muharram for the following two  years,  and Safar
for the next two years. Thus they went on a pilgramage by shifting the months of pilgramage to subsequent
month every two years» [11]. Al-Biruni expresses himself confusedly. He says that the pre-Islamic calendar
was lunisolar and that the intercalation was done by displacement of one month. But while in a paragraph he
states that the months changed their name, he later says that at the time of the Hijrah, the first month was
Shaban, which indicates that there was no change of name months when the intercalation was made [13].
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Safar of the following year became the first month of that year, while the last of that same year
was again Muharram. For the following embolismic year, the process was repeated, then Safar
became the last month of the embolismic year, and the following year began with Rabi I and ended
with Safar, and so on (see Table 4).

It seems that the names of the months did not change, so that their position in the year varied,
until complete cycle intercalations. However, according to some authors, when intercalating, names
of months were changed, so that the year began with the month of Muharram. But if this had been
the case, the month of Muharram would have to be repeated when the embolism was placed, that
is, the embolismic month would have to be called Muharram and would be located in the last
position of the year, and immediately after, the new year also it would begin with a month called
Muharram, repeating this name twice consecutively. But it does not appear in any of the ancient
authors that this repetition of the name of the month would have occurred.

With the intercalation method described above of not changing the names, the succession of
the months always followed the same order, as if it were a purely lunar calendar. But if we refer to
the position of the month in the year and not its name, we see that with the method described, there
are years of thirteen months and other years of twelve (see Table 4). The seasons were stable in
the year, although there was no coincidence between the names of the months and the seasons.
Therefore, the calendar was lunisolar if we identify the months by their position in the year and not
by their names. In this way, the last month of the year (whatever its name) was in the spring, the
appropriate date to make the pilgrimage.

The name of the sacred months was changing, but not its position in the year, since the first
month of the year, and the last two were still sacred, although the name of those sacred months
was changing.

Active support for the idea that we expose (that the months did not change their name when
the intercalation was done) is presented by Mahmoud Effendi [25]. This author identifies three
events whose dates are known in the Julian calendar and the pre-Islamic. These dates are the
death of Ibrahim, son of the Prophet, on the 29th of Shawwal that coincided with January 27, 632;
the entrance of Muhammad in Medina that supposes the 8 of Rabi I, that makes coincide with the
September 20, 622 and the birth of the Prophet the 9 of Rabi I that Effendi identifies with the April
20, 571.

Comparing the days between the dates mentioned above, we verify that there is a coincidence
if the calendar had been lunar and not intercalar. And this is what should happen if, in the pre-
Islamic calendar, the name of the months was not changed. As we have said, if we limit ourselves

Muharram
Safar
Rabi I
Rabi II

Jumada I
Jumada II

Rajab
Shaban

Ramadhan
Shawwal
Zul-Qida
Zul-Hijja

Order of the months
at the beginning of

the cycle

Order of the months
in the first

embolismic year

Order of the months
the year following
the first embolism

Order of the months
in the second

embolismic year.

Order of the months
the year following

the second embolism

Muharram
Safar
Rabi I
Rabi II

Jumada I
Jumada II

Rajab
Shaban

Ramadhan
Shawwal
Zul-Qida
Zul-Hijja

Muharram

Safar
Rabi I
Rabi II

Jumada I
Jumada II

Rajab
Shaban

Ramadhan
Shawwal
Zul-Qida
Zul-Hijja

Muharram

Safar
Rabi I
Rabi II

Jumada I
Jumada II

Rajab
Shaban

Ramadhan
Shawwal
Zul-Qida
Zul-Hijja

Muharram
Safar

Rabi I
Rabi II

Jumada I
Jumada II

Rajab
Shaban

Ramadhan
Shawwal
Zul-Qida
Zul-Hijja

Muharram
Safar

Table 4.- Order of the months in the first two embolismic years of the intercalation cycle.
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to the name of the months, as Effendi does in its calculation, the calendar follows the pattern of the
lunar calendar, as in fact it is verified. The aforementioned coincidence would not occur if the name
of the months changed due to the intercalation.

For purposes of converting dates to the Julian (or Gregorian) calendar, we assume that the
pre-Islamic calendar was exclusively lunar, and we use the techniques that we will see later, as
long as the conversion is made for months named and not numbered since the beginning of the
year. Although in this type of transformation, the techniques we will expose do not always give us
the right year.

To make the conversion of the Julian (or Gregorian) calendar to a pre-Islamic date and vice
versa it is necessary to know the intercalation criteria of the abundant years, on which we can only
speculate.

It seems that this intercalation system was in use in Arabia from about two hundred years
before the Hijrah. But the criteria followed for intercalations is unknown. While for some it was
done every two years, for others it was every three years; there are authors who say that they
followed the rule of intercalation of the Jews, others that intercalated 9 months every 24 years or
that there were 11 embolisms in a 30-year cycle *.

It seems that the intercalation cycle began with the year in which Muharram was the first
month, and the cycle concluded when again this month occupied the first position of the year. This
circumstance seems to have occurred the year Muhammad established the Islamic calendar, as
follows from his own words: «Time had circulated as on the day when Allah created the heavens
and the earth»,  indicating that after the intercalation cycle, Muharram had taken the first place in
the year.

As it is said, in the year 10 of the Hijrah Muhammad forbade the nasi ** or intercalation of
the months, prohibiting that the months that were profane became sacred and establishing that the
sacred months will permanently occupy the eleventh, twelfth positions, and the first position,
respectively, according to the Qur'an: «The nasi is an addition of unbelief. Those who have disbelieved
are led astray, thereby. The make it profane one year and make it sacred another year, in order to
adjust the number which Allah has made sacred. Then make profane what Allah has made sacred».
(Kor 9, 37).

11. Islamic era
With the name of Hijrah, we understand the migration of the Prophet from Mecca to Medina

and the formation of the first Muslim community, the historical event that is used to establish the
Islamic era [16], [17].

The Islamic era or simply Hijrah was implanted by Caliph Umar ibn al-Jattab in the year 7 or
8 after the death of the Prophet. It is, therefore, a proleptic era; that is, it was established after the
historical event that gave rise to it. As we have said, the same year of his death or 10 years of the
Islamic era, Muhammad established the lunar calendar in force today. This calendar can be extended
to the past, until the same year in which the Hijrah took place or year 1; it would be a proleptic
calendar, which was not the one that existed during the first ten years of Islamism, which, as we
have said, was the pre-Islamic lunisolar calendar.

The Islamic calendar (that is, the lunar) always begins with the first day of Muharram, so it

11

* According to Coussin de Perceval, the intercalation was always every three years, which means that less
intercalary months were put. This researcher assumes that in two hundred years that the lunisolar calendar
lasted there was a shift in the date of the last month of the year, the one dedicated to the pilgrimage, going
from November at the beginning of the intercalar system in 412 CE, to April at the time of the Prophet. This
hypothesis does not seem satisfactory, because the function of the nasi would not be understood, which
according to numerous authors proclaimed a year in advance whether or not there would be an embolism.
If was known that the embolism would come every three years unchanged, no one was needed to announce
it in advance, nor would the nasi have been a prominent character, as confirmed by ancient
references [14].
** In addition to intercalation, word nasi was used when, for some reason, the sacred character was transferred
from one month to another. For example, if instead of Muharram the month of Safar was sacred, without it
meaning no intercalation.
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was for all the years before the implementation of this calendar, that is, for the period in which it
was a proleptic calendar. For reasons that we will see later, the first day of Muharram of year 1 of
the Hijrah was the Julian date of Friday, July 16, 622, an identity that allows us to compare Islamic
and Julian (or Gregorian) dates.

It should be noted, from the above, that both in the Islamic lunar calendar and the pre-Islamic
lunisolar, the Julian date of Muharram day 1 of year 1 is July 16, 622. The difference is that in the
proleptic Islamic calendar That month was the first of the year, but it did not have that place in the
lunisolar calendar of that first year, as we will now see.

There are doubts about the exact date on which Muhammad left Mecca to go to Medina.
However, most of the ancient authors agree that the arrival of the Prophet to Medina (then called
Yathrib) was 12th of Rabi I; therefore, the departure from Mecca was a few days earlier, on a date
that is disputed by the different historians. The departure from Mecca and the arrival to Medina
occurred in the same lunar year, and this is the data that interests us.

Instead of starting the Islamic lunar calendar on the same day of the Hijrah, it was decided
that this year would begin with the month of Muharram, that is, a time before the Hijrah so that the
sequence of the months of the pre-Islamic calendar it was not altered. As we have said, the
implementation of the Islamic lunar calendar did not produce discontinuity with the pre-Islamic
calendar, but was a continuation, with the new feature of eliminating embolismic months and therefore
being Muharram permanently the first month of the year, which was also the first month in the year
of the Hijrah in the lunisolar calendar.

We cannot know the duration of the lunar months since its beginning is determined by the
observation of the first crescent moon, which is greatly affected by local circumstances. However,
they must always have 29 or 30 days. From 12th of Rabi I, date of the arrival of Muhammad to
Medina, to the 1 of Muharram of the same year 69, 70 or 71 days passed, if the months of Muharram
and Safar had 30 or 29 days. That is to say, that 2th of Rabi I that we are considering should have
been September 25, 24, or 23 of the 622 Julian year.

If as historians suppose, Rabi 12 was Friday, that is, on the same day of the week as Muharram
1, then between both dates, there must have been an integer number of weeks, that is, 70 days, no
69 or 71, and therefore Muhammad's arrival in Medina must have been Friday, September 24, 622
of the Julian calendar.

Another problem that arises is the date on which year 1 of the Hijrah began according to the
lunisolar calendar. This problem depends on the number of embolisms that occurred in the first ten
years of the Hijrah, that is, during the period in which the lunisolar calendar was in force from the
Hijrah until it was replaced by the lunar calendar. According to those who have dealt with this
matter, there must have been three interleaves or perhaps four.

If there were, as most historians think, three intercalations, the month of Muharram of the
first year of the Hijra was the fourth month in that year, that is to say, the year should have started
with the month of Shawwal; so that after 10 years, 3 of them intercalary, Muharram was placed as
the first month, as happened when Muhammad established the lunar calendar.

We know the duration of the months that were embolismic in the first ten years of the Hijrah.
We know that three consecutive 30-day months are possible, and even in very exceptional conditions,
there can be up to 4 consecutive months of that duration. While in the most optimal conditions,
there can only be three consecutive months of 29 days.

Then the three embolismic months that took place during the first ten years together would
have a duration of 90, 89, 88, or 87 days, depending if the months had 30 or 29 days *. These days
are those between the beginning of the lunisolar year and the 1st of Muharram, which, as we know,
coincided with July 16, 622. Therefore, the Julian dates on which the lunisolar calendar could begin
in the year of the Hijrah are 17, 18, 19, or 20 April of 622. Now we do not know the weekly day of
the date, so we can not have security in the correspondence, as in the case analyzed of the arrival
of Muhammad to Medina. If we stick to the duration of the months as given in the tabular calendar,
then there would be 88 days (two months of 29 days and one of 30) between the two dates

* There is a tradition that there are no more than two months of 30 days followed. If this rule was applied at
that time, the duration of 90 days should be ruled out.
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considered and therefore the beginning of the year, or day 1 of Shawwal of year 1, it would be the
Julian date April 19, 622.

A problem arises with the Islamic era. According to the Muslim calculation, the days begin at
sunset, while in the civil calculation, the day starts at midnight. Then the day of the Hijrah began
being still Thursday, July 15, 622.

Then there are two different eras: the one that starts on July 15 and the one that begins on
July 16. We will identify the first era with the letter T (Thursday or astronomical style) and the
second era with F (Friday or civil style). The calendar difference, according to the chosen era,
differs permanently in one day. The most used, and the one we consider next, is the Friday or civil
style, which according to the previous notation, we will call VII-b-F.

If we take into account the two types of eras, we find that there are 2 30 60   different
calendars with the 30-year cycle.

12. Short cycle and long cycle of the 30-year calendar
In the calendar we are considering, every 30 years is repeated the intercalation of the abundant

years in the same positions. This cycle is called short.
Each short cycle has 10,631 days, a period that is not divisible by 7, that is, at the end of a

cycle, the weekly day of the first day does not coincide with that corresponding to the previous
period. 10,631 days consists of 1,518 weeks and 5 days. Therefore, the weekly day of the first day
of each cycle moves 5 days with relation to the previous year. That is, if one cycle begins with
Monday, the next cycle will start with Saturday and the next cycle with Thursday. 7 cycles of 30
years must pass before there is an agreement with the weekly days of the first day of the year.

Therefore, after 210 years ( 7 30  ), not only do the intercalar years repeat with the same
pattern, but the dates will be repeated on the same weekly day. The 210 years is called the long
cycle.

If we take into account the seven possible types of years according to the weekly day of the
first day of the cycle, we will have a total of 2 30 7 420    different calendars with the 30-year
cycle.

13. Regular monthly and signature of the year
The regular monthly * is a fixed number associated with each month, which allows us to

determine the weekly day of a date. For its definition, we assume that the duration of the months is
alternately 30 and 29, having the first month 30 days and the last 29, except in the abundant years
that it has 30 [18].

The first month of the calendar has, arbitrarily, the number 7, if from here we count the days
in weekly periods numbered from 1 to 7, it is easy to verify that the first day of the second month
will have the number 2, the third month number 3 and so on. We call these numbers regular
monthly, which we identify with the letter r, which follows the sequence

7 2 3 5 6 1 2 4 5 7 1 3          
are permanently associated with each of the twelve months of the year.

It is now necessary to associate the numbers with the weekly days. This association is
arbitrary, but taking Sunday as the first day of the week, we identify it with day 1. It is called the
signature of the year to the weekly day of its first day. So if it starts on Sunday, its signature will be
number 1 and 2 if it begins on Monday.

In each 210-year long cycle, the weekly days of all dates are repeated, in particular, the
weekly day of the first day of the year; therefore, we have a perpetual cycle. Since the typical year
has 354 days, it exceeds a whole number of weeks by 4 days; this means that the weekly day of a
year that is after a normal year is four days after the first day of the previous year. If the year is 355
days, then its duration exceeds 5 to an integer number of weeks; therefore, the year following an
embolismic year has a weekly day 5 days after the first day of the previous year. With these rules
it is easy to build a table that gives us the weekly days of the first day of each year in a period of 210

* We copy the terminology used in the computus or technique to determine the date of the Christian Easter.

(16)
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years (Table 5), taking into account that the first day of the cycle has the same weekly day as the
first day of the 1 H (Hijrah) year, that is Friday or 6.

To determine the weekly day of the first day of the month, the first we have to do is determine
the position n of year in the 210-year cycle

( 1) mod 210 1In Y  

IY  is the year of the Hijrah. Note that we subtract one unit from IY  and subsequently add 1 to get
the first year of the cycle to be 1 and the second cycle 211 and so on.

Knowing the order n of the 210-year cycle, we go to Table 5 and find the signature of the
year s. To find the day of the week d of the beginning of any month we use the regular lunar r and
apply the formula

 1 mod7 1d r s   
We have adapted the formula so that the first day of the week is Sunday, which we identify with the
number 1.

If we want to determine the weekly day d we apply the formula

 1 mod 7Id d D   

ID  is the monthly day. In formula (19), we subtract 1 to get that when 1ID  , 1.d d  
* Example 1.- Determine the weekly day of the 12th of Rajab of the year 1220 H.
- Taking 1220IY  , we find by (17) that year has the order 170 in the 210-year cycle.
- From Table 5, we find that the signature of that year is 2s  , that is, that year begins with a
Monday.
- Since the month of Rajab is the seventh, by (16), we find that the regular of that month is 2r  .
- The weekly day of the first day of Rajab is calculated by (18), obtaining 4d  , that is to say, that
the day 1 of Rajab of the year 1220 H is Wednesday.
- Finally, we apply (19) and find 1d   , that is, the day of Rajab 12 of the year 1220 H is Sunday..
* Example 2.- Determine the weekly day of Muharram 15 of the year 751 H.
- By (16), we find 121n  , which is the order of the year 750 H in the 210-year cycle.
- From Table 5, we find that 1s  , that is, the year begins with Sunday..
- As the month of Muharram is the first, 7r  , according to (15).
- The weekly day of Muharram's first day is 1d   by (18).
- By (19), we find that 1d   , so Muharram 15 of 751 H is a Sunday..

In section 19, we will present a method to determine the weekly day of a date, calculated
using its chronological Julian day.

14. Auxiliary calendar associated with the Islamic calendar
The Julian period is a chronological dating technique introduced by Scaliger in 1582 and

subsequently applied to the computation of the days by Herschel in 1851 [19], [20], [21].
The Julian period is the product of the following three cycles: solar (28 years), Meton (19

years), and indiction (15 years). The product of the three periods is 7,890 years, which is the
duration of the Julian period. The beginning of the three cycles coincided in the year -4712 or 4713
before the common era (BCE), which is the origin of the first Julian period. The second cycle will
begin in the year 3178 of the common era (CE).

The count of astronomical Julian days begins on January 1 of the year 4713 BCE or year
-4712 of the Julian calendar at 12 hours of terrestrial time (or another time scale). Although the
chronological Julian day begins just like the day civil, that is to say at midnight; that is, at 0 o'clock
on January 1 of the year 4713 BCE. The Julian days count starts with the number 0; therefore, on
January 1, 4713, BCE was the Julian day 0.

The Julian chronological day is always an integer value, but not the astronomical Julian day
that can have decimals corresponding to the fraction of a day. In what follows, we will understand
that we use the chronological Julian day expressed in terrestrial time (TT), which we will represent
with the JD notation.

The problem we intend to solve is given date in the tabular Islamic calendar , ,I I IY M D
determine the corresponding chronological Julian day JD. The calculations shall apply the al-Battani

(17)

(18)

(19)
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Table 5.- Islamic tabular perpetual calendar. The abundant years are in italics. The numbers associated
with each year is your signature or weekly day of the first day. Sunday is associated with 1 [22].
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style or type of calendar VII-b-F described above. As a starting point, we have that the Julian day
of the origin of the Islamic calendar, July 16, 622, is

1 948 440.cJD 
The Islamic auxiliary calendar is the one whose first cycle begins immediately before the

origin of the Julian days. The number of cycles of 30 lunar years elapsed since the origin of the
Julian days ( 0JD  ) until the beginning of the calendar ( cJD ) is

1 948 440 0
183.279 0895

10631




where 10 631 are the days of a 30-year lunar cycle

30 354 11 10 631,  
therefore the origin of the auxiliary calendar took place 184 cycles before July 16, 622. That is

184 10 631 1 948 440 7 664  
what are the days before the origin of the Julian days, as shown in illustration 1.

The date in the Islamic auxiliary calendar is , ,I I IY M D   . Between the origin of the auxiliary
calendar and the Hijrah, there are 184 30 5,520   lunar years. But as the years of the Hijrah
begin with the number 1, and the years of the auxiliary calendar start it in year 0, then

5 519I IY Y  

IY  is the year of the Islamic calendar date, and IY   is the corresponding year in the Islamic auxiliary
calendar.

As the days in the auxiliary calendar also begin with the number 0

1.I ID D  
Also, the months of the auxiliary calendar begin with month 0

 11 mod12I IM M  
an expression that decreases IM  in a unit. In short, the date in the auxiliary calendar of a date in
the Islamic calendar is

 5 519; 11 mod12; 1.I I I I I IY Y M M D D       

15. Julian day of Islamic date
We want to find a relationship between the days elapsed since the origin of the auxiliary

calendar until the beginning of the year IY  . Since the relation is closely linear, we will check if
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184 10 631 1 956 104 days 

7 664 days 1 948 440 days 0JD JD

Illustration 1.- Representation of the origins of the Islamic auxiliary calendar and the Julian days account.
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Zeller's theorem applies [23], which tells us that, for the correspondence x y , if there is a
fractional number R such that

   max min 1y Rx y Rx   
then

 inty Rx S 
with

 max .S y Rx 
We refer to a 30-year cycle of the auxiliary calendar, and we build Table 5 taking

10 631 30R  , and the days elapsed y until the beginning of year x, numbered since the beginning
of the cycle. Other values of R can be found, but the one we take is the coefficient if the relationship
were linear, and therefore it is the most immediate to test whether Zeller's theorem is fulfilled.
From the data obtained we obtain

    14 15
max min 1

30 30
y Rx y Rx

        
 

therefore the requirement demanded by Zeller's theorem is satisfied

10 631 14
int .

30

x
y

   
 
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0
30
59
89
118
148

0
1/2
0

1/2
0

1/2

0
1
2
3
4
5

Months
x

Days
elapsed

y

y Rx

6
7
8
9
10
11

177
207
236
266
295
325

0
1/2
0

1/2
0

1/2

Days
elapsed

y

y Rx

Table 7.- y are the days elapsed from the beginning of the year until the beginning of the month x. We take
59 2R  . The first month of the year is 0.

0
354
709

1 063
1 417
1 772
2 126
2 481
2 835
3 189
3 544
3 898
4 252
4 607
4 961

0
-11/30
8/30
-3/30
-14/30
5/30
-6/30
13/30
2/30
-9/30
10/30
-1/30
-12/30
7/30
-4/30

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Years
x

Days
elapsed

y

y Rx

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5 315
5 670
6 024
6 379
6 733
7 087
7 442
7 796
8 150
8 505
8 859
9 214
9 568
9 922
10 277

-15/30
4/30
-7/30
12/30
1/30

-10/30
9/30
-2/30
-13/30
6/30
-5/30
14/30
3/30
-8/30
11/30

Years
x

Days
elapsed

y

y Rx

Table 5.- y are the days elapsed from the beginning of the 30-year cycle until the beginning of the year x. We
take R = 10631/30. The first year of the cycle is 0. The embolismic years are in bold type.

Months
x

(21)
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We want to show that the relation (21) is fulfilled for the years elapsed since the origin of the
auxiliary calendar and not only for those passed in a cycle. Let's assume a year IY   that belongs to
the cycle 1N  counted from the origin of the auxiliary calendar, then

30I ÏY Y N  

IY   is the year in the 1N   cycle. The days elapsed from the start of the auxiliary calendar to the
beginning of the year IY   is

 
1

10 631 30 1410 631 14 10 631 14
int 10 631 int int

30 30 30
II I

Y NY Y
J N

               
    

(22) demonstrates that Zeller's theorem applies to any year of the auxiliary calendar.
Now we determine the days elapsed from the beginning of the year to the month of the date.

Also, in this case, Zeller's theorem applies. Taking 59 2R  , we make Table 7 where we find

    1
max min 0 1

2
y Rx y Rx     

which is the validity condition of Zeller's theorem. If we call 2J  the days elapsed in the year until
the beginning of the month IM  , then

2

59 1
int .

2
IM

J
    

 
1 2 IJ J D   are the days since the start of the auxiliary calendar to date. By Illustration 1

we conclude that the Julian day of the date is

10 631 14 59 1
int int 7 664

30 2
I I

I

Y M
JD D

            
   

7,664 are the days between the beginning of the auxiliary calendar and the beginning of the Julian
days. With formulas (20) and (24), we determine the Julian day of a date of the 30-year Islamic
tabular calendar.

16. Islamic date of Julian day
Now we solve the inverse problem, that is, known the Julian day to determine the date in the

Islamic calendar.
Another option of Zeller's theorem is

 int int .
px q

y Rx S y
r

      
 

The inverse formula is

int
ry s

x
p

 
  

 
the following equation is fulfilled [23]

1,q s r  
so the inverse equation of (21) is

130 1530 15
int int .

10 631 10 631I

Jy
x Y

         
   

1J  are the days that have passed since the beginning of the auxiliary calendar until the beginning of
the year. J   represents the days from the beginning of the auxiliary calendar to the date we are
trying to determine, therefore

7 664.J JD  
Q are the days elapsed in the year of the date, therefore

1Q J J 
By (22) and (25)

1

30 15
7 664 int 10 631int 14 30

10 631

J
Q J J JD

            
    
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(24)
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It is indifferent to put in (27) J   or 1J  since both days belong to the same year..
The inverse relationship of (23) is

2
int

59I

Q
M

    
 

Q are the days elapsed from the beginning of the year.
The days elapsed in the month of the date is

59 1 2
int int 59int 1 2 .

592
I

I

M Q
D Q Q

                      
With the equations (26), (25), (27), (28) and (29) the date of the auxiliary calendar is determined, it
is only necessary to find the inverse equations to (20)

5519
mod12 1
1.

I I

I I

I I

Y Y
M M
D D

 
 
 

and we already know the date of the Islamic calendar known the Julian day.

17. Julian day of dates in the Julian calendar and the Gregorian
The method we use to convert the Islamic calendar to the Julian or Gregorian calendar and

do the inverse operation, is to determine the Julian day in the Julian or Gregorian calendar. With this
data, find the date of the Islamic calendar according to techniques developed in the previous section.

The method to find the Julian day of the Julian and Gregorian calendars is similar to that
described in the previous sections, so we will not develop the techniques but exclusively put the
final results [24].

The date in the Julian auxiliary calendar is

 
1

9 mod12

14
4716 int

12

J J

J J

J
J J

D D
M M

M
Y Y

  
  

      
 

, ,J J JY M D  is the date on the Julian calendar. The associated Julian day is

1461 153 2
int int 1 401.

4 5
J J

J

Y M
JD D

             
   

To do the inverse operation, that is to find the date known the Julian day, we apply the
following formulas

 

 

 

4 1 401 3
int

1 461

4 1 401 3 mod1 461
int

4

5 2
int

153
5 2 mod153

int
5

J

J

J

JD
Y

JD
Q

Q
M

Q
D

    
   

 
         
  

     
 
  

   
 

with the previous formulas, we determine the date in the Julian calendar

 
1

2 mod12 1
14

4716 int .
12

J J

J J

J
J J

D D
M M

M
Y Y

 
  

     
 

To find the Julian day of a Gregorian calendar day we use the formula
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1461 153 2 1843
int int int int 1 363

4 5 4 100
J J J

J

Y M Y
JD D

                     
      

, ,J J JY M D    is the date of the auxiliary calendar, calculated by (31).
To find the date in the Gregorian calendar known Julian day, we calculate the coefficient s

3 4 9 222 033
int 1 int 10

4 146 097

JD
          

    
and we calculate the Julian day that would have the same date but expressed in the Julian calendar

,jJD JD   (37)

and with this new value of the Julian day, we apply the formulas (33) and (34) and find the Gregorian
date.

18. Examples
* Example 3.- Determine the Julian day of the 13th of Safar of the year 720 of the Hijrah.
- By (20) we find the date in the Islamic auxiliary calendar

6 239; 1; 12I I IY M D    
- We apply (24) and calculate the Julian day

2 203 372.JD 
* Example 4.- Find the Islamic date of Julian day 2,450,320.
- With (26) and (27) we calculate the auxiliary quantities

1 2 457 984; 97.J Q 
- With (25), (28) and (29) we calculate the date of the auxiliary calendar

6 936; 3; 8.I I IY M D    
- With (30) we calculate the date of the Islamic calendar

1 417; 4; 9I I IY M D  
9th day of Rabi II of the year 1417 of the Hijrah.
* Example 5.- Find the date of the Julian calendar of the Islamic date 15 of Shawwal 840 H.
- By (20) and (24) we determine the Julian day of the date

2 246 034.JD 
- By (33) we found

6 153; 52; 1; 21.J J JY Q M D     
- By (34) we determine the corresponding Julian calendar date

1 437; 1; 22J J JY M D  
January 3 of the year 1447 of the common era.
* Example 6.- Find the Islamic date of March 13 of the year 950 CE.
- Since the date corresponds to the Julian calendar, formulas (31) and (32) apply, so the corresponding
Julian day is

2 068 117.JD 
- With (26) and (27) we calculate the auxiliary quantities

12 075 781; 2 075 526; 255.J J Q   
- With (25), (28) and (29) we calculate the date of the auxiliary calendar

5 857; 8; 19.I I IY M D    
- With (30) the date of the Islamic calendar is calculated

338; 9; 20I I IY M D  
that is, on the 20th Ramadhan 338 H.
* Example 7.- Find the date of the Gregorian calendar of the Islamic date 8 Ramadhan 1505 H.
- By (20) and (24) we determine the Julian day of the Islamic date

2 481 650.JD 
- By (35) and (36) we find

(35)

(36)
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13; 2 481 663.JJD  
- Applying formulas (33) and (34), we find that the Gregorian date is June 4, 2082 CE.
* Example 8.- Find the Islamic date of the Gregorian date October 23, 2043.
- Since the date corresponds to the Gregorian calendar, formulas (31) and (32) apply, so the
corresponding Julian day is

2 467 546.JD 
- From (26) and (27) we calculate the auxiliary quantities

1 2 475 210; 313.J Q 
- From (25), (28) and (29) we calculate the date of the auxiliary calendar

6 984; 10; 18.I I IY M D    
- With (30) the date of the Islamic calendar is calculated

1 465; 11; 19I I IY M D  
that is, 19th Zul-Qida 1465 H.

Another problem is to determine the Julian or Gregorian date of the Islamic date of an
observational calendar. As the observation of the crescent, with which the lunar month begins, it
cannot be predicted for reasons as evident as the presence of clouds, erroneous view, change in the
transparency of the sky, etc., we cannot have an exact conversion algorithm.

So, what we do is assume that the Islamic date corresponds to the tabular calendar and then
apply the above algorithms to determine the Julian or Gregorian date. Still, this procedure will not
give us for sure the equivalence between both dates.

However, if, in addition to the Islamic date deduced from an observational calendar, we
know its weekly day, it is possible to find the equivalence with the Julian or Gregorian calendar,
given the circumstance that the week is the same in both calendars.
* Example 9.- 1 Rabi-I 1235 H was a Sunday, find out the Gregorian date that corresponds to it.
- By (20) we find the date in the Islamic auxiliary calendar, assuming that the Islamic date corresponds
to the tabular calendar

6 754; 2; 0I I IY M D    
- We apply (24) and calculate the Julian day of the date of the Islamic tabular calendar

2 385 787.JD 
- By (36) and (37) we find

12; 2 385 799.JJD  
- Applying formulas (32) we find

6535; 292; 9; 17.G G GY T M D     
- By (34) we find that the Gregorian date of 1 Rabbi 1235 H of the tabular calendar is

18; 12; 1819.G G GD M Y  
- By (38) we find that the Julian day of the Islamic date of the tabular calendar has Saturday as a
weekly day. Still, the day that had that date was Sunday, this means that the Gregorian date is not
what we have found before, but a day after (to pass from Saturday to Sunday). Therefore the
Gregorian date that corresponds to the Islamic date obtained by the observational calendar is
Sunday, December 19, 1819.

19. Calculation of the weekly day of Islamic date
Since the Julian days count and the succession of the weeks have not been interrupted, it is

possible to obtain an algorithm to determine the weekly day of date if its Julian day is known. Julian
day 0 was a Monday, then the weekly day W of a Julian day JD is

 1 mod7 1W JD  
if the result of (38) is 1 the day is Sunday, if it is 2 the day is Monday and so on, until it reaches 7
which corresponds to Saturday.

Then to determine the weekly day of an Islamic date, we first calculate the corresponding
chronological Julian day (24) and then calculate the weekly day by (38).

(38)
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20. Islamic calendar and astronomy
The average duration of the calendar month in a 30-year cycle is

354
29.530 555 56 29 12 44 0

30 12
d h m s

c

A B
m


  


somewhat less than the average astronomical duration, which for the year 2000 is

29 .53058885 29 12 44 2 .88.d d h m s
sm  

This small difference of 2.88 seconds in each month, accumulates over time. Besides, the average
astronomical lunation increases with time, as shown (1). The result is that the Islamic tabular
calendar is gradually moving away from astronomy, or more concretely said that the New Moon
moves concerning the date of the first month of the computational calendar.

0JD  is the Julian day of the beginning of the year 2000, JD is the Julian day of the date and

cJD  the Julian day of the beginning of the Islamic calendar (July 16, 622 CE).
T is the Julian centuries since the beginning of the year 2000 to date

0 .
36 525

JD JD
T




P is the cycles of 30 lunar years that have elapsed since the beginning of the Islamic calendar

.
10 631

cJD JD
P




The synodic month is for (1)

sm p qT 
T is the Julian centuries of 36,525 days of 24 hours of terrestrial time TT. We express (39) according
to the lunar cycles elapsed

0 0 0

0

36 525 36 525 36 525 36 525
10 631

10 631 36 525 36 525

c c c c

c c

JD JD JD JD JD JD JD JD JD JD
T

JD JD JD JD
P 

     
    

 
   

 and  are numerical constants

010 631
;

36 525 36 525
cJD JD

 


 

 is the Julian centuries since the beginning of the Islamic calendar until the beginning of the year
2000.

Inserting (40) in (39)

   sm p qT p q P p q q P          
and the astronomical synodic month is a function of the 30-year lunar cycles that have elapsed
since the beginning of the calendar.

The number of months in the 30-year cycle is 12 30 360  , and the astronomical duration
of those months is 360 sm . As in a 30-year cycle, there are 10,631 days then the error in a cycle is

 10 631 360 10 631 360 360sE m p q q P         
error E is the difference between calendar and astronomy in the period P of 30 years, period
counted from the beginning of the Islamic era. If with c  we represent the time difference between
the beginning of the calendar month and the astronomical New Moon at the beginning of the cycle
P, at the end of this cycle the difference will be c E    . As astronomical lunation varies very
slowly over time, we have assumed that during a period it remains constant.

The chronological Julian day of the first day of the year 2000 is 0 2,451,545JD   counted
from 0 hours on January 1, 2000. On the other hand 1 948 440cJD  , then

010 631
0.291 061; 13.774 264

36 525 36 525
cJD JD

 


    

and for (1) we have
729 ,530 58885; 2,163 10 .dp q   

(39)

(40)

(41)
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With the previous numerical data (41) it is
50 .010 913 2 .266 434 10 .d dE P   

To determine the error in a cycle, we consider that the average astronomical lunation remains
constant, but we cannot make this assumption when considering a wide interval of time so that the
error accumulated after N cycles of 30 years is

   
1

10 631 360
N

sE N m 
using (41)

       
1

10 631 360 360 10 631 360 180 1
N

E N N p q q P N p q q PN N                  
giving numerical values

   50 .010 913 1 .133 217 10 1d dE N N N N    
which tells us how much the difference between the calendar and astronomy increases in N cycles
counted since the beginning of the Islamic era.

Formula (42) always gives a negative result, which means that the astronomical lunation is
higher than the calendar lunation. Table 8 shows the values of the formula (42) for various periods.
In the same table, it is indicated that after 86 cycles from the beginning of the Hijrah, the accumulated
error of the calendar with astronomy will reach one day.

By direct calculation it is determined that the difference between the beginning of the day of
the tabular calendar and the time of the New Moon at the beginning of the Hijrah is 2 1 21d h m

c 
approximately *, understanding that the calendar day begins the same as the civil day, that is to say
at 0 hours, according to the first meridian or meridian of Greenwich. The conjunction of the Moon,
or New Moon, happens sometime before the beginning of the calendar month, and this is what
happens in the tabular calendar. The value of c  we have given refers to the first meridian, which
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86

Elapsed Lunar
Cycles

N

Accumulated
error
E(N)

0

-2h  39m

-5h  21m

-8h  7m

-10h  55m

-13h  47m

- 1d  0h  34m

Table 8.- Accumulated errors in the Islamic tabular calendar according to the cycles of 30 years elapsed.
When 86 cycles or 2,580 lunar years have passed, the accumulated error will have exceeded one day. In the
column on the right is the difference between calendar and astronomy, that is, the difference between the
beginning of the month of the calendar and the beginning of the astronomical New Moon.

Difference
with astronomy

 c E N 

2d 1h  21m

1d 22h  42m

1d 20h  0m

1d 17h  14m

1d 14h  26m

1d 11h  34m

1d 0h  47m

* We obtained this value averaging the difference between the first day of the month and the date of the New
Moon during the first ten years of the Hijrah.

(42)
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means that if we consider a point East of Greenwich as a reference, c will take a smaller value.
For example, if we assume that the comparison is made for Mecca (which is at a geographical
longitude of 39º 50’ East) then the value of c  will be 1 22 42d h m  (Illustration 2).

The day begins at midnight, but as we have said, the beginning of the Islamic day is with the
sunset, at approximately 18 hours local time. If we consider this beginning, the value of c  for
Mecca will be 1 16 42d h m  (Illustration 2), which is the time between the New Moon and the first
day of the calendar in the year of the Hijrah.

As time passes, and as a result of the accumulated error, the time between the New Moon
and the beginning of the lunar month decreases, as seen in Table 8.

Table 9 shows the error accumulated after several 30-year cycles, calculates comparing the
date of the calendar with the time of the astronomical New Moon. The calculation has been made
averaging the differences in the first year of the cycle, so the results are very approximate but
agree with those obtained by the theoretical formula (42).

Table 8 shows that in the year 3124 CE ( 622 2502  ), the accumulated error will have
exceeded one day, but there will still be a difference of one day between the New Moon and the
beginning of the month, which would make it possible use the tabular calendar.

21. Terrestrial time and universal time
We have said that the time scale in which the synodic month (1) is expressed is the terrestrial

time TT, a uniform time scale whose unit is the second atomic. But as we have also noted, calendars
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 c E N 

Difference with
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(theoretical)
 c E N 

Table 9.- Difference between calendar and astronomy calculated by two procedures. In the second column
are the results of comparing the dates of the beginning of the months with the date of the astronomical New
Moon. In the third column, the value obtained with the formula (42). There is a small difference because of
the periodic variations of astronomical lunations.

Illustration 2.- c  is the time between the New Moon and the first day of the calendar, assuming that it starts
at 0h UT. c  is the difference between the New Moon and the first day of the month, considering that it
begins at 18 hours local time from a place of geographical longitude  (which in the illustration we assume
East of Greenwich). The picture shows that 6c c       (with  expressed in units of time).
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follow the civil time scale, called coordinated universal time UTC.
The universal time UT is a rotational time; that is, it is defined by the apparent rotation of the

Sun around the Earth. It is not a uniform scale because of the irregularities of the Earth's rotation.
However, it is the time that gives us the position of the Sun in the sky and the time that human life
follows.

The civil scale or coordinated universal time is a mixture of terrestrial time and universal
time. It uses the second atomic, however when it separates excessively from universal time due to
the decrease in the rotation of the Earth, a second is inserted at the end or half of the year to get the
UTC to be closest to UT.

The measured time difference on the TT and UT scales is
,T TT UT  

from ancient astronomical observations, Stepheson obtains the following empirical formula
2 280 .44 111.6 31sT T T T T        

valid for historical times. In (43), T is expressed in seconds, and T are Julian centuries since the
beginning of the year 2000 [25].

Since the difference between the UT and the UTC is at most 0.9 seconds, we can consider
for practical purposes that the scale that calendars follow is universal time. We must, therefore,
modify the calculations made in the previous section and study the relationship between calendar
and astronomy when universal time is used and not terrestrial time.

The first problem to solve is to express the synodic month (1) on the UT scale. 1t  and 2t  are
the moments in TT when two consecutive New Moons occur, then the synodic month on the TT
scale is 2 1sm t t  . In UT the moments of the New Moons are 1t T   and 2t T  , the
difference between these two moments will be the synodic month in the UT scale

             
         

2 2 1 1 2 1 2 1 2 1

2 1
2 1 1 1

2 1

1

s s

s s s s

m t T t t T t t t T t T t m T t T t

T t T t
m t t m T t m m T t

t t

                       
  

            
T varies very slowly, and its monthly variation is negligible, for this reason, we have chosen as the
time to calculate T the moment 1t ; the same result is obtained if it is calculated for time 2t . (44)
is a formula that applies to any period. By (39), (43) and (44)

       21 2 1 1 2 2sm p qT T p q p T qT                  
therefore

   2 1 ; 1 2 ; 2sm p q T r T p p q q p r q                   
T is the time when the synodic month is calculated, expressed in Julian centuries since the year
2000.

Now it is necessary to express the numerical values in appropriate units. The derivative of
T in days per day is

8 81 1
3.5364 10 1.9647 10

86 400 36 525

d T
T T

dT
      

then
8 83.5364 10 ; 2 1.9647 10     

they are dimensionless quantities. By (1) and (45) we find that the synodic month measured on the
UT scale is

729 .530 5878 3.639 10d
sm T   

we do not consider the second-order term in T because it is minimal. (46) shows us that if the
measurement of the lunation is made on the UT time scale, then it decreases overtime at approximate
0.031 seconds per century.

The error accumulated in a period of N cycles is again the formula (42) but with the coefficients
pand q  corresponding to the measurement in UT of the synodic month

     
 5

10 631 360 180 1

0 .013 412 1 .906 51 10 1 .d d

E N N p q q N N

N N N

 


           
    

(47)

(46)

(45)

(43)

(44)
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The numerical results found with (47) are different from those found with (42). In the first case, the
error is expressed in 24-hour days of UT time, and in the second case it is 24-hour days of TT, that
is, the numerical difference found is by the different time scales in which they are measured.

The accumulated error will exceed the 24-hour UT in the cycle 69 when 2,070 lunar years
have elapsed, while, as seen in Table 8, there are 86 cycles that must pass so that the accumulation
is of 1 day expressed in terrestrial time.

22. Determination of the first day of the year of the Hijrah
We try to compare the tabular calendar with the observation of the lunar crescent, which, as

we know, is some time after the conjunction of the Moon with the Sun. To make this calculation, we
will use the visibility criterion of Yallop [26], [27], [28]; which allows us to know theoretically the
moment when the crescent is observable in a specific place. To fix the calculations, we will assume
that the observation is made from Mecca.

We want to compare the date of the beginning of the calendar month with the day of the first
visibility. Let us realize that the result is always an integer. It would be 0 if there is a match between
the calendar and the observation, the value would be negative if the view occurs after the first day
of the calendar and the difference is a positive number if the observation occurs before the first day
of the calendar. That is, the coefficient   we are looking for is the average, expressed as a
percentage, of the difference of the day of the observation of the crescent and the day of the
beginning of the month according to the calendar.

As a result of the error that the calendar accumulates, the value of depends on the time, so
that the calendar dates are increasing as compared to the observation day. Table 10 shows that at
the beginning of the Hijrah,  is negative, indicating that the observation of the crescent occurs,
with some frequency, after the calendar date. For the year 1200 CE, the parameter  becomes
positive; that is, occasionally, the observation day is before the calendar date.

Table 10 shows that, at least in historical times, the occasions when there is a coincidence
between calendar date and the observation of the crescent are more frequent, although we must
bear in mind that these results are sensitive to the longitude and latitude of the observation site.

So to find the date of the first day of the Islamic calendar, we will assume (and this is a
hypothesis) that the calendar that follows the observation of the crescent (that is, the calendar that
has been followed), fits on average to the tabular calendar. Therefore, we assume that in most
cases, there is a coincidence between the day of observation and the first day of the tabular
calendar, at least in historical times.

With the previous hypothesis, we can determine the Julian date of the first day of the Islamic
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Table 10.-Frequency, as a percentage, of days between the observation of the lunar crescent and the date of
the tabular calendar. The calculations are made for Mecca and correspond to the average of the first days
of the 30-year cycle years that begin in the year of the left column. It is verified that the most frequent is that
there is a coincidence between the date of the calendar and the observation of the crescent. It is also
confirmed that with time, it is more frequent for the Moon to be observed before the calendar date. In the
last column is the coefficient , which is the average of the difference between the day of observation of the
crescent and the first day of the calendar, expressed as a percentage.
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calendar. We take a set of days whose Julian (or Gregorian) and Islamic dates are known. On
some occasions, the day of the observation will have been before the first day of the month of the
calendar, and on other times it will have been after, but more often, there will have coincidence, as
the hypothesis we have made assumes.

Suppose we know the Islamic and Julian (or Gregorian) dates of the same day. We assume
that the Islamic date, which has been determined by the observation, coincides with the tabular
calendar date. Then we can calculate the days J elapsed since the beginning of the Hijrah or the
first day of the first month of the year 1 H.

Once the Julian (or Gregorian) date is known, we find its Julian day JD by (32) or (35).
Therefore we will have

1cJD JD J  
we add a unit because the first day of the year 1 H is day 1. (48) allows us to determine the Julian
day cJD  of the first day of the Islamic calendar and with it its corresponding Julian or Gregorian
date.

To calculate the J value, we adapt the formulas (22) and (23), but now those formulas count
the time since the beginning of the Hijrah, whose first day is 1 and not 0 as it happens when the
account is made from the beginning of the auxiliary calendar Therefore we have

   10631 1 14 59 1 1
int int

30 2
I I

I

Y M
J D

       
     

   
IY , IM , and ID  is the date in the Islamic calendar..

For example, suppose the date of 1 of Muharram 133 H, which corresponds to the Julian
date September 8, 750 CE (as we can deduce from the visibility criteria of Yallop). By application
of (31) and (32), we find that the Julian day of the Julian calendar date is

1 995 246JD 
and by (49)

46 807J 
then the Julian day of the first day of the Islamic calendar is

1 1 948 440cJD JD J   
by (33) and (34) we find the corresponding date of the Julian calendar, July 16, 622.

This operation is performed for several date pairs, determining in each case the origin date of
the calendar. The value that is adopted is the most frequent, that is, the one that makes the tabular
calendar fit as best as possible to the calendar based on the observation, which, as we have already
verified (Table 10) is July 16, 622 CE.

The date found is that corresponding to the first day of the tabular calendar, but we do not
know if it was the first day in the observational calendar, that maybe it was a day before or a day
later.

23. Islamic day and Islamic lunation
The Islamic day is an uninterrupted count of days in the tabular calendar that begins on the

first day of the year of the Hijrah, which takes the value 0. Then the Islamic day J
I
 is

I cJ JD JD 
JD is the Julian day of the Islamic date and cJD  the Julian day of July 16, 622, or the first day of
the Islamic tabular calendar. Another option of Islamic day is to count until the day when the
crescent is observed; we call this definition astronomical Islamic day. In other definitions, the first
day of the first year is taken as 1, instead of 0 as we have done in our definition.

There are several numbering systems for the lunations. Brown's lunation number, which is
the most widely used system, defines lunation 1 as the first New Moon of 1923, the year Brown's
lunar theory was introduced. This first lunation took place on January 17, 1923.

Jean Meuss's lunation number defines lunation 0 as the first New Moon of the year 2000,
which was on January 6 of that year.

Goldstein's lunation number begins with the first New Moon of the year 1001 BCE, which
was on January 11, 1001 BCE. The Hebrew lunation number begins with New Moon 1 that began
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on December 7, 3761 BCE.
The Islamic lunar number is counted from the beginning of the Islamic era, that is, from July

16, 622 CE. It should be noted that Islamic lunations begin with the month of the tabular calendar
and, therefore, may differ some days from the astronomical lunation.

To find the number of Islamic lunation we calculate the months from the first Islamic year,
that is, if L is the Islamic lunation

 12 1I IL Y M  

IY  and IM  is the Islamic date.
* Example 10.- For the Islamic date 15 Ramadhan 1420 H find the Islamic day and the Islamic
lunation on which that date is found.
- By (20) and (24) the Julian day of the Islamic date is calculated

2 451 536.JD 
- With this data, we calculate the Islamic day

2 451 536 1 948 440 503 096I cJ JD JD    
are the days elapsed from 0 hours of day 1 Muharram 1 H to 0 hours of day 15 Ramadhan 1420 H.
- From (50), we determine the number of lunation

17 037.L 

24. Displacement of the seasons
A solar calendar is characterized by keeping the dates of the seasons stable. We cannot get

the seasons to start every year on the same day, either because of the variable duration of the year
or, mainly, because of the intercalation every four years of the leap day. But at least the seasons
start around the same calendar days. The lunar calendar is not related to the apparent movement of
the Sun; therefore, the dates of the seasons are not fixed and can be on any Islamic date.

The time between the beginning of a season and the next season of the same type is called
a seasonal year. Four types of seasonal years must be distinguished, depending on the season
considered. For example, the year of spring had an average duration of 365d 5h 49m 1s.11 in 2000.
The tropical year is the average of the four seasonal years, its average value varies with time, being
its value 365d 5h 48m 45s.19 in the year 2000 [32].

The average duration of the year of the 30-year Islamic tabular calendar is 354d 8h 48m, that
is, a difference with the tropical year of 10d 21h 0m 45s.19, very close to 11 days.

The duration of the spring year is, as we have said, 365d.242 374, so between the day on
which spring begins and the day on which the next spring begins, there must be 365 days or on
some occasions 366 days, since this interval is an integer and spring can begin at any time of the
day. Normally, every four years there are three in which the seasons are 365 days apart and one in
which they are 366 days, although it is a rule that is not always fulfilled, either by the application of

28

Spring
equinox

day

Spring
equinox

day

354 or 355 days

365 or 366 days

Beginning
of the year

Y
I

Beginning
of the year

1IY 

 

 

 
1d

2d

Illustration 3.- Determination of the displacement of the seasons in the Islamic calendar. The days elapsed
between the beginning of two consecutive Islamic years can be 354 or 355 days. The days between the start
of two successive seasons can be 365 days (most frequently) or 366 days. 1d  are the days from the beginning
of the year IY  and the beginning of spring (or another season) that corresponds to that year, and 2d  aree
the days from the beginning of the year 1IY   to the next start of spring. The displacement of spring is

2 1d d , which may be 10, 11, or 12 days.

(50)
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the Gregorian correction of intercalation or for the variable duration of the seasonal years [33].
Since the duration of the Islamic year is 354 or 355 days, the result is that the days between

a spring and the next in the Islamic calendar can be 10, 11 or 12 days (and the same result for the
remaining seasons).

In Illustration 3, 1d  are the days from the beginning of the year IY  to the beginning of spring
and 2d  the days from the beginning of the year 1IY   and the beginning of spring of that year. For
Illustration 3 we have

       1 2 2 1365 or 366 354 or 355 365 or 366 354 or 355d d d d d        
then d or displacement of days of the seasons in the Islamic calendar can be 10, 11, or 12 days; 11
being the most frequent interval, since the years of 365 days and 354 days are the most common.

25. Eight year calendar
From the formula (3), we find that if the lunar cycle is composed of 8 years, the number of

embolismic years is 3. Of the equations (4) it is found that the months of 30 and 29 days are

30 2951; 45m m 
96 months in total, which means that the calendar lunation is

354
29 .531 25 29 12 45 0

12
d d h m s

m

A B
m

A


  

57 .12s  higher than the average astronomical duration for the year 2000.
The average duration of the calendar year based on the 8-year cycle is

51 30 45 29
354 .375 354 9 .

8
d d h  

 

The number of days of the 8-year cycle is 2,835, which is 405 whole weeks. This means that
after 8 years, the dates are repeated on the same calendar days, that is, the 8-year cycle is a
perpetual calendar.

The order of intercalation of embolisms is calculated by (13). Since there are three possible
values for (0, 1 and 2) then there are three possible intercalation criteria. If = 0 the embolismic
years are 3, 6 and 8. When = 1 the embolisms are years 2, 5 and 7 and finally if  = 2 the abundant
years are 1, 4 and 6.

To calculate the error in the calendar of the 8-year cycle, we use the same technique like the
one described in section 20. The first is to express the synodic month on the periods of 8 years.
Equation (40) is modified so that it is

0 02 835

36 525 2 835 36 525 36 525
c cJD JD JD JD JD JD

T P 
  

    

the numerical values are
0.077 618; 13.774 264.   

When P cycles of 8 years have elapsed since the Hijrah the synodic month is

  .sm p qT p q q P     
The calendar error in a cycle of 8 years or 2,835 days is

 2 835 96 2 835 96 96sE m p q q P         
96 are the months in the 8-year cycle. Assuming we use the terrestrial time scale the error is

60 .063 756 1.611 722 10 .dE P  
The accumulated error in N periods of 8 years is

     
 6

2 835 96 48 1

0 .063 756 8.058 611 10 1 ,d

E N N p q q N N

N N N

 


        
   

in 15 cycles of 8 years or 120 years, the accumulated error is 22h 59m 55s, very close to 24 hours.
To calculate the error accumulated in the universal time scale, we use the (47)

     
 6

2 835 96 48 1

0 .063 090 1.355 769 10 1d

E N N p q q N N

N N N

 


          
   
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in 15 cycles, the accumulated error from the Hijrah calendar and astronomy is 22h 42m 16s.5.
The results indicated above suggest that the 8-year cycle the correction be made after 15

periods of 8 years or 120 years, or every 128 years with a better fit to astronomy. By (52), we
verify that the accumulated error is positive; that is, more days than necessary are placed on the
calendar. Therefore, the correction is to remove one day from the calendar every 120 years.

We will derive the accumulated error formula according to the cycles of 120 years elapsed,
but now using the universal time scale. In 120 years, there are 15 cycles of 8 years, 1,440 months
and the number of days is

15 2 835 1 42 524  
that is 15 periods of 30 years minus one day, which corresponds to the correction that must be
made in 120 years. The average lunation over 120 years is 29d 12h 41m, about three minutes smaller
than the astronomical lunar year 2000.

To express the synodic month according to the 120-year P periods elapsed since the Hijrah,
we have to express the Julian centuries in periods of 120 years, repeating the calculation (40)

042 524

42 524 36 525 36 525
c cJD JD JD JD

T P 
 

   

with numerical values

1.164 244; 13.774 264,   
then the synodic month is

  .sm p qT p q q P     
The error in 120 years in the period P counted from the beginning of the calendar is

 
4

42 524 1 440 42 524 1 440 1 440

0 .043 654 3.626 294 10 ,
s

d

E m p q q P

P

 


         
   

the accumulated error at the end of N cycles of 120 years we deduce from (52)
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Table 11.- Al-Biruni’s perpetual calendar of the 8-year cycle. The first column is the order of the years in the
8-year cycle. The embolismic years are in italics. The remaining columns are the signatures of each month,
that is, the weekly day of the first day of each month. Day 1 is Sunday.
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Table 12.- Possible correction system by remodulation of the 8-year calendar. The numbers give the signature
associated with each year of the 8-year cycle according to the 120-year period in which they are found. The
periods are counted from the Hegira. In the first period, the first day of the cycle has the signature 6, which
means that the first day of the year 1 H was Friday, as it should be. After 120 lunar years, one day must be
removed from the calendar. We assume that the elimination of this day occurs in the last year of the 8-year
cycle. The year 121 should start its first year by 6 (according to the sequence of the signature), but in
reality, it will start a weekly day before, that is, at 5, since at the end of the year 120, the correction was
made. And the same for the following 120 year periods. After the seventh period, the order of the signature
is repeated. The sequence of the signature is only altered when the correction is made at the end of each
period. But after this alteration, the signature continues in the same order, that is, 1, 6, 3, 7, 5, 2, 6, and 4.
The embolismic years are always those with the signature 1, 7, and 6.
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The accumulated error will be one day in cycle 17, that is when 2,040 years have passed since the
Hijrah. Therefore a slightly higher error than in the 30-year cycle calendar, which reaches the error
day after 2,580 years. Note that error (53) is negative; that is, the astronomical lunation is higher
than that of the calendar, contrary to what happens with the 8-year calendar.

We know that the 8-year cycle calendar was used in Asia Centra (Table 11), Baghdad (in the
ninth or tenth century), Tibet (fourteenth century), Turkey (eighteenth and nineteenth centuries),
Cairo (nineteenth century) and in Southeast Asia until the 20th century.

Table 11 shows the perpetual calendar described by al-Biruni in the 10th century [29], whose
intercalar years are located in positions 2, 5, and 7 of the cycle. The table gives the weekly day of
each month of the year according to its order in the 8-year cycle. Al-Biruni says that to determine
the position of the year in the cycle we have to use the formula

 4 mod8.Ln Y 
that is to say, that the first year of the calendar, or year 1 H, should have number 5 of the 8-year
cycle, because that day, as seen in Table 11, was Friday as corresponds to July 16, 622 CE. But the
logical is that the first year of the calendar coincided with the first day of the 8-year cycle. This
leads us to think that the perpetual calendar that al-Biruni gives is the result of several corrections
in the past.
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8-year cycle
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calendars

2 124 560
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calendars

2 209 608

2 213 152

2 216 696
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Seventh 120 year period
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day

Order in the
8-year cycle

Day weekly
in the

8-year cycle

Julian day
30-year cycle

Day weekly
in the

30-year cycle

Difference
between
calendars

Table 13.- The second column is the order of the date in the 8-year cycle of al-Biruni. The third column is the
weekly day, according to the 120 year period (Table 12). The Julian day is calculated assuming that the
Islamic date corresponds to the 30-year calendar and from which we obtain the weekly day. The last
column is the difference between the weekly days of the two calendars. Sometimes the dates do not match,
but as the weekly day must be the same, therefore the dates in both calendars are different.
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If we take into account that al-Biruni wrote around the year 1000, we must assume that your
calendar corresponds to the fourth period of 120 years, since 3 120 320   and 320 622 1000  ,
therefore when writes al-Biruni, the calendar should be in the fourth 120-year period. Admitted this
hypothesis, during the first period the first day of the 8-year cycle would begin with Friday; as it
should be so that the first day of the year of the Hijrah is Friday.

When a correction is made to the 8-year calendar, one day must be removed, so the weekly
days of the beginning of the years are reduced by one. Then the new perpetual calendar of the 8-
year cycle is the same as the previous period, but with all the numbers decreased by one unit.

Table 12 shows the perpetual calendars valid for seven periods of 120 years, where the
weekly days of the first day of each year are given. The year of the Hijrah was year 1 of the 8-year
cycle and also the beginning of the first 120-year period, so, as seen in table 13, the first day of that
year was 6, that is, Friday, since we follow the practice of starting the week with Sunday. At the
end of the seventh period of 120 years, it returns to the initial calendar, in which the first year begins
on Friday.

There is no certainty that this 8-year calendar will work, as we have indicated. That is to say;
it is unknown if there was a defined rule to correct, or it was done when the observation noted that
the calendar was not following astronomy.

We make a comparison between the calendars of 30 years and 8 years. As the criteria for
making corrections in the 8-year cycle is unknown, we will follow the following procedure to
compare your dates. We choose a date, for example, 1 Muharram 378 H (year 999 CE); we find
the order of the year in the 8-year cycle, dividing 378 by 8 and seeing the rest, resulting in 2; then
by table 11 (which we consider valid at that time) we find that the first day of the year is 7, that is
Saturday. By (24), we find the Julian day of the date, finding 2,082,036JD  , and by (38), we
determine the corresponding weekly day, which is 1 (Sunday). Therefore we check that the difference
between the two calendars is one day. So the date of Muharram 1 of 378 H of the 30-year calendar
corresponds to the 2 of Muharram of the year 378 H according to the al-Biruni calendar (which is
Sunday, since the day before was Saturday).

In Table 13, we have collected the comparison between various dates in the 30 and 8 years
calendars, where it can be seen that in some years, there is a difference of one day between the
two dates.

Instead of a perpetual calendar, like the one in table 11, in other places where the 8-year
calendar was used, another procedure was used to establish the calendar for a given year. Each
month was associated with a number, which we have called regular monthly (see section 4 and
Table 14). Each year it has a number called a signature (see section 4) that is used to determine the
day of the week of the first day of the year.

The sequence of the cycle signature in the Southeast Asian calendar is 1, 5, 3, 7, 4, 2, 6, 4,
somewhat different from the sequence of the al-Biruni calendar. The starting year of this sequence
may change for reasons that we will see later. With the previous order, the abundant years are 5, 4,
and 6, that is, the second, fifth, and seventh. Let us realize that after a typical year, the weekly day
of the first day of the year shifts four days, the days that exceed 354 days an integer number of
weeks. Still, if the year is embolismic, the displacement is five days, that is, the excess of 355 days
of the abundant year over an entire number of weeks. We see that they increase in five days the
second year

   5 signature 5 excess wek 10 3  
for the fifth year 4 5 9 2    and for the seventh year 6 5 11 4   , therefore years 2, 5 and 7
are embolismic.

To complete determination of the calendar is necessary to know the calibration of the signature,
that is, the relationship between numbers of signature and days of the week. For example, if the
number 1 is associated with Sunday, then 2 would correspond to Monday and 7 to Saturday. But
note that this association may vary for reasons that we will see later.

The table of the monthly regulars is unalterable and is always Table 14. To find the calendar
for a year, we need to know the association between the years of the cycle and the signatures of
the years and also know the number at which the week begins, that is the calibration or the number
we associate with Sunday.
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In the 8-year calendar that Ideler collected in Turkey [30] at the beginning of the 19th
century, there are Table 14 of the monthly regulars, he identifies 1 as Sunday and to find the
signature, table 15 is used, which was valid in the year 1824 CE or 1240 H. This calendar is
supposed to have been established by Mehemed Efendi in the 16th century. This means that table
15, which gives us the signature, must have previously had two corrections, and therefore that table
was valid in the 120-year period in which the year 1240 H was found.

In Southeast Asia, an 8-year calendar was also in use, with the same structure as those
described previously [31]. Like the previous ones, this calendar required a correction approximately
every 120 years or so. For these Southeast Asian calendars, the criteria for deciding when the
correction was made is unknown, but most likely, it was due to observation and not a mathematical
rule.

had been eliminated by the correction. One method was the one we have already referred to
in the calendars already analyzed, which is called remodulation and which consists, as we have
seen, in making a jump in the signature of the year, but maintaining the numerical value that is
associated with each weekly day. But another procedure that was used when the correction was
made was called recalibration, with this method the sequence of the signatures of the years was
left unchanged, but the number that was given to the weekly days was modified, that is to say, it
changes the calibration of the signature For example, if 1 corresponds to Sunday, when recalibration
1 becomes Saturday.
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Table 14.- Regular monthly of the twelve months of the year. Adding the regular with the signature, we
obtain the weekly day of the first day of each month. The sequence of the regular lunar indicates that the
months are alternately 30 and 29 days, with the first month having 30 days.
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1

2

3

4

5

6

7

8

3

7

4

2

6

4

1

5

Years
of the cycle

Signature
of the year

Table 15.- Signature of the year according to its position in the 8-year cycle in a 19th-century Turkish
calendar. The embolismic years are those in italics. The table was valid for the year 1824 CE or 1240 H. We
note that the sequence is different from al-Biruni's calendar.
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26. Appendix.- Non-regular tabular Islamic calendars. Semi-regular calendars
We have considered regular arithmetic or computational calendars, in the sense that the

embolismic years are regularly distributed, with this technique the dispersion of the dates of the
tabular calendar with respect to the observational or astronomical calendar is small.

However, it is possible to devise calendars in which the abundant years are not regularly
distributed in the cycle. If we limit ourselves to a 30-year cycle of which 11 are abundant, the
number of different intercalation criteria for embolisms are the combinations without repetition of
30 elements taken from 11 to 11, that is, the number of groups that can be formed of 11 numbers
taken from the 30 of the cycle, without repeating any of them. The numbers in these series of 11
numbers represent the positions of the years that are embolismic in the 30-year cycle.

Using the formula of the combinations without repetition of 30 elements taken from 11 to 11
we find

 30,11

30 30!
54 627 300

11 11! 30 11 !
C

 
     

this is the total number of different calendars that can be formed with a 30-year cycle, with 11 of
them embolismic.

But to avoid calendars that deviate significantly from astronomy because they are very
irregular, we limit ourselves to those calendars in which the embolismic years follow one another in
intervals of two or three years. We will call these calendars semiregular because the interval
between embolismic years is regular. In section 8 we have exposed that the distribution of the
embolismic years according to the separation between them in the case of a regular distribution
follows the pattern 233-2333-2333, from which we deduce that there are two sub-cycles in the 30-
year cycle (the 233 and 2333).

To analyze the non-regular calendars obtained with the previous hypothesis, we assume that
any of these calendars is formed by three sub-cycles and in each of these sub-cycles there is a
single two-year interval between embolisms, so the possible sub-cycles are

1

2

3

4

5

9

2
23
233
2333
23333

.......
233333333

S
S
S
S
S

S









1S  is a cycle with two years, the second of which is embolismic; 2S  is 5 years, the second and the
fifth being embolismic, and so on. The embolismic year patterns are formed by three of these
subcycles, and must always be formed by 11 embolismic years.

Of the multiple possibilities that can occur, the closest to regularity is the calendars formed
with the 3S , 3S , and 5S  subcycles, that is, the intervals between embolisms have the pattern 233-
233-23333.

The following types of calendars are derived from the previous sequence of embolismic
years

2 3 3 2 3 3 2 3 3 3 3
3 2 3 3 2 3 3 2 3 3 3
3 3 2 3 3 2 3 3 2 3 3
3 3 3 2 3 3 2 3 3 2 3
3 3 3 3 2 3 3 2 3 3 2
2 3 3 3 3 2 3 3 2 3 3
3 2 3 3 3 3 2 3 3 2 3
3 3 2 3 3 3 3 2 3 3 2
2 3 3 2 3 3 3 3 2 3 3
3 2 3 3 2 3 3 3 3 2 3
3 3 2 3 3 2 3 3 3 3 2

I
II
III
IV
V
VI
VII
VIII
IX
X
XI

  
   
   
   
   
   

   
   
   

   
   

eleven types in total, each of them admits three subtypes, according to the year of the cycle in
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which the first embolism is, whether it is the first, second, or third year of the cycle.
A calendar with this pattern was proposed by Ibn Futuh "Sevillian" in the 13th century, with

the intercalation criteria 2, 5, 8, 10, 13, 16, 18, 21, 24, 26 and 29, which is type IV-a [11]. The
calendar proposed by Rashed, Moklof, and Hamra, which we will call RMH [33] [34], is a semi-
regular calendar of the III-b style. The sequence of the embolismic years is 2, 5, 7, 10, 13, 15, 18,
21, 23, 26, and 29 [36]. The RMH calendar is the same as that of al-Battani except that instead of
16 and 24,  are embolismic the years 15 and 23.

To check the regularity of a calendar and therefore its adjustment to astronomy, we calculated
the standard deviation of the sample formed by the deviations of the calendar from its average
year, that is, the subtraction of the days elapsed in the 30-year cycle and the days that would have
elapsed if the years had had the same duration as the average calendar year.

 D n  represents the days elapsed until the end of year n of the 30-year cycle, and 12 nm  is
the average duration of the calendar year, with nm  being the calendar lunation, so we define the
parameter

    12 mn D n nm  
the standard deviation is
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Another procedure to determine the regularity of a calendar is the mean of the absolute deviation
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The numerical results are
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the RMH subscript refers to the Rashed, Moklof, and Hamza calendar, and the B subscript
corresponds to the al-Battani calendar. The previous calculation shows us that the dispersion is
greater in the first calendar, which is indicative that it has less regularity [37].

27. Conclusions
We investigated the arithmetic, computational or tabular Islamic calendars, that is, formed by

lunar years, of alternative months of 30 and 29 days. We find in epigraphs 3, 4, 5, and 7 algorithms
that define the regular lunar calendars, from which we choose the one formed by 30-year cycles,
of which 11 are embolismic or abundant, which are those that have one day more than the usual
years.

The pattern of embolismic years characterizes tabular calendars, that is, the sequence of the
intervals between abundant years. We chose the pattern that makes the regular calendar, that is,
the embolisms are more homogeneously located in the 30-year cycle. From this pattern, 11 types of
intercalations are deduced, each one giving rise to three styles, according to the weekly day in
which they begin: the first, second, or third of the cycle. For the regular 30-year calendar, we find
in epigraph 9 thirty different calendars, each one characterized by the sequence of the embolismic
years.

In epigraphs 10 and 11, we investigate the pre-Islamic calendar, which was in use in Arabia
until the 10th year of the Hijrah. In that year, the Prophet prohibited the intercalation of months.
Therefore, the lunisolar calendar became lunar.

To do the conversion between the Islamic arithmetic calendar and the Julian or Gregorian
calendar and vice versa, we use the chronological Julian day, which allows us to find algorithms
that are easy to use and that can be applied to computer programs. The computational Islamic lunar
calendar is very close to astronomy, and we found that in ancient times it is a maximum of one day
away from the first observation of the crescent moon. In epigraphs 20 and 21, we calculate the
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error accumulated by the tabular calendar, using both terrestrial time and universal time.
As the Islamic calendar is exclusively lunar, the seasons dates are not fixed on the calendar.

In section 12, we find that the seasons can move 10, 11, or 12 days each year.
In section 25, we study the Islamic calendar with an 8-year cycle. It is astronomically less

accurate than the 30-year cycle calendar, so it requires frequent corrections; approximately every
120 years, it is necessary to remove one day from the 8-year calendar. Two methods have we used
to correct, remodulation (the most frequent procedure) and recalibration.

In the appendix, we extend our research to non-regular calendars. The total number of 30-
year cycle calendars exceeds fifty-four million. But the number is reduced for semi-regular calendars,
in which the embolismic years follow each other after two or three years.

To evaluate the degree of regularity of a calendar we have used two techniques: the standard
deviation of the dispersions of the calendar with respect to the average year and the absolute
deviation of these same values [35].
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where r is the slope of the adjustment line of the numerical values obtained by subtracting the days
elapsed in the cycle and the days that would have passed if the duration of the year had its average
length, and n is an integer. To apply (57), we previously found 354.375 059r   and we verified
that with 32n  , the value of R found in (58) fulfills the conditions of Zeller's theorem. Wenceslao
Segura González, Hemerología. La ciencia de los calendarios, op. cit., pp. 1257-258.

With (57) the Julian day of a date of the Islamic auxiliary calendar is calculated, using a
formula equivalent to (24)
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VII-a

VI-b

VII-c

0.343

0.083

-0.383

0.366

0.257

0.397

0.273

0.288

0.321

Calendar
type  d 

Table 16.- In the first column is the regular calendar type. The second column is the mean value of the
differences in the days elapsed in the cycle and the days that would have passed if the years had the same
duration as the average year (54). The third column is the absolute deviation of the previous values (56),
and the last column is the standard deviation (55).

11 340 12 59 1
int int 7 664,

32 2
I I

I

Y M
JD D

            
   

IY  , IM  , ID  is the auxiliary calendar date calculated by (20).
[37] The standard deviation varies from a calendar to another calendar. In Table 16, we make the
statistical calculations for regular calendars of types a, b, and c (section 8).


