
Dual-Topology Insulator 

 

Finally, the combination of the experimental evidence, first-principles simulations and 

theoretical models on 3-D jacutingaite supports THEOS's earlier prediction that 2-D 

jacutingaite is a Kane-Mele (graphene-like) quantum spin Hall insulator. [28] 

The topological QPC, first implemented at JMU Würzburg, offers an exciting perspective 

in this respect. [27] 

A certain kind of material, called a topological insulator, acts partially like one and 

partially like the other ― it behaves like a conductor at its surface and an insulator in 

its interior. [26] 

Topological insulators (TIs) host exotic physics that could shed new light on the 

fundamental laws of nature. [25] 

A new study by scientists from the University of Bristol brings us a significant step 

closer to unleashing the revolutionary potential of quantum computing by harnessing 

silicon fabrication technology to build complex on-chip quantum optical circuits. [24] 

Two teams of scientists from the Technion-Israel Institute of Technology have 

collaborated to conduct groundbreaking research leading to the development of a new 

and innovative scientific field: Quantum Metamaterials. [23] 

An international team consisting of Russian and German scientists has made a 

breakthrough in the creation of seemingly impossible materials. They have created the 

world's first quantum metamaterial that can be used as a control element in 

superconducting electrical circuits. [22] 

ETH physicists have developed a silicon wafer that behaves like a topological insulator 

when stimulated using ultrasound. They have thereby succeeded in turning an abstract 

theoretical concept into a macroscopic product. [21] 

Cheng Chin, professor in the Department of Physics, and his team looked at an 

experimental setup of tens of thousands of atoms cooled down to near absolute zero. As 

the system crossed a quantum phase transition, they measured its behavior with an 

extremely sensitive imaging system. [20] 

https://phys.org/tags/quantum+phase+transition/


Scientists from three UK universities are to test one of the fundamental laws of physics 

as part of a major Europe-wide project awarded more than £3m in funding. ]19] 

A team of researchers has devised a simple way to tune a hallmark quantum effect in 

graphene—the material formed from a single layer of carbon atoms—by bathing it in light. 

[18] 

Researchers from the University of Cambridge have taken a peek into the secretive domain of 

quantum mechanics. [17] 

Scientists at the University of Geneva (UNIGE), Switzerland, recently reengineered 

their data processing, demonstrating that 16 million atoms were entangled in a one-

centimetre crystal. [15]  

The fact that it is possible to retrieve this lost information reveals new insight into the 

fundamental nature of quantum measurements, mainly by supporting the idea that 

quantum measurements contain both quantum and classical components. [14]  

Researchers blur the line between classical and quantum physics by connecting chaos 

and entanglement. [13]  

Yale University scientists have reached a milestone in their efforts to extend the 

durability and dependability of quantum information. [12]  

Using lasers to make data storage faster than ever. [11]  

Some three-dimensional materials can exhibit exotic properties that only exist in 

"lower" dimensions. For example, in one-dimensional chains of atoms that emerge 

within a bulk sample, electrons can separate into three distinct entities, each carrying 

information about just one aspect of the electron's identity—spin, charge, or orbit. The 

spinon, the entity that carries information about electron spin, has been known to 

control magnetism in certain insulating materials whose electron spins can point in 

any direction and easily flip direction. Now, a new study just published in Science 

reveals that spinons are also present in a metallic material in which the orbital 

movement of electrons around the atomic nucleus is the driving force behind the 

material's strong magnetism. [10]  

Currently studying entanglement in condensed matter systems is of great interest. This 

interest stems from the fact that some behaviors of such systems can only be explained 

with the aid of entanglement. [9]  

Researchers from the Norwegian University of Science and Technology (NTNU) and 

the University of Cambridge in the UK have demonstrated that it is possible to directly 

generate an electric current in a magnetic material by rotating its magnetization. [8]  



This paper explains the magnetic effect of the electric current from the observed 

effects of the accelerating electrons, causing naturally the experienced changes of the 

electric field potential along the electric wire. The accelerating electrons explain not 

only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty 

Relation, the wave particle duality and the electron’s spin also, building the bridge 

between the Classical and Quantum Theories.   

The changing acceleration of the electrons explains the created negative electric field 

of the magnetic induction, the changing relativistic mass and the Gravitational Force, 

giving a Unified Theory of the physical forces. Taking into account the Planck 

Distribution Law of the electromagnetic oscillators also, we can explain the 

electron/proton mass rate and the Weak and Strong Interactions.  
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Preface    
Surprisingly nobody found strange that by theory the electrons are moving with a constant 

velocity in the stationary electric current, although there is an accelerating force F = q E, 

imposed by the E electric field along the wire as a result of the U potential difference. The 

accelerated electrons are creating a charge density distribution and maintaining the potential 

change along the wire. This charge distribution also creates a radial electrostatic field around 

the wire decreasing along the wire. The moving external electrons in this electrostatic field are 

experiencing a changing electrostatic field causing exactly the magnetic effect, repelling when 

moving against the direction of the current and attracting when moving in the direction of the 

current. This way the A magnetic potential is based on the real charge distribution of the 

electrons caused by their acceleration, maintaining the E electric field and the A magnetic 

potential at the same time.  

The mysterious property of the matter that the electric potential difference is self maintained by 

the accelerating electrons in the electric current gives a clear explanation to the basic sentence 

of the relativity that is the velocity of the light is the maximum velocity of the electromagnetic 

matter. If the charge could move faster than the electromagnetic field, this self maintaining 

electromagnetic property of the electric current would be failed.  

More importantly the accelerating electrons can explain the magnetic induction also. The 

changing acceleration of the electrons will create a –E electric field by changing the charge 

distribution, increasing acceleration lowering the charge density and decreasing acceleration 

causing an increasing charge density.  

Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as a relativistic changing electromagnetic mass. If the mass is 

electromagnetic, then the gravitation is also electromagnetic effect. The same charges would 

attract each other if they are moving parallel by the magnetic effect.  

  

  



New experimental, theoretical evidence identifies jacutingaite as 

dual-topology insulator 
Topological insulators (TIs) are bulk insulating materials that nonetheless exhibit metallic 

conductivity on their surfaces. This conductivity is guaranteed by the bulk band structure's 

topology—the surface features these states as long as the symmetry defining the topological 

index remains the same. 

In so-called strong TIs, these states are protected and so featured on all surfaces. In weak TIs 

however, these properties are only protected at surfaces with a certain orientation. Stacking 

two-dimensional TIs, that is QSHIs, to form a three-dimensional crystal, for example, generally 

produces a weak TI with no protected states on the top or bottom surfaces of the crystal: there 

are metallic surface states inherited from the edge states of the 2-D TI, but also an insulating 

surface plane that lies normal to the stacking direction. 

Recent theoretical work, also carried out by MARVEL researchers, suggested however that this 

might not be the case for stacked, or bulk, jacutingaite. The research suggested a more 

complicated scenario—the material may be a topological crystalline insulator (TCI) as well as a 

weak TI. In TCIs, the topology is defined by symmetry with respect to a mirror plane and metallic 

surface states can be found on surfaces perpendicular to it. This state might be expected in the 

material because of it threefold mirror symmetry. Jacutingaite also maintains translational 

symmetry in the stacking of the layers though, meaning that it might also feature the properties 

of a weak TI. Until now, however, there have been no experimental results on the bulk band 

structure. 

Research initiated by EPFL's THEOS lab and carried out in collaboration with the Department of 

Quantum Matter Physics at the University of Geneva and other groups including the Diamond 

Light Source in the UK, has now however described the first ever synthesis of a single crystal of 

jacutingaite and used the sample to provide evidence for their dual-topological nature by 

comparing the bulk and surface electronic structure determined from synchrotron-based angle-

resolved photoemission (ARPES) experiments with DFT calculations. The paper, Bulk and Surface 

Electronic Structure of the Dual-Topology Semimetal Pt2HgSe3, has recently been published 

in Physical Review Letters. 

The work revealed topologically-protected surface states in the natural cleavage plane (001) of 

the material, unexpected as it should rather support a weak topological phase since it is a stack 

of 2-D QSHIs. Calculations of certain topological invariants confirmed the weak topological 

insulator phase generally characterized by gapless modes on the lateral surfaces, but fully 

gapped states on the top and bottom surfaces. The surface states found on the 001 surface were 

therefore assumed to be the manifestation of a different topological phase. 

https://phys.org/tags/surface/


Crystal structure of bulk jacutingaite (Pt2HgSe3), in red and blue one of the two maximally-

localised Wannier functions underlying the J3KM tight-binding model. Credit: National Centre of 

Competence in Research (NCCR) MARVEL 

The researchers hypothesized that it might be an indication of the TCI phase associated with the 

threefold mirror symmetry of the crystal. In such a case, topologically protected surface states 

are expected on crystal surfaces that preserve the mirror symmetry and this was the case for the 

cleaved (001) surface. 

Using first principles calculations, the researchers were able to identify this surface state as the 

signature of a TCI phase that coexists with the generic WTI phase found in the same calculations. 

The results thus provide evidence for the predicted dual topology of Pt2HgSe3. What remained 

unclear however is the mechanism behind jacutingaite's status as a dual topological insulator. 

This very topic was addressed in theoretical work developed at EPFL's THEOS, research that 

complemented the experimental and computational work carried out in the other paper. In the 

paper Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3, researchers Antimo 

Marrazzo, Nicola Marzari, and colleague Marco Gibertini at the University of Geneva, formerly of 



THEOS, extended the two-dimensional Kane-Mele (KM) model used to describe topological 

materials to bulk jacutingaite. The paper was recently published in Physical Review Research. 

They showed that the unexpected topology in bulk jacutingaite comes from a strong interlayer 

hybridization that leads to a 3-D generalization of the KM model. While nearest layers are almost 

decoupled, there is a large, peculiar hopping term that indicates strong coupling between layers 

that are two layers apart. Even and odd layers are then more or less independent and can be 

separately described by a 3-D KM model, dubbed J3KM in the paper, that includes a band 

inversion driven by this novel hopping term. This results in a nodal line that is gapped by spin-

orbit coupling and a nonzero Chern number—that is, protected surface states consistent 

with TCIs. When coupling between even and odd layers is restored though, the material again 

acts as a WTI. 

This insight provides a microscopic understanding of the emergent dual topology of the material. 

The J3KM model predicts the presence of surface states and nodal lines gapped by spin-orbit 

interactions, in agreement with the ARPES measurements and first-principles simulations carried 

out in the other paper. The model is relevant for all other layered materials made of stacked 

honeycomb lattices and provides an appealing strategy for breaking the standard paradigm of 

weak topological insulators. 

Finally, the combination of the experimental evidence, first-principles simulations and theoretical 

models on 3-D jacutingaite supports THEOS's earlier prediction that 2-D jacutingaite is a Kane-

Mele (graphene-like) quantum spin Hall insulator. [28] 

  

 

Topological nanoelectronics  
Topological insulators are materials with astonishing properties: Electric current flows only along 

their surfaces or edges, whereas the interior of the material behaves as an insulator. In 2007, 

Professor Laurens Molenkamp at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, 

Germany, was the first to experimentally demonstrate the existence of such topological states. 

His team achieved this seminal work with quantum wells based on mercury and tellurium (HgTe). 

Since then, these novel materials have been the hope for a fundamentally new generation of 

components that, for example, promise innovations for information technology. 

Physicists at JMU have now succeeded for the first time in constructing an essential element for 

such components—a Quantum Point Contact (QPC). They present this achievement in a recent 

publication in the journal Nature Physics. 

Confinement for topological states 
Quantum point contacts are quasi one-dimensional constrictions in otherwise two-dimensional 

structures that are only a few atomic layers thin. In topological HgTe quantum wells, in 

https://phys.org/tags/spin-orbit+coupling/
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which the conducting states are located exclusively at the edges, these edge states are spatially 

merged at the QPC. This proximity makes it possible to investigate potential interactions 

between the edge states. 

"This experiment could only work because of a breakthrough in our lithographic methods. It has 

enabled us to create incredibly small structures without damaging the topological material. I am 

convinced that this technology will enable us to find impressive, novel effects in topological 

nanostructures in the near future," said Molenkamp. 

Anomalous conductance behavior through interaction 

Using a sophisticated manufacturing process, the JMU physicists have succeeded in 

structuring the bottleneck precisely and gently. This technological progress allowed 

them to functionalize the topological properties of the system. 

In this context, the team led by Professors Laurens Molenkamp and Björn Trauzettel was able to 

demonstrate for the first time ever interaction effects between the different topological states of 

a system using anomalous conductance signatures. The Würzburg researchers attribute this 

particular behaviour of the analyzed topological QPCs to the physics of one-dimensional 

electronic systems. 

Interacting electrons in one dimension 
If electronic correlations are analysed in one spatial dimension, electrons move—unlike in two or 

three spatial dimensions—in a well-ordered manner because there is no possibility of 

"overtaking" the leading electron. Pictorially speaking, the electrons in this case behave like 

pearls on a chain. 

This special property of one-dimensional systems leads to interesting physical phenomena. 

Trauzettel says: "The interplay of strong Coulomb interaction and spin orbit coupling is rare in 

nature. I therefore expect this system to yield fundamental discoveries in the coming years." 

Outlook for future research 
Topological QPCs are an elementary component for many applications that have been predicted 

in theory in recent years. 

A particularly prominent example of this kind is the possible realization of Majorana fermions, 

which the Italian physicist Ettore Majorana predicted back in 1937. A promising application 

potential in connection with topological quantum computers is attributed to these excitations. 

For this purpose, it is of great importance not only to detect Majorana fermions, but also to be 

able to control and manipulate them at will. The topological QPC, first implemented at JMU 

Würzburg, offers an exciting perspective in this respect. [27] 

 

https://phys.org/tags/manufacturing+process/
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Getting a look under the hood of topological insulators 
Certain materials, like copper, conduct electricity very well. Other materials, like glass, do not. A 

certain kind of material, called a topological insulator, acts partially like one and partially like the 

other ― it behaves like a conductor at its surface and an insulator in its interior. 

Because of topological insulators' unique electronic properties and their potential use in 

spintronic devices and even conceivably as transistors for quantum computers, scientists at the 

U.S. Department of Energy's (DOE) Argonne National Laboratory are interested in investigating 

the special relationship between two properties of the conducting surface electrons in these 

materials. 

In topological insulators, the spin and momentum of each surface electrons are so 

closely tied that, in scientific parlance, they are locked to one another. "Spin-momentum locking 

is like having a basketball that must rotate in a specific direction depending on its trajectory 

down the court," said Argonne materials scientist Olle Heinonen. "Because an electron also 

carries a magnetic moment, you can use spin-momentum locking to manipulate 

magnetic systems very efficiently." 

The electronic structure of topological insulators, including the specifics of spin-momentum 

locking, may be reflected in the transport behavior of electrons in the materials. To explore the 

novel behavior of electrons in the topological materials, Argonne scientists worked with 

scientists at the National University of Singapore, who performed a transport experiment that 

provided a new perspective of the topologically protected electronic structure. 

Heinonen and former Argonne postdoctoral researcher Shulei Zhang described how in the 

transport experiment a magnetic field applied in the plane of a thin film of a 

topological insulator can create a voltage in the direction perpendicular to the 

applied electric current—a phenomenon called a nonlinear planar Hall effect. By varying 

the direction and intensity of the magnetic field, the Argonne researchers and their colleagues 

could ascertain from the resulting resistance information as to how the electrons are distributed 

in terms of their momenta and spin. 

"If you know how magnetic fields applied in different directions would affect the nonlinear Hall 

current measured, you can use our theoretical model to map out how the electrons' momenta 

and spins are distributed," Zhang said. "Then, because of the way we can see more precisely how 

the electromagnetic fields interact with the surface conduction electrons, we can get much more 

detailed information of the surface electronic structure of topological insulators." 

The tie between the nonlinear planar Hall effect and the topological surface states with spin-

momentum locking is, according to Heinonen, a "macroscopic-microscopic relationship." 

https://phys.org/tags/surface+electrons/
https://phys.org/tags/magnetic+moment/
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"It really gives us a look under the hood," he said. 

A paper based on the study, "Nonlinear planar hall effect," appeared in the July 1 online edition 

of Physical Review Letters. [26] 

  

 

Disorder induces topological Anderson insulator 
Topological insulators (TIs) host exotic physics that could shed new light on the fundamental laws 

of nature. What's more, the unusual properties of TIs hold tremendous promise for technological 

applications, including in quantum computing, next-generation miniaturized data storage, and 

spintronics. Scientists around the globe are working to understand the microscopic properties of 

these materials that freely conduct electricity along their edges even though their bulk is an 

insulator. 

Now a team of experimental physicists at the University of Illinois at Urbana-Champaign have 

made the first observation of a specific type of TI that's induced by disorder. Professor Bryce 

Gadway and his graduate students Eric Meier and Alex An used atomic quantum simulation, an 

experimental technique employing finely tuned lasers and ultracold atoms about a billion times 

colder than room temperature, to mimic the physical properties of one-dimensional electronic 

wires with precisely tunable disorder. The system starts with trivial topology just outside the 

regime of a topological insulator; adding disorder nudges the system into the nontrivial 

topological phase. 

This type of topological insulator induced by disorder is called the topological Anderson insulator, 

named after the noted theoretical physicist and Nobel laureate Philip Anderson, an alumnus of 

University Laboratory High School on the U of I campus. Surprisingly, while disorder typically 

inhibits transport and destroys nontrivial topology, in this system it helps to stabilize a 

topological phase. 

The observation was made possible through close collaboration with an international team of 

theoretical physicists at the U of I, at the Institute of Photonic Sciences (ICFO), and at the 

Universitat Politècnica de Catalunya (UPC) in Spain, who elucidated the quantum physics at work 

and identified the key signature the experimentalists should look for in the system. 

Theoretical physicist Pietro Massignan of UPC and ICFO comments, "Intuitively, one would think 

that disorder should play against conductance. For example, running is easy in an open field, but 

gets harder and harder as one moves through an increasingly denser forest. But here we show 

that suitably tailored disorder can actually trigger some peculiar conducting excitations, called 

topologically protected edge modes." 

Meier is lead author on the paper. "Interestingly," he adds, "in a 3-D or 2-D topological system, 

those edge states would be characterized by freely flowing electrons. But in a 1D system like 

ours, the edge states simply sit there, at either end of the wire. In any TI, the boundary states 



have the dimensionality of your system minus one. In our 1D topological Anderson insulator, the 

boundary states are basically just points. While the boundary physics is actually a bit boring in 

this system, there is rich dynamics going on in the bulk of the system that is directly related to 

the same topology-this is what we studied." 

The group's experimental observation validates the concept of topological Anderson insulators 

that was worked out roughly a decade ago. The topological Anderson insulator phase was first 

discovered theoretically by J. Li et al. in 2009, and its origin was further explained by C. W. Groth, 

et al. that same year. Five years later, a pair of works, one by A. Altland et al. and one by the 

group of Taylor Hughes at the U of I working with the group of Emil Prodan at Yeshiva University, 

predicted the occurrence of the topological Anderson insulator in one-dimensional wires, as 

realized in the new experiments from the Gadway group. 

 

University of Illinois at Urbana Champaign Professors of Physics Bryce Gadway (far right) and 

Taylor Hughes (second from right) pose with graduate students Alex An (left) and Eric Meier, in 

Gadway's lab at the Loomis Laboratory of Physics. …more 

Gadway emphasizes, "Our taking on this research was really inspired by the 2014 prediction of 

Taylor Hughes and his graduate student Ian Mondragon-Shem at the U. of I. Taylor was a key 

collaborator. Likewise, our colleagues in Spain made a tremendous contribution in introducing 

the concept of mean chiral displacement, which allows to measure the topology directly in the 

bulk of the material." 

"Working with Taylor," Gadway adds, "our Spanish colleagues found that the mean chiral 

displacement is essentially equivalent to the topological invariant of such a one-dimensional 

system, something called the winding number. This was critical to our being able to take the data 

https://phys.org/news/2018-10-disorder-topological-anderson-insulator.html
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on the system and relate what we saw in experiment to the system's topology. This was one 

project where having a bevy of theorists around was a big help, both for performing the right 

measurements and for understanding what it all meant." 

"This is an exciting result in terms of potential applications," Gadway affirms. "This suggests we 

may be able to find real materials that are almost topological that we could manipulate through 

doping to imbue them with these topological properties. This is where quantum simulation offers 

a tremendous advantage over real materials—it's good for seeing physical effects that are very 

subtle. Our 'designer disorder' is precisely controllable, where in real materials, disorder is as 

messy as it sounds—it's uncontrollable." 

"Gadway's experimental setup is a theorist's dream," Massignan adds. "It was like playing with 

LEGO: the model we envisaged could be built step-by-step, in a real laboratory. Every single 

element of the Hamiltonian we had in mind could be implemented in a very careful way, and 

changed in real time." 

ICFO postdoctoral researcher Alexandre Dauphin adds, "This platform is also very promising for 

studying the effects of both interaction and disorder in topological systems, which could lead to 

exciting new physics." 

NSF Program Director Alex Cronin oversees the funding program that supported this 

experimental effort. He points out the importance of this fundamental research that successfully 

employs engineered quantum systems to uncover new physics: "Before we get full-scale 

quantum computers to study a broad range of exotic systems, we already have quantum 

simulators like this one that are producing results right now. It is exciting to see new discoveries 

made with quantum simulators like this." 

These results were published online by the journal Science on Thursday, 11 October, 2018. After 

submitting their work to the journal, the researchers of this study learned of the parallel 

observation of this same phenomenon by another research team at the University of Rostock, 

Germany. 

"Their team used photonic waveguides to mimic the physical properties of this same kind of 

system, and they studied properties at the boundary of the system. We used cold atoms and 

observed bulk properties to get at a really clear visualization of the topology," Gadway states. 

"These two works were complementary and together they illustrate how diverse physical 

systems can be controlled and made to exhibit the same kind of interesting phenomena." [25] 

 

Harnessing silicon fabrication technology to build quantum optical 

circuits  
A new study by scientists from the University of Bristol brings us a significant step closer to 

unleashing the revolutionary potential of quantum computing by harnessing silicon fabrication 

technology to build complex on-chip quantum optical circuits. 



Quantum computers offer an exciting new approach to solving problems that are currently 

intractable even on the most advanced classical supercomputers. 

Building a quantum computer in the lab however has proven to be highly challenging. 

Researchers at the University's Quantum Engineering Technology Labs (QET Labs) are using single 

particles of light, photons, to construct optical circuits that process quantum-bits (qubits) of 

information. 

Using the same materials and fabrication facilities originally developed by the electronics 

industry, QET Labs have demonstrated highly complex circuits on silicon chips that can precisely 

process small numbers of photonic qubits. Their findings have been published in the 

journal Optics Express. 

Although circuits can be made almost arbitrarily large it has proven difficult to generate many 

perfect and identical photons at the same time for processing larger amounts of quantum 

information. 

The research team, headed by Dr. Gary Sinclair and Dr. Imad Faruque, set out to investigate if 

several parallel sources on a single silicon chip could be made to generate perfect and identical 

single photons. 

Dr. Imad Faruque said: "We demonstrated for the first time that nearly perfect single-photons 

can be generated from two parallel sources on the same silicon chip. 

"To demonstrate this, we took photons from each source and performed a "quantum 

interference" experiment: the ultimate test of photon quality." 

The results showed that using current techniques photons generated in multiple sources in 

parallel can be made up to 92 percent identical to each other, and that it should be possible to 

improve this even further by using the latest methods proposed. 

Dr. Gary Sinclair added: "Generating many identical single photons in parallel is essential if we 

are going to scale-up the proof-of-principle experiments currently performed in the lab into 

something large enough to become a practically useful computational tool. 

"Our experiment has experimentally demonstrated that this is feasible for the first time. This 

demonstration marks a major step in quantum computing in silicon with photons and clears the 

way for a rapid increase in the scale of quantum computing demonstrations that are possible. 

"Although our demonstration is an important step, many more hurdles remain. Our next aim is to 

use the latest advances in source design to demonstrate that we can generate photons that are 

much closer to 100 percent identical than the 92 percent demonstrated so far." [24] 
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Applying metamaterials to quantum optics paves the way for new 

interdisciplinary studies  
Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to 

conduct groundbreaking research leading to the development of a new and innovative scientific 

field: Quantum Metamaterials. The findings are presented in a new joint paper published in the 

journal Science. 

The study was jointly conducted by Distinguished Professor Mordechai Segev, of Technion's 

Physics Department and Solid State Institute and his team Tomer Stav and Dikla Oren, in 

collaboration with Prof. Erez Hasman of the Technion's Faculty of Mechanical Engineering and his 

team Arkady Faerman, Elhanan Maguid, and Dr. Vladimir Kleiner. Both groups are also affiliated 

with the Russell Berrie Nanotechnology Institute (RBNI). 

The researchers have demonstrated for the first time that it is possible to apply metamaterials to 

the field of quantum information and computing, thereby paving the way for numerous practical 

applications including, among others, the development of unbreakable encryptions, as well as 

opening the door to new possibilities for quantum information systems on a chip. 

Metamaterials are artificially fabricated materials, made up of numerous artificial nanoscale 

structures designed to respond to light in different ways. Metasurfaces are the 2 dimensional 

version of metamaterials: extremely thin surfaces made up of numerous subwavelength optical 

nanoantennas, each designed to serve a specific function upon the interaction with light. 

While to date, experimentation with metamaterials has widely been limited to manipulations 

using classical light, the Technion researchers have for the first time shown it is experimentally 

feasible to use metamaterials as the building blocks for quantum optics and quantum 

information. More specifically, the researchers have demonstrated the use of metamaterials to 

generate and manipulate entanglement – which is the most crucial feature of any quantum 

information scheme. 

"What we did in this experiment is to bring the field of metamaterials to the realm of quantum 

information," says Dist. Prof. Moti Segev, one of the founders of the Helen Diller Quantum 

Science, Matter and Engineering Center at the Technion. "With today's technology, one can 

design and fabricate materials with electromagnetic properties that are almost arbitrary. For 

example, one can design and fabricate an invisibility cloak that can conceal little things from 

radar, or one can create a medium where the light bends backwards. But so far all of this was 

done with classical light. What we show here is how to harness the superb abilities of artificial 

nano-designed materials to generate and control quantum light." 

"The key component here is a dielectric metasurface," says Prof. Erez Hasman, "which acts in a 

different way to left- and right-handed polarized light, imposing on them opposite phase fronts 

that look like screws or vortices, one clockwise and one counterclockwise. The metasurface had 
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to be nano-fabricated from transparent materials, otherwise – had we included metals, as in 

most experiments with metamaterials – the quantum properties would be destroyed." 

"This project started off in the mind of two talented students – Tomer Stav and Arkady 

Faerman," say Profs. Segev and Hasman, "who came to us with a groundbreaking idea. The 

project leads to many new directions that raise fundamental questions as well as new 

possibilities for applications, for example, making quantum information systems on a chip and 

controlling the quantum properties upon design." 

In their research, the scientists conducted two sets of experiments to generate entanglement 

between the spin and orbital angular momentum of photons. Photons are the elementary 

particles that make up light: they have zero mass, travel at the speed of light, and normally do 

not interact with each other. 

In the experiments, the researchers first shone a laser beam through a non-linear crystal to 

create single photon pairs, each characterized by zero orbital momentum and each with linear 

polarization. A photon in linear polarization means that it is a superposition of right-handed and 

left-handed circular polarization, which correspond to positive and negative spin. 

In the first experiment the scientists proceeded to split the photon pairs – directing one through 

a unique fabricated metasurface and the other to a detector to signal the arrival of the other 

photon. They then measured the single photon that passed through the metasurface to find that 

it had acquired orbital angular momentum (OAM) and that the OAM has become entangled with 

the spin. 

In the second experiment, the single photon pairs were passed through the metasurface and 

measured using two detectors to show that they had become entangled: the spin of one photon 

had become correlated with the orbital angular momentum of the other photon, and vice versa. 

Entanglement basically means that the actions performed on one photon simultaneously affect 

the other, even when spread across great distances. In quantum mechanics, photons are 

believed to exist in both positive and negative spin states, but once measured adopt only one 

state. 

This is perhaps best explained through a simple analogy: Take two boxes each with two balls 

inside – a red and a blue ball. If the boxes are not entangled then you can reach into the box and 

pull out either a red or a blue ball. However, if the boxes were to become entangled, then the 

ball inside the box could either be red or blue but will only be determined at the moment the ball 

in one box is observed, simultaneously determining the color of the ball in the second box as 

well. This story was initially related by the famous Nobel Laureate Erwin Schroedinger, 

presenting the scenario of a cat in a box, where the cat is both alive and dead until the box is 

opened. 

When it reaches the metasurface, the interaction between the spin (circular polarization) and 

orbital angular momentum occurs. It exits the metasurface in a single photon entangled state; 
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the positive spin (represented in red by the electric field amplitude) and the counter-clockwise 

orbital angular momentum (represented in red by the phase vortex) is entangled with the 

negative spin (blue) and the clockwise orbital angular momentum (blue). Animation Credit: Ella 

Maru Studio 

For more than a century, the Technion-Israel Institute of Technology has pioneered in science 

and technology education and delivered world-changing impact. Proudly a global university, the 

Technion has long leveraged boundary-crossing collaborations to advance breakthrough research 

and technologies. Now with a presence in three countries, the Technion will prepare the next 

generation of global innovators. Technion people, ideas and inventions make immeasurable 

contributions to the world, innovating in fields from cancer research and sustainable energy to 

quantum computing and computer science, to do good around the world. [23] 

 

Scientists develop quantum metamaterial from complex twin qubits  
An international team consisting of Russian and German scientists has made a breakthrough in 

the creation of seemingly impossible materials. They have created the world's first quantum 

metamaterial that can be used as a control element in superconducting electrical circuits. 

Metamaterials are substances whose properties are determined by the structural arrangement 

of the atoms. Each structure is hundreds of nanometers, and has its own set of properties that 

disappear when scientists try to separate the material into its components. Such a structure is 

called a meta-atom (not to be confused with the common atoms of Mendeleev's Periodic Table). 

Any substance consisting of meta-atoms is called a meta-material. 

Until recently, another difference between atoms and meta-atoms was that the properties of 

conventional atoms were described by quantum mechanics equations, while meta-atoms were 

described by classical physics equations. However, the creation of qubits led to the opportunity 

to construct metamaterials consisting of meta-atoms whose state could be described quantum 

mechanically. However, this research required the creation of unusual qubits. 

An international team of scientists has created the world's first so-called "twin" qubit, as well as a 

metamaterial on its basis. Thanks to the outstanding properties of the new material, it will be 

possible to create one of the key elements in superconducting electronic devices. 
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The energy of the ground state (a) and the transition energy hf01 of the twin qubit calculated 

from the Hamiltonian of Eq. (1) (b). The parameters α?=?0.72 and C?=?5.2 fF and the Josephson 

energy is E J ?=?50?GHz. These dependencies are Φ0 …more 

Kirill Shulga, a researcher at the NUST MISIS Laboratory of Superconducting Metamaterials and 

the first author of the project, noted that a conventional qubit consists of a scheme that includes 

three Josephson junctions. The twin qubit, however, is composed of five junctions that are 

symmetric to the central axis (see diagram). 

"Twin qubits were supposed to serve as a more complex system than the conventional 

superconducting qubits. The logic here is quite simple: a more complex (artificially complex) 

system, with a large number of degrees of freedom, has a higher number of factors that can 

influence its properties. When changing some external properties of the environment where our 

metamaterial is located, we can turn these properties on and off by turning the twin qubit from 

one state with certain properties to another with other properties," he said. 

This became apparent during the experiment, as the whole metamaterial consisting of twin 

qubits switched over between two different modes. 
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a The measured dependence of the amplitude of transmission coefficient t (normalized to the 

value at zero field) on applied dc magnetic field (proportional to the bias current in the coil, 

lower axis) and frequency f. The upper horizontal …more 

"In one of the modes, the chain of qubits transmits electronic radiation in the microwave range 

very well while remaining a quantum element. In another mode, it turns the superconducting 

phase by 180 degrees and locks the transmission of electromagnetic waves through itself. Yet it 

still remains a quantum system. So with the help of a magnetic field, such a material can be used 

as a control element in systems for quantum signals (separate photons) in circuits, from which 

developing quantum computers consist of," said Ilya Besedin, an engineer at the NUST MISIS 

Laboratory of Superconducting Metamaterials. 

It is hard to accurately calculate the properties of one twin qubit on a standard computer 

compared to the properties of a standard qubit. It is possible to reach the limit of complexity, a 

level close to or surpassing the capabilities of modern electronic computers, if qubits become 

several times more complex. Such a complex system can be used as a quantum simulator, i.e. a 

device that can predict or simulate properties of a certain real process or material. 

As the researchers note, they had to sort out lots of theories to correctly describe the processes 

that occurs in quantum meta-materials. The article, "The Magnetically induced transparency of a 

quantum metamaterial composed of twin flux qubits," is published in Nature Communications. 

[22] 
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Quantum physics turned into tangible reality  
ETH physicists have developed a silicon wafer that behaves like a topological insulator when 

stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical 

concept into a macroscopic product. 

The usual procedure goes like this: you have a complex physical system and attempt to explain its 

behaviour through as simple a model as possible. Sebastian Huber, Assistant Professor at the 

Institute for Theoretical Physics, has shown that this procedure also works in reverse: he 

develops macroscopic systems that exhibit exactly the same properties predicted by theory, but 

which have not yet been observed at this level. 

He succeeded in creating an illustrative example two and a half years ago. Together with his 

team, he built a mechanical device made of 270 pendulums connected by springs in such a way 

that the installation behaves like a topological insulator. This means that the pendulum and 

springs are positioned so that a vibrational excitation from the outside only moves the 

pendulums at the edges of the installation, but not the ones in the middle (as ETH News 

reported). 

Vibration only in the corners 
The new project, which will be published this week in the journal Nature, is also focused on a 

macroscopic system. This time, however, he created no large mechanical device, but a much 

more manageably-sized object. With his team, Huber created a 10 x 10 centimetre silicon wafer 

that consists of 100 small plates connected to each other via thin beams. The key aspect is that 

when the wafer is stimulated using ultrasound, only the plates in the corners vibrate; the other 

plates remain still, despite their connections. 

Huber drew his inspiration for the new material from a work published around a year ago by 

groups from Urbana-Champaign and Princeton; the researchers presented a new theoretical 

approach for a second-order topological insulator. "In a conventional topological insulator, the 

vibrations only spread across the surface, but not inside," explains Huber. "The phenomenon is 

reduced by one dimension." In the case of the pendulum installation, this means that the two-

dimensional arrangement led to a one-dimensional vibration pattern along the edges. 

In a second-order topological insulator, however, the phenomenon is reduced by two 

dimensions. Accordingly, with a two-dimensional silicon wafer, the vibration no longer occurs 

along the edges, but only in the corners, at a zero-dimensional point. "We are the first to succeed 

in experimentally creating the predicted higher-order topological insulator," says Huber. 

A new theoretical concept 
Huber has again created something that behaves in exactly the way predicted by the theory. To 

solve this "inverse problem", he used a systematic process that he developed together with the 

group led by Chiara Daraio, now a professor at Caltech, and which he has published this week in 

the journal Nature Materials. Broadly speaking, Huber shows how a theoretically predicted 
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functionality can be turned into concrete geometry. "In our example, we tested it using 

mechanical vibrations, by coupling elements with clearly defined modes of vibration using weak 

links," says Huber. "But the process can also be transferred to other applications, such as to 

optical or electrical systems." 

Expansion to the third dimension 
Huber already has clear plans for how to proceed: he wants to achieve a three-dimensional 

second-order topological insulator, in which the vibrations can be transmitted one-

dimensionally. He recently received a Consolidator Grant from the European Research Council 

(ERC) for this project. Huber explains the basic idea: "We stack a number of these two-

dimensional structures on top of each other, so that a three-dimensional form emerges. In this 

form, information or energy can be conducted from point A to point B through a one-

dimensional channel." 

Huber can think of a few possible applications. For example, such new topological insulators 

could be used to build robust and precise waveguides for communications networks. They could 

also be of use in the energy sector, for example for energy harvesting, in which energy from a 

diffuse surrounding source is focused for technological use. 

Also of interest to theoreticians 
Huber's results will not only be of interest to engineers and materials researchers, but also 

theoretical physicists. "The key finding from a theoretical viewpoint is that certain second-order 

topological insulators cannot be mathematically described as a dipole, as conventional 

topological insulators are, but as quadrupoles, which are far more complex," explains Huber. 

"The fact that we have been able to implement this experimentally in a macroscopic structure for 

the first time is therefore also a breakthrough for theoreticians." [21] 

 

 

 

Physicists observe particles acting coherently as they undergo 

phase transitions  
The common link between liquid-crystal TVs and the birth of the universe, when you look at the 

big picture, is that they are both characterized by the intriguing phenomenon in which matter 

abruptly changes states. 

Scientists want to better understand and control the behavior of particles at the exact moment 

that these so-called phase transitions—a change in energy in a system, much like process in 

which water evaporates or turns to ice—occur. 

A study published Dec. 18 in Nature Physics by University of Chicago scientists observed how 

particles behave as the change takes place in minute detail. In addition to shedding light on the 
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fundamental rules that govern the universe, understanding such transitions could help design 

more useful technologies. 

One of the questions was whether, as particles prepare to transition between quantum states, 

they can act as one coherent group that "knows" the states of the others, or whether different 

particles only act independently of one another, or incoherently. 

Cheng Chin, professor in the Department of Physics, and his team looked at an experimental 

setup of tens of thousands of atoms cooled down to near absolute zero. As the system crossed 

a quantum phase transition, they measured its behavior with an extremely sensitive imaging 

system. 

The conventional wisdom was that the atoms should evolve incoherently after the transition—a 

hallmark of older "classic" rather than quantum models of physics. "In contrast, we found strong 

evidence for coherent dynamics," said graduate student Lei Feng, the first author on the study. 

"In no moment do they become classical particles; they always behave as waves that evolve in 

synchrony with each other, which should give theorists a new ingredient to include in how they 

model such systems that are out of equilibrium." 

This question gets at the fundamental rules that govern the way that matter interacts in our 

universe—but as always, it also has practical considerations. For example, engineers trying to 

build quantum computers are very interested in retaining the coherence of a group of 

interacting quantum bits, because they need to keep their system coherent in order to build 

faster computers. Cosmologists are interested in the physics of such transitions because they 

describe the earliest moments of the universe as it rapidly expanded and changed. 

"Our observation sends us beyond the conventional picture of such transitions that scientists 

took for granted," Chin said. [20] 

 

 

Groundbreaking experiment will test the limits of quantum theory  
Scientists from three UK universities are to test one of the fundamental laws of physics as part of 

a major Europe-wide project awarded more than £3m in funding. 

Experts from the University of Southampton, Queen's University Belfast and UCL have formed a 

consortium with European universities and British photonics technology company M Squared to 

test the limits of one of the core principles of quantum mechanics - the mind-boggling physical 

laws that allow microscopic particles such as atoms and electrons to be in two places at once. 

Established at the beginning of the 20th century, quantum theory is a mathematical framework 

that provides, to date, the most accurate understanding of the results of experiments conducted 

on physical systems as small as single atoms, very small molecules and very faint light. 
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The consortium has devised an ambitious experiment to test the so-called quantum 

superposition principle (QSP) - the law that allows microscopic systems to appear in two 

different, perfectly distinguishable, configurations at the same time. 

The validity of QSP at the microscopic level is accepted by scientists, and confirmed by an 

enormous amount of data. But what prevents it from applying to the 'large-scale' world around 

us? In other words, why do everyday objects such as cars, trees and people not behave in a 

quantum mechanical manner and exist in two places at once? 

Unproven theories advanced since the 1980s suggest the existence of a universal background 

'noise' that destroys QSP of larger objects, such as particles that can be seen using an optical 

microscope. 

The 'Project TEQ' consortium, led by the University of Trieste, in Italy, will test the existence of 

this noise thanks to a €4.4m (£3.9m) award from the European Commission. 

Its experiment will involve a tiny particle of glass, one-thousandth of the width of a human hair, 

being levitated by an electric field in a vacuum at a temperature close to absolute zero (-273C). A 

laser will be shot at the particle, and the scattering of the laser's light measured for signs of 

movement of the particle. 

If there is no movement, it means that quantum mechanics still apply at this scale and there is no 

universal background noise. 

However, if movement is detected, it indicates the existence of a noise that prevents QSP 

applying at this scale. This would represent the first observed failure of quantum theory, setting 

a limit on the scale at which quantum mechanics apply and having implications for large-scale 

applications of any physical system based on quantum principles. 

Professor Hendrik Ulbricht, of the University of Southampton, said: "The vast majority of 

phenomena and events that occur in our daily lives can be accounted for by the laws of physics 

established by Isaac Newton, but the microscopic world obeys the rules of quantum mechanics, 

which are so strange that they can seem counter-intuitive. 

"Whether it's possible to observe quantum behaviour in macroscopic objects is the great 

unanswered question in quantum physics. If it turns out we can, this could eventually open the 

way for us to use the amazing characteristics of quantum mechanics in a much larger set of 

physical systems beyond the microscopic world. We're about to embark on a very exciting 

journey." 

Professor Mauro Paternostro, of Queen's University Belfast, said: "Our research programme 

could prove that we do not have to deal with extremely small systems in order to see quantum 

effects, which is currently the main limitation of quantum technology. 
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"If you can prove that quantum theory extends to larger systems, it will offer a much more 

robust way of processing information: all the chips and integrated systems in computers could be 

shrunk to a much smaller scale and we would be able to manage quantum for daily applications. 

"This would mean larger data-processing rates, larger memories and larger transmission rates of 

data across these larger networks." 

Dr Graeme Malcolm OBE, CEO and co-founder of M Squared, said: "This fund for TEQ is an 

excellent example of the EU's continued support of quantum research and allows established 

thinking behind quantum mechanics to be tested to its limits. 

"If this work does prove that quantum effects can be seen on a larger scale, it widens the 

potential commercial applications of quantum technology - in particular, the areas of sensing 

and metrology will see significant commercial opportunities in the coming decades. It's an 

honour to be part of the team exploring the potential of technology operating at the very limits 

of physics. 

If the experiment proves that quantum mechanics can be applied to larger-scale systems, it could 

make creating quantum technologies for use in space easier, with satellites being used to 

transmit quantum information rather than relying on fibres on the ground or under the sea." 

Other potential applications include the development of ultra-sensitive measuring devices that 

could outperform existing sensors to measure the effects of gravity. [18] 

 

 

 

Light may unlock a new quantum dance for electrons in graphene  
A team of researchers has devised a simple way to tune a hallmark quantum effect in graphene—

the material formed from a single layer of carbon atoms—by bathing it in light. Their theoretical 

work, which was published recently in Physical Review Letters , suggests a way to realize novel 

quantum behavior that was previously predicted but has so far remained inaccessible in 

experiments. 

"Our idea is to use light to engineer these materials in place," says Tobias Grass, a postdoctoral 

researcher at the Joint Quantum Institute (JQI) and a co-author of the paper. "The big advantage 

of light is its flexibility. It's like having a knob that can change the physics in your sample." 

The proposal suggests a method to alter a physical effect that occurs in flat materials held at very 

low temperatures and subjected to extremely strong magnets—at least a thousand times 

stronger than a fridge magnet. Under these circumstances, electrons zipping around on a two-

dimensional landscape start to behave in an unusual way. Instead of continuously flowing 

through the material, they get locked into tight circular orbits of particular sizes and energies, 

barely straying from their spots. Only a certain number of electrons can occupy each orbit. When 
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orbits are partially filled—which gives electrons some room to breathe—it activates new kinds of 

interactions between the charged particles and leads to a complex quantum dance. 

Electrons carry out this choreography—known as the fractional quantum Hall effect—in 

graphene. Interestingly, tuning the interactions between electrons can coax them into different 

quantum Hall dance patterns, but it requires a stronger magnet or an entirely different sample—

sometimes with two layers of graphene stacked together. 

The new work, which is a collaboration between researchers at JQI and the City College of New 

York, proposes using laser light to circumvent some of these experimental challenges and even 

create novel quantum dances. The light can prod electrons into jumping between orbits of 

different energies. As a result, the interactions between the electrons change and lead to a 

different dance pattern, including some that have never been seen before in experiments. The 

intensity and frequency of the light alter the number of electrons in specific orbits, providing an 

easy way to control the electrons' performance. "Such a light-matter interaction results in some 

models that have previously been studied theoretically," says Mohammad Hafezi, a JQI Fellow 

and an author of the paper. "But no experimental scheme was proposed to implement them." 

Unlocking those theoretical dances may reveal novel quantum behavior. Some may even spawn 

exotic quantum particles that could collaborate to remain protected from noise—a tantalizing 

idea that could be useful in the quest to build robust quantum computers. [18] 

 

Researchers chart the 'secret' movement of quantum particles  
Researchers from the University of Cambridge have taken a peek into the secretive domain of 

quantum mechanics. In a theoretical paper published in the journal Physical Review A, they have 

shown that the way that particles interact with their environment can be used to track quantum 

particles when they're not being observed, which had been thought to be impossible. 

One of the fundamental ideas of quantum theory is that quantum objects can exist both as a 

wave and as a particle, and that they don't exist as one or the other until they are measured. This 

is the premise that Erwin Schrödinger was illustrating with his famous thought experiment 

involving a dead-or-maybe-not-dead cat in a box. 

"This premise, commonly referred to as the wave function, has been used more as a 

mathematical tool than a representation of actual quantum particles," said David Arvidsson-

Shukur, a Ph.D. student at Cambridge's Cavendish Laboratory, and the paper's first author. 

"That's why we took on the challenge of creating a way to track the secret movements 

of quantum particles." 

Any particle will always interact with its environment, 'tagging' it along the way. Arvidsson-

Shukur, working with his co-authors Professor Crispin Barnes from the Cavendish Laboratory and 

Axel Gottfries, a Ph.D. student from the Faculty of Economics, outlined a way for scientists to 

map these 'tagging' interactions without looking at them. The technique would be useful to 
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scientists who make measurements at the end of an experiment but want to follow the 

movements of particles during the full experiment. 

Some quantum scientists have suggested that information can be transmitted between two 

people – usually referred to as Alice and Bob – without any particles travelling between them. In 

a sense, Alice gets the message telepathically. This has been termed counterfactual 

communication because it goes against the accepted 'fact' that for information to be carried 

between sources, particles must move between them. 

"To measure this phenomenon of counterfactual communication, we need a way to pin down 

where the particles between Alice and Bob are when we're not looking," said Arvidsson-Shukur. 

"Our 'tagging' method can do just that. Additionally, we can verify old predictions of quantum 

mechanics, for example that particles can exist in different locations at the same time." 

The founders of modern physics devised formulas to calculate the probabilities of different 

results from quantum experiments. However, they did not provide any explanations of what a 

quantum particle is doing when it's not being observed. Earlier experiments have suggested that 

the particles might do non-classical things when not observed, like existing in two places at the 

same time. In their paper, the Cambridge researchers considered the fact that any particle 

travelling through space will interact with its surroundings. These interactions are what they call 

the 'tagging' of the particle. The interactions encode information in the particles that can then be 

decoded at the end of an experiment, when the particles are measured. 

The researchers found that this information encoded in the particles is directly related to the 

wave function that Schrödinger postulated a century ago. Previously the wave function was 

thought of as an abstract computational tool to predict the outcomes of quantum experiments. 

"Our result suggests that the wave function is closely related to the actual state of particles," said 

Arvidsson-Shukur. "So, we have been able to explore the 'forbidden domain' of quantum 

mechanics: pinning down the path of quantum particles when no one is observing them." [17] 

 

Neutrons track quantum entanglement in copper elpasolite mineral  
A research team including Georgia Institute of Technology professor Martin Mourigal used 

neutron scattering at Oak Ridge National Laboratory to study copper elpasolite, a mineral that 

can be driven to an exotic magnetic state when subjected to very low temperatures and a high 

magnetic field. 

A better understanding of the mineral's magnetic moments and the associated quantum 

coherence effects could lead to new applications in spintronic devices and quantum computing 

technologies. 

"Studying the behavior of magnetic materials in extreme conditions such as very low 

temperatures and high magnetic fields is important to obtain a better fundamental 
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understanding of quantum materials, and to write the basic dictionary relating their microscopic 

structure to human-scale properties," Mourigal said. 

To reveal the material's magnetic structure, the team used the Neutron Powder Diffractometer 

and Polarized Triple Axis Spectrometer instruments at ORNL's High Flux Isotope Reactor—a DOE 

Office of Science User Facility. 

Neutrons are well suited for investigating magnetic materials given their sensitivity to the 

organization and dynamics of electrons' spins at the microscopic scale. 

"The goal of this experiment was to understand the magnetic structure of the material below its 

700 mK [millikelvins] transition," Mourigal explained. "We know that spins talk to each other, but 

we don't know what organized pattern they collectively choose or why." 

The researchers, led by project leader Art Ramirez at the University of California, Santa Cruz, 

recently published the results of their experiment in Nature Physics. The mineral sample was 

synthesized by Florida State University graduate student Lianyang Dong. [16] 

 

A single photon reveals quantum entanglement of 16 million atoms  
Quantum theory predicts that a vast number of atoms can be entangled and intertwined by a 

very strong quantum relationship, even in a macroscopic structure. Until now, however, 

experimental evidence has been mostly lacking, although recent advances have shown the 

entanglement of 2,900 atoms. Scientists at the University of Geneva (UNIGE), Switzerland, 

recently reengineered their data processing, demonstrating that 16 million atoms were 

entangled in a one-centimetre crystal. They have published their results in Nature 

Communications.  

The laws of quantum physics allow immediately detecting when emitted signals are intercepted 

by a third party. This property is crucial for data protection, especially in the encryption industry, 

which can now guarantee that customers will be aware of any interception of their messages. 

These signals also need to be able to travel long distances using special relay devices known as 

quantum repeaters—crystals enriched with rare earth atoms and cooled to 270 degrees below 

zero (barely three degrees above absolute zero), whose atoms are entangled and unified by a 

very strong quantum relationship. When a photon penetrates this small crystal block, 

entanglement is created between the billions of atoms it traverses. This is explicitly predicted by 

the theory, and it is exactly what happens as the crystal re-emits a single photon without 

reading the information it has received.  

It is relatively easy to entangle two particles: Splitting a photon, for example, generates two 

entangled photons that have identical properties and behaviours. Florian Fröwis, a researcher in 

the applied physics group in UNIGE's science faculty, says, "But it's impossible to directly 

observe the process of entanglement between several million atoms since the mass of data you 

need to collect and analyse is so huge."  
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As a result, Fröwis and his colleagues chose a more indirect route, pondering what 

measurements could be undertaken and which would be the most suitable ones. They examined 

the characteristics of light re-emitted by the crystal, as well as analysing its statistical properties 

and the probabilities following two major avenues—that the light is re-emitted in a single 

direction rather than radiating uniformly from the crystal, and that it is made up of a single 

photon. In this way, the researchers succeeded in showing the entanglement of 16 million 

atoms when previous observations had a ceiling of a few thousand. In a parallel work, scientists 

at University of Calgary, Canada, demonstrated entanglement between many large groups of 

atoms. "We haven't altered the laws of physics," says Mikael Afzelius, a member of Professor 

Nicolas Gisin's applied physics group. "What has changed is how we handle the flow of data."  

Particle entanglement is a prerequisite for the quantum revolution that is on the horizon, which 

will also affect the volumes of data circulating on future networks, together with the power and 

operating mode of quantum computers. Everything, in fact, depends on the relationship 

between two particles at the quantum level—a relationship that is much stronger than the 

simple correlations proposed by the laws of traditional physics.  

Although the concept of entanglement can be hard to grasp, it can be illustrated using a pair of 

socks. Imagine a physicist who always wears two socks of different colours. When you spot a red 

sock on his right ankle, you also immediately learn that the left sock is not red. There is a 

correlation, in other words, between the two socks. In quantum physics, an infinitely stronger 

and more mysterious correlation emerges—entanglement.  

Now, imagine there are two physicists in their own laboratories, with a great distance separating 

the two. Each scientist has a a photon. If these two photons are in an entangled state, the 

physicists will see non-local quantum correlations, which conventional physics is unable to 

explain. They will find that the polarisation of the photons is always opposite (as with the socks 

in the above example), and that the photon has no intrinsic polarisation. The polarisation 

measured for each photon is, therefore, entirely random and fundamentally indeterminate 

before being measured. This is an unsystematic phenomenon that occurs simultaneously in two 

locations that are far apart—and this is exactly the mystery of quantum correlations. [15]  

Physicists retrieve 'lost' information from quantum measurements  
Typically when scientists make a measurement, they know exactly what kind of measurement 

they're making, and their purpose is to obtain a measurement outcome. But in an "unrecorded 

measurement," both the type of measurement and the measurement outcome are unknown.  

Despite the fact that scientists do not know this information, experiments clearly show that 

unrecorded measurements unavoidably disturb the state of the system being measured for 

quantum (but not classical) systems. In classical systems, unrecorded measurements have no 

effect.  



Although the information in unrecorded measurements appears to be completely lost, in a 

paper published recently in EPL, Michael Revzen and Ady Mann, both Professors Emeriti at the 

Technion-Israel Institute of Technology, have described a protocol that can retrieve some of the 

lost information.  

The fact that it is possible to retrieve this lost information reveals new insight into the 

fundamental nature of quantum measurements, mainly by supporting the idea that quantum 

measurements contain both quantum and classical components.  

Previously, analysis of quantum measurement theory has suggested that, while a quantum 

measurement starts out purely quantum, it becomes somewhat classical when the quantum 

state of the system being measured is reduced to a "classical-like" probability distribution. At 

this point, it is possible to predict the probability of the result of a quantum measurement.  

As the physicists explain in the new paper, this step when a quantum state is reduced to a 

classical-like distribution is the traceable part of an unrecorded measurement—or in other 

words, it is the "lost" information that the new protocol retrieves. So the retrieval of the lost 

information provides evidence of the quantum-to-classical transition in a quantum 

measurement.  

"We have demonstrated that analysis of quantum measurement is facilitated by viewing it as 

being made of two parts," Revzen told Phys.org. "The first, a pure quantum one, pertains to the 

non-commutativity of measurements' bases. The second relates to classical-like probabilities.  

"This partitioning circumvents the ever-present polemic surrounding the whole issue of 

measurements and allowed us, on the basis of the accepted wisdom pertaining to classical 

measurements, to suggest and demonstrate that the non-commutative measurement basis may 

be retrieved by measuring an unrecorded measurement."  

As the physicists explain, the key to retrieving the lost information is to use quantum 

entanglement to entangle the system being measured by an unrecorded measurement with a 

second system. Since the two systems are entangled, the unrecorded measurement affects both 

systems. Then a control measurement made on the entangled system can extract some of the 

lost information. The scientists explain that the essential role of entanglement in retrieving the 

lost information affirms the intimate connection between entanglement and measurements, as 

well as the uncertainty principle, which limits the precision with which certain measurements 

can be made. The scientists also note that the entire concept of retrieval has connections to 

quantum cryptography.  

"Posing the problem of retrieval of unrecorded measurement is, we believe, new," Mann said. 

"The whole issue, however, is closely related to the problem of the combatting eavesdropper in 

quantum cryptography which aims, in effect, at detection of the existence of 'unrecorded 

measurement' (our aim is their identification).   

The issue of eavesdropper detection has been under active study for some time."  



The scientists are continuing to build on the new results by showing that some of the lost 

information can never be retrieved, and that in other cases, it's impossible to determine 

whether certain information can be retrieved.  

"At present, we are trying to find a comprehensive proof that the retrieval of the measurement 

basis is indeed the maximal possible retrieval, as well as to pin down the precise meaning of the 

ubiquitous 'undetermined' case," Revzen said. "This is, within our general study of quantum 

measurement, arguably the most obscure subject of the foundation of quantum mechanics." 

[14]  

Researchers blur the line between classical and quantum physics by 

connecting chaos and entanglement  
Using a small quantum system consisting of three superconducting qubits, researchers at UC 

Santa Barbara and Google have uncovered a link between aspects of classical and quantum 

physics thought to be unrelated: classical chaos and quantum entanglement. Their findings 

suggest that it would be possible to use controllable quantum systems to investigate certain 

fundamental aspects of nature.  

"It's kind of surprising because chaos is this totally classical concept—there's no idea of chaos in 

a quantum system," Charles Neill, a researcher in the UCSB Department of Physics and lead 

author of a paper that appears in Nature Physics. "Similarly, there's no concept of entanglement 

within classical systems. And yet it turns out that chaos and entanglement are really very 

strongly and clearly related."  

Initiated in the 15th century, classical physics generally examines and describes systems larger 

than atoms and molecules. It consists of hundreds of years' worth of study including Newton's 

laws of motion, electrodynamics, relativity, thermodynamics as well as chaos theory—the field 

that studies the behavior of highly sensitive and unpredictable systems. One classic example of 

chaos theory is the weather, in which a relatively small change in one part of the system is 

enough to foil predictions—and vacation plans—anywhere on the globe.  

At smaller size and length scales in nature, however, such as those involving atoms and photons 

and their behaviors, classical physics falls short. In the early 20th century quantum physics 

emerged, with its seemingly counterintuitive and sometimes controversial science, including the 

notions of superposition (the theory that a particle can be located in several places at once) and 

entanglement (particles that are deeply linked behave as such despite physical distance from 

one another).  

And so began the continuing search for connections between the two fields.  

All systems are fundamentally quantum systems, according Neill, but the means of describing in 

a quantum sense the chaotic behavior of, say, air molecules in an evacuated room, remains 

limited.  



Imagine taking a balloon full of air molecules, somehow tagging them so you could see them and 

then releasing them into a room with no air molecules, noted co-author and UCSB/Google 

researcher Pedram Roushan. One possible outcome is that the air molecules remain clumped 

together in a little cloud following the same trajectory around the room. And yet, he continued, 

as we can probably intuit, the molecules will more likely take off in a variety of velocities and 

directions, bouncing off walls and interacting with each other, resting after the room is 

sufficiently saturated with them.  

"The underlying physics is chaos, essentially," he said. The molecules coming to rest—at least on 

the macroscopic level—is the result of thermalization, or of reaching equilibrium after they have 

achieved uniform saturation within the system. But in the infinitesimal world of quantum 

physics, there is still little to describe that behavior. The mathematics of quantum mechanics, 

Roushan said, do not allow for the chaos described by Newtonian laws of motion.  

To investigate, the researchers devised an experiment using three quantum bits, the basic 

computational units of the quantum computer. Unlike classical computer bits, which utilize a 

binary system of two possible states (e.g., zero/one), a qubit can also use a superposition of 

both states (zero and one) as a single state.   

Additionally, multiple qubits can entangle, or link so closely that their measurements will 

automatically correlate. By manipulating these qubits with electronic pulses, Neill caused them 

to interact, rotate and evolve in the quantum analog of a highly sensitive classical system.  

The result is a map of entanglement entropy of a qubit that, over time, comes to strongly 

resemble that of classical dynamics—the regions of entanglement in the quantum map 

resemble the regions of chaos on the classical map. The islands of low entanglement in the 

quantum map are located in the places of low chaos on the classical map.  

"There's a very clear connection between entanglement and chaos in these two pictures," said 

Neill. "And, it turns out that thermalization is the thing that connects chaos and entanglement. It 

turns out that they are actually the driving forces behind thermalization.  

"What we realize is that in almost any quantum system, including on quantum computers, if you 

just let it evolve and you start to study what happens as a function of time, it's going to 

thermalize," added Neill, referring to the quantum-level equilibration. "And this really ties 

together the intuition between classical thermalization and chaos and how it occurs in quantum 

systems that entangle."  

The study's findings have fundamental implications for quantum computing. At the level of three 

qubits, the computation is relatively simple, said Roushan, but as researchers push to build 

increasingly sophisticated and powerful quantum computers that incorporate more qubits to 

study highly complex problems that are beyond the ability of classical computing—such as those 

in the realms of machine learning, artificial intelligence, fluid dynamics or chemistry—a quantum 

processor optimized for such calculations will be a very powerful tool.  



"It means we can study things that are completely impossible to study right now, once we get to 

bigger systems," said Neill. [13]  

New device lengthens the life of quantum information  
Yale University scientists have reached a milestone in their efforts to extend the durability and 

dependability of quantum information.  

For the first time, researchers at Yale have crossed the "break even" point in preserving a bit of 

quantum information for longer than the lifetime of its constituent parts. They have created a 

novel system to encode, spot errors, decode, and correct errors in a quantum bit, also known as 

a "qubit." The development of such a robust method of Quantum Error Correction (QEC) has 

been one of the biggest remaining hurdles in quantum computation.  

The findings were published online July 20 in the journal Nature.  

"This is the first error correction to actually detect and correct naturally occurring errors," said  

Robert Schoelkopf, Sterling Professor of Applied Physics and Physics at Yale, director of the Yale 

Quantum Institute, and principal investigator of the study. "It is just the beginning of using QEC 

for real computing. Now we need to combine QEC with actual computations."  

Error correction for quantum data bits is exceptionally difficult because of the nature of the 

quantum state. Unlike the "classical" state of either zero or one, the quantum state can be a 

zero, a one, or a superposition of both zero and one. Furthermore, the quantum state is so 

fragile that the act of observing it will cause a qubit to revert back to a classical state.  

Co-lead author Andrei Petrenko, who is a Yale graduate student, added: "In our experiment we 

show that we can protect an actual superposition and the QEC doesn't learn whether the qubit 

is a zero or a one, but can still compensate for the errors."  

The team accomplished it, in part, by finding a less complicated way to encode and correct the 

information. The Yale researchers devised a microwave cavity in which they created an even 

number of photons in a quantum state that stores the qubit. Rather than disturbing the photons 

by measuring them—or even counting them—the researchers simply determined whether there 

were an odd or even number of photons. The process relied on a kind of symmetry, via a 

technique the team developed previously.  

"If a photon is lost, there will now be an odd number," said co-lead author Nissim Ofek, a Yale 

postdoctoral associate. "We can measure the parity, and thus detect error events without 

perturbing or learning what the encoded quantum bit's value actually is."  

The cavity developed by Yale is able to prolong the life of a quantum bit more than three times 

longer than typical superconducting qubits today. It builds upon more than a decade of 

development in circuit QED architecture.  



Schoelkopf and his frequent Yale collaborators, Michel Devoret and Steve Girvin, have made a 

series of quantum superconducting breakthroughs in recent years, directed at creating 

electronic devices that are the quantum version of the integrated circuit. Devoret, Yale's F.W.  

Beinecke Professor of Physics, and Girvin, Yale's Eugene Higgins Professor of Physics and Applied  

Physics, are co-authors of the Nature paper. [12]  

Using lasers to make data storage faster than ever  
As we use more and more data every year, where will we have room to store it all? Our rapidly 

increasing demand for web apps, file sharing and social networking, among other services, relies 

on information storage in the "cloud" – always-on Internet-connected remote servers that store, 

manage and process data. This in turn has led to a pressing need for faster, smaller and more 

energy-efficient devices to perform those cloud tasks.  

Two of the three key elements of cloud computing, microchips and communications 

connections, are getting ever faster, smaller and more efficient. My research activity has 

implications for the third: data storage on hard drives.  

Computers process data, at its most fundamental level, in ones and zeroes. Hard disks store 

information by changing the local magnetization in a small region of the disk: its direction up or 

down corresponds to a "1" or "0" value in binary machine language.  

The smaller the area of a disk needed to store a piece of information, the more information can 

be stored in a given space. A way to store information in a particularly tiny area is by taking 

advantage of the fact that individual electrons possess magnetization, which is called their spin. 

The research field of spin electronics, or "spintronics," works on developing the ability to control 

the direction of electrons' spins in a faster and more energy efficient way.  

Shining light on magnets  

I work to control electrons' spins using extremely short laser pulses – one quadrillionth of a 

second in duration, or one "femtosecond." Beyond just enabling smaller storage, lasers allow 

dramatically faster storage and retrieval of data. The speed comparison between today's 

technology and femtosecond spintronics is like comparing the fastest bullet train on Earth to the 

speed of light.  

In addition, if the all-optical method is used to store information in materials that are 

transparent to light, little or no heating occurs – a huge benefit given the economic and 

environmental costs presented by the need for massive data-center cooling systems.  

Ultrafast laser-control of magnetism  

A decade ago, studies first demonstrated that laser pulses could control electron spins to write 

data and could monitor the spins to read stored data. Doing this involved measuring tiny 

oscillations in the electrons' magnetization. After those early investigations, researchers 



believed – wrongly, as it turned out – that lasers could not affect or detect fluctuations smaller 

than the wavelength of the lasers' own light. If this were true, it would not be possible to control 

magnets on a scale as short as one nanometer (one millionth of a millimeter) in as little time as a 

femtosecond.  

Very recently an international team of researchers of which I am a member has provided an 

experimental demonstration that such a limitation does not actually exist. We were able to 

affect magnets on as small as one nanometer in length, as quickly as every 45 femtoseconds. 

That's one ten-millionth the size, and more than 20,000 times as fast as today's hard drives 

operate.  

This suggests that future devices may be able to work with processing speeds as fast as 22 THz – 

1,000 times faster than today's GHz clock speeds in commercial computers. And devices could 

be far smaller, too.  

Novel scientific frontiers  

In addition to the practical effects on modern computing, the scientific importance of this 

research is significant. Conventional theories and experiments about magnetism assume that 

materials are in what is called "equilibrium," a condition in which the quantities defining a 

system (temperature, pressure, magnetization) are either constant or changing only very slowly.  

However, sending in a femtosecond laser pulse disrupts a magnet's equilibrium. This lets us 

study magnetic materials in real time when they are not at rest, opening new frontiers for 

fundamental research. Already, we have seen exotic phenomena such as loss or even reversal of 

magnetization. These defy our current understanding of magnetism because they are impossible 

in equilibrium states. Other phenomena are likely to be discovered with further research.  

Innovative science begins with a vision: a scientist is a dreamer who is able to imagine 

phenomena not observed yet. The scientific community involved in the research area of 

ultrafast magnetism is working on a big leap forward. It would be a development that doesn't 

mean just faster laptops but always-on, connected computing that is significantly faster, smaller 

and cheaper than today's systems. In addition, the storage mechanisms won't generate as much 

heat, requiring far less cooling of data centers – which is a significant cost both financially and 

environmentally. Achieving those new capabilities requires us to push the frontier of 

fundamental knowledge even farther, and paves the way to technologies we cannot yet 

imagine. [11]  

Scientists find surprising magnetic excitations in a metallic 

compound  
Some three-dimensional materials can exhibit exotic properties that only exist in "lower" 

dimensions. For example, in one-dimensional chains of atoms that emerge within a bulk sample, 

electrons can separate into three distinct entities, each carrying information about just one 



aspect of the electron's identity—spin, charge, or orbit. The spinon, the entity that carries 

information about electron spin, has been known to control magnetism in certain insulating 

materials whose electron spins can point in any direction and easily flip direction. Now, a new 

study just published in Science reveals that spinons are also present in a metallic material in 

which the orbital movement of electrons around the atomic nucleus is the driving force behind 

the material's strong magnetism.  

"In this bulk metallic compound, we unexpectedly found one-dimensional magnetic excitations 

that are typical of insulating materials whose main source of magnetism is the spin of its 

electrons," said physicist Igor Zaliznyak, who led the research at the U.S. Department of Energy's 

(DOE) Brookhaven National Laboratory. "Our new understanding of how spinons contribute to 

the magnetism of an orbital-dominated system could potentially lead to the development of 

technologies that make use of orbital magnetism—for example, quantum computing 

components such as magnetic data processing and storage devices."  

The experimental team included Brookhaven Lab and Stony Brook University physicists Meigan  

Aronson and William Gannon (both now at Texas A&M University) and Liusuo Wu (now at DOE's 

Oak Ridge National Laboratory), all of whom pioneered the study of the metallic compound 

made of ytterbium, platinum, and lead (Yb2Pt2Pb) nearly 10 years ago. The team used magnetic 

neutron scattering, a technique in which a beam of neutrons is directed at a magnetic material 

to probe its microscopic magnetism on an atomic scale. In this technique, the magnetic 

moments of the neutrons interact with the magnetic moments of the material, causing the 

neutrons to scatter. Measuring the intensity of these scattered neutrons as a function of the 

momentum and energy transferred to the material produces a spectrum that reveals the 

dispersion and magnitude of magnetic excitations in the material.  

At low energies (up to 2 milli electron volts) and low temperatures (below 100 Kelvin, or minus 

279 degrees Fahrenheit), the experiments revealed a broad continuum of magnetic excitations 

moving in one direction. The experimental team compared these measurements with 

theoretical predictions of what should be observed for spinons, as calculated by theoretical 

physicists Alexei Tsvelik of Brookhaven Lab and Jean-Sebastian Caux and Michael Brockmann of 

the University of Amsterdam. The dispersion of magnetic excitations obtained experimentally 

and theoretically was in close agreement, despite the magnetic moments of the Yb atoms being 

four times larger than what would be expected from a spin-dominated system.  

"Our measurements provide direct evidence that this compound contains isolated chains where 

spinons are at work. But the large size of the magnetic moments makes it clear that orbital 

motion, not spin, is the dominant mechanism for magnetism," said Zaliznyak.  

The paper in Science contains details of how the scientists characterized the direction of the 

magnetic fluctuations and developed a model to describe the compound's behavior. They used 

their model to compute an approximate magnetic excitation spectrum that was compared with 

their experimental observations, confirming that spinons are involved in the magnetic dynamics 

in Yb2Pt2Pb.  



The scientists also came up with an explanation for how the magnetic excitations occur in Yb 

atoms: Instead of the electronic magnetic moments flipping directions as they would in a 

spinbased system, electrons hop between overlapping orbitals on adjacent Yb atoms. Both 

mechanisms—flipping and hopping—change the total energy of the system and lead to similar 

magnetic fluctuations along the chains of atoms.  

"There is strong coupling between spin and orbital motion. The orbital alignment is rigidly 

determined by electric fields generated by nearby Pb and Pt atoms. Although the Yb atoms 

cannot flip their magnetic moments, they can exchange their electrons via orbital overlap," 

Zaliznyak said.  

During these orbital exchanges, the electrons are stripped of their orbital "identity," allowing 

electron charges to move independently of the electron orbital motion around the Yb atom's 

nucleus—a phenomenon that Zaliznyak and his team call charge-orbital separation.  

Scientists have already demonstrated the other two mechanisms of the three-part electron 

identity "splitting"—namely, spin-charge separation and spin-orbital separation. "This research 

completes the triad of electron fractionalization phenomena," Zaliznyak said. [10]  

Entanglement of Spin-12 Heisenberg Antiferromagnetic Quantum 

Spin Chains  
Currently studying entanglement in condensed matter systems is of great interest. This interest 

stems from the fact that some behaviors of such systems can only be explained with the aid of 

entanglement. The magnetic susceptibility at low temperatures, quantum phase transitions, 

chemical reactions are examples where the entanglement is key ingredient for a complete 

understanding of the system. Furthermore, in order to produce a quantum processor, the 

entanglement of study condensed matter systems becomes essential. In condensed matter, said 

magnetic materials are of particular interest. Among these we will study the ferromagnetism 

which are described by Heisenberg model. We use the Hilbert-Schmidt norm for measuring the 

distance between quantum states. The choice of this norm was due mainly to its application 

simplicity and strong geometric appeal. The question of whether this norm satisfies the 

conditions desirable for a good measure of entanglement was discussed in 1999 by C. Witte and 

M. Trucks. They showed that the norm of Hilbert-Schmidt is not increasing under completely 

positive trace-preserving maps making use of the Lindblad theorem. M. Ozawa argued that this 

norm does not satisfy this condition by using an example of a completely positive map which 

can enlarge the Hilbert Schmidt norm between two states. However this does not prove the fact 

that the entanglement measure based on the Hilbert-Schmidt norm is not entangled monotone. 

This problem has come up in several contexts in recent years. Superselection structure of 

dynamical semigroups, entropy production of a quantum chanel, condensed matter theory and 

quantum information are some examples. Several authors have been devoted to this issue in 

recent years and other work on this matter is in progress by the author and collaborators. The 



study of entanglement in Heisenberg chains is of great interest in physics and has been done for 

several years. [9]  

New electron spin secrets revealed: Discovery of a novel link 

between magnetism and electricity  
The findings reveal a novel link between magnetism and electricity, and may have applications in 

electronics.  

The electric current generation demonstrated by the researchers is called charge pumping. 

Charge pumping provides a source of very high frequency alternating electric currents, and its 

magnitude and external magnetic field dependency can be used to detect magnetic information.  

The findings may, therefore, offer new and exciting ways of transferring and manipulating data 

in electronic devices based on spintronics, a technology that uses electron spin as the 

foundation for information storage and manipulation.  

The research findings are published as an Advance Online Publication (AOP) on Nature 

Nanotechnology's website on 10 November 2014.  

Spintronics has already been exploited in magnetic mass data storage since the discovery of the 

giant magnetoresistance (GMR) effect in 1988. For their contribution to physics, the discoverers 

of GMR were awarded the Nobel Prize in 2007.  

The basis of spintronics is the storage of information in the magnetic configuration of 

ferromagnets and the read-out via spin-dependent transport mechanisms.  

"Much of the progress in spintronics has resulted from exploiting the coupling between the 

electron spin and its orbital motion, but our understanding of these interactions is still 

immature. We need to know more so that we can fully explore and exploit these forces," says 

Arne Brataas, professor at NTNU and the corresponding author for the paper.  

An electron has a spin, a seemingly internal rotation, in addition to an electric charge. The spin 

can be up or down, representing clockwise and counterclockwise rotations.  

Pure spin currents are charge currents in opposite directions for the two spin components in the 

material.  

It has been known for some time that rotating the magnetization in a magnetic material can 

generate pure spin currents in adjacent conductors.  

However, pure spin currents cannot be conventionally detected by a voltmeter because of the 

cancellation of the associated charge flow in the same direction.  

A secondary spin-charge conversion element is then necessary, such as another ferromagnet or 

a strong spin-orbit interaction, which causes a spin Hall effect.  



Brataas and his collaborators have demonstrated that in a small class of ferromagnetic 

materials, the spin-charge conversion occurs in the materials themselves.  

The spin currents created in the materials are thus directly converted to charge currents via the 

spin-orbit interaction.  

In other words, the ferromagnets function intrinsically as generators of alternating currents 

driven by the rotating magnetization.  

"The phenomenon is a result of a direct link between electricity and magnetism. It allows for the 

possibility of new nano-scale detection techniques of magnetic information and for the 

generation of very high-frequency alternating currents," Brataas says. [8]  

Simple Experiment  
Everybody can repeat my physics teacher's - Nándor Toth - middle school experiment, placing 

aluminum folios in form V upside down on the electric wire with static electric current, and 

seeing them open up measuring the electric potential created by the charge distribution, caused 

by the acceleration of the electrons.   

  

Figure 1.) Aluminium folios shows the charge distribution on the electric wire  

He wanted to show us that the potential decreasing linearly along the wire and told us that in 

the beginning of the wire it is lowering harder, but after that the change is quite linear.   

You will see that the folios will draw a parabolic curve showing the charge distribution along the 

wire, since the way of the accelerated electrons in the wire is proportional with the square of 

time. The free external charges are moving along the wire, will experience this charge 

distribution caused electrostatic force and repelled if moving against the direction of the electric 

current and attracted in the same direction – the magnetic effect of the electric current.   



Uniformly accelerated electrons of the steady current  
In the steady current I= dq/dt, the q electric charge crossing the electric wire at any place in the 

same time is constant. This does not require that the electrons should move with a constant v 

velocity and does not exclude the possibility that under the constant electric force created by 

the E = - dU/dx potential changes the electrons could accelerating.  

If the electrons accelerating under the influence of the electric force, then they would arrive to 

the x = 1/2 at2 in the wire. The dx/dt = at, means that every second the accelerating q charge 

will take a linearly growing length of the wire. For simplicity if a=2 then the electrons would 

found in the wire at x = 1, 4, 9, 16, 25 …, which means that the dx between them should be 3, 5, 

7, 9 …, linearly increasing the volume containing the same q electric charge. It means that the 

density of the electric charge decreasing linearly and as the consequence of this the U field is 

decreasing linearly as expected: -dU/dx = E = const.  

  

Figure 2.) The accelerating electrons created charge distribution on the electric wire  

This picture remembers the Galileo's Slope of the accelerating ball, showed us by the same 

teacher in the middle school, some lectures before. I want to thank him for his enthusiastic and 

impressive lectures, giving me the associating idea between the Galileo's Slope and the 

accelerating charges of the electric current.  

We can conclude that the electrons are accelerated by the electric U potential, and with this 

accelerated motion they are maintaining the linear potential decreasing of the U potential along 



they movement. Important to mention, that the linearly decreasing charge density measured in 

the referential frame of the moving electrons. Along the wire in its referential frame the charge 

density lowering parabolic, since the charges takes way proportional with the square of time.  

The decreasing U potential is measurable, simply by measuring it at any place along the wire. 

One of the simple visualizations is the aluminum foils placed on the wire opening differently 

depending on the local charge density. The static electricity is changing by parabolic potential 

giving the equipotential lines for the external moving electrons in the surrounding of the wire.   

Magnetic effect of the decreasing U electric potential  
One q electric charge moving parallel along the wire outside of it with velocity v would 

experience a changing U electric potential along the wire. If it experiencing an emerging 

potential, it will repel the charge, in case of decreasing U potential it will move closer to the 

wire. This radial electric field will move the external electric charge on the parabolic curve, on 

the equipotential line of the accelerated charges of the electric current. This is exactly the 

magnetic effect of the electric current. A constant force, perpendicular to the direction of the 

movement of the matter will change its direction to a parabolic curve.  

  
Figure 3.) Concentric parabolic equipotential surfaces around the electric wire causes 

the magnetic effect on the external moving charges  



Considering that the magnetic effect is F=q v x B, where the B is concentric circle around the 

electric wire, it is an equipotential circle of the accelerating electrons caused charge distribution. 

Moving on this circle there is no electric and magnetic effect for the external charges, since 

vxB=0. Moving in the direction of the current the electric charges crosses the biggest potential 

change, while in any other direction – depending on the angle between the current and velocity 

of the external charge there is a modest electric potential difference, giving exactly the same 

force as the v x B magnetic force.  

Getting the magnetic force from the F = dp/dt equation we will understand the magnetic field 

velocity dependency. Finding the appropriate trajectory of the moving charges we need simply 

get it from the equipotential lines on the equipotential surfaces, caused by the accelerating 

charges of the electric current. We can prove that the velocity dependent force causes to move 

the charges on the equipotential surfaces, since the force due to the potential difference 

according to the velocity angle – changing only the direction, but not the value of the charge's 

velocity.   

The work done on the charge and the Hamilton Principle  
One basic feature of magnetism is that, in the vicinity of a magnetic field, a moving charge will 

experience a force. Interestingly, the force on the charged particle is always perpendicular to the 

direction it is moving. Thus magnetic forces cause charged particles to change their direction of 

motion, but they do not change the speed of the particle. This property is used in high-energy 

particle accelerators to focus beams of particles which eventually collide with targets to produce 

new particles. Another way to understand this is to realize that if the force is perpendicular to 

the motion, then no work is done. Hence magnetic forces do no work on charged particles and 

cannot increase their kinetic energy. If a charged particle moves through a constant magnetic 

field, its speed stays the same, but its direction is constantly changing. [2]  

In electrostatics, the work done to move a charge from any point on the equipotential surface to 

any other point on the equipotential surface is zero since they are at the same potential. 

Furthermore, equipotential surfaces are always perpendicular to the net electric field lines 

passing through it. [3]  

Consequently the work done on the moving charges is zero in both cases, proving that they are 

equal forces, that is they are the same force.   

The accelerating charges self-maintaining potential equivalent with the Hamilton Principle and 

the Euler-Lagrange equation. [4]  

The Magnetic Vector Potential  
Also the A magnetic vector potential gives the radial parabolic electric potential change of the 

charge distribution due to the acceleration of electric charges in the electric current.   

Necessary to mention that the A magnetic vector potential is proportional with a, the 

acceleration of the charges in the electric current although this is not the only parameter.   



The A magnetic vector potential is proportional with I=dQ/dt electric current, which is 

proportional with the strength of the charge distribution along the wire. Although it is 

proportional also with the U potential difference I=U/R, but the R resistivity depends also on the 

cross-sectional area, that is bigger area gives stronger I and A. [7] This means that the bigger 

potential differences with smaller cross-section can give the same I current and A vector 

potential, explaining the gauge transformation.  

Since the magnetic field B is defined as the curl of A, and the curl of a gradient is identically zero, 

then any arbitrary function which can be expressed as the gradient of a scalar function may be 

added to A without changing the value of B obtained from it. That is, A' can be freely substituted 

for A where  

 
  

Such transformations are called gauge transformations, and there have been a number of 

"gauges" that have been used to advantage is specific types of calculations in electromagnetic 

theory. [5]   

Since the potential difference and the vector potential both are in the direction of the electric 

current, this gauge transformation could explain the self maintaining electric potential of the 

accelerating electrons in the electric current. Also this is the source of the special and general 

relativity.  

  

The Constant Force of the Magnetic Vector Potential  
Moving on the parabolic equipotential line gives the same result as the constant force of 

gravitation moves on a parabolic line with a constant velocity moving body.    

Electromagnetic four-potential  
The electromagnetic four-potential defined as:  

 SI units  cgs units  

 

in which ϕ is the electric potential, and A is the magnetic vector potential. [6] This is appropriate 

with the four-dimensional space-time vector (T, R) and in stationary current gives that the 

potential difference is constant in the time dimension and vector potential (and its curl, the 

magnetic field) is constant in the space dimensions.   



Magnetic induction  
Increasing the electric current I causes increasing magnetic field B by increasing the acceleration 

of the electrons in the wire. Since l=at, if the acceleration of electrons is growing, than the 

charge density dQ/dl will decrease in time, creating a –E electric field. Since the resistance of the 

wire is constant, only increasing U electric potential could cause an increasing electric current 

I=U/R=dQ/dt. The charge density in the static current changes linear in the time coordinates. 

Changing its value in time will causing a static electric force, negative to the accelerating force 

change. This explains the relativistic changing mass of the charge in time also.  

Necessary to mention that decreasing electric current will decrease the acceleration of the 

electrons, causing increased charge density and E positive field.  

The electric field is a result of the geometric change of the U potential and the timely change of 

the A magnetic potential:  

E = - dA/dt - dU/dr  

  

The acceleration of the electric charges proportional with the A magnetic vector potential in the 

electric current and also their time dependence are proportional as well. Since the A vector 

potential is appears in the equation, the proportional a acceleration will satisfy the same 

equation.  

Since increasing acceleration of charges in the increasing electric current the result of increasing 

potential difference, creating a decreasing potential difference, the electric and magnetic vector 

potential are changes by the next wave - function equations:  

   

  

The simple experiment with periodical changing U potential and I electric current will move the 

aluminium folios with a moving wave along the wire.  

The Lorentz gauge says exactly that the accelerating charges are self maintain their accelerator 

fields and the divergence (source) of the A vector potential is the timely change of the electric 

potential.   

  
Or  



.   

The timely change of the A vector potential, which is the proportionally changing acceleration of 

the charges will produce the negative electric field.  

Lorentz transformation of the Special Relativity  
In the referential frame of the accelerating electrons the charge density lowering linearly 

because of the linearly growing way they takes every next time period. From the referential 

frame of the wire there is a parabolic charge density lowering.  

The difference between these two referential frames, namely the referential frame of the wire 

and the referential frame of the moving electrons gives the relativistic effect. Important to say 

that the moving electrons presenting the time coordinate, since the electrons are taking linearly 

increasing way every next time period, and the wire presenting the geometric coordinate.   

The Lorentz transformations are based on moving light sources of the Michelson - Morley 

experiment giving a practical method to transform time and geometric coordinates without 

explaining the source of this mystery.   

The real mystery is that the accelerating charges are maintaining the accelerating force with 

their charge distribution locally. The resolution of this mystery that the charges are simply the 

results of the diffraction patterns, that is the charges and the electric field are two sides of the 

same thing. Otherwise the charges could exceed the velocity of the electromagnetic field.  

The increasing mass of the electric charges the result of the increasing inductive electric force 

acting against the accelerating force. The decreasing mass of the decreasing acceleration is the 

result of the inductive electric force acting against the decreasing force. This is the relativistic 

mass change explanation, especially importantly explaining the mass reduction in case of 

velocity decrease.  

  

Heisenberg Uncertainty Relation  
In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving 

electron in the atom accelerating in the electric field of the proton, causing a charge distribution 

on delta x position difference and with a delta p momentum difference such a way that they 

product is about the half Planck reduced constant. For the proton this delta x much less in the 

nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the 

greater proton mass.  



This means that the electron and proton are not point like particles, but has a real charge 

distribution.   

Wave – Particle Duality  
The accelerating electrons explains the wave – particle duality of the electrons and photons, 

since the elementary charges are distributed on delta x position with delta p impulse and 

creating a wave packet of the electron. The photon gives the electromagnetic particle of the 

mediating force of the electrons electromagnetic field with the same distribution of 

wavelengths.    

Atomic model  
The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of 

the proton and it's kinetic and potential energy will be constant. Its energy will change only 

when it is changing its way to another equipotential line with another value of potential energy 

or getting free with enough kinetic energy. This means that the Rutherford-Bohr atomic model is 

right and only the changing acceleration of the electric charge causes radiation, not the steady 

acceleration. The steady acceleration of the charges only creates a centric parabolic steady 

electric field around the charge, the magnetic field. This gives the magnetic moment of the 

atoms, summing up the proton and electron magnetic moments caused by their circular motions 

and spins.  

Fermions' spin  
The moving charges are accelerating, since only this way can self maintain the electric field 

causing their acceleration. The electric charge is not point like! This constant acceleration 

possible if there is a rotating movement changing the direction of the velocity. This way it can 

accelerate forever without increasing the absolute value of the velocity in the dimension of the  

  time and not reaching the velocity of the light.  

The Heisenberg uncertainty relation says that the minimum uncertainty is the value of the spin: 

1/2 h = dx dp or 1/2 h = dt dE, that is the value of the basic energy status, consequently related 

to the mo inertial mass of the fermions.  

The photon's 1 spin value and the electric charges 1/2 spin gives us the idea, that the electric 

charge and the electromagnetic wave two sides of the same thing, 1/2 – (-1/2) = 1.  

Fine structure constant  
  



The Planck constant was first described as the proportionality constant between the energy E of 

a photon and the frequency ν of its associated electromagnetic wave. This relation between the 

energy and frequency is called the Planck relation or the Planck–Einstein equation:  

  

  

Since the frequency ν, wavelength λ, and speed of light c are related by λν = c, the Planck 

relation can also be expressed as  

  

Since this is the source of the Planck constant, the e electric charge countable from the Fine 

structure constant. This also related to the Heisenberg uncertainty relation, saying that the mass 

of the proton should be bigger than the electron mass because of the difference between their 

wavelengths, since E = mc2.  

The expression of the fine-structure constant becomes the abbreviated  

  

This is a dimensionless constant expression, 1/137 commonly appearing in physics literature.  

This means that the electric charge is a result of the electromagnetic waves diffractions, 

consequently the proton – electron mass rate is the result of the equal intensity of the 

corresponding electromagnetic frequencies in the Planck distribution law.  

Planck Distribution Law  
The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! The weak interaction transforms an electric 

charge in the diffraction pattern from one side to the other side, causing an electric dipole 

momentum change, which violates the CP and time reversal symmetry.  

The Planck distribution law is temperature dependent and it should be true locally and globally. I 

think that Einstein's energy-matter equivalence means some kind of existence of 

electromagnetic oscillations enabled by the temperature, creating the different matter 

formulas, atoms, molecules, crystals, dark matter and energy.  

One way dividing the proton to three parts is, dividing his oscillation by the three direction of 

the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one plane 

oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation 

and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the three 

directions of coordinates and the proton is colorless. [1]  



Electromagnetic inertia and Gravitational attraction  
Since the magnetic induction creates a negative electric field as a result of the changing 

acceleration, it works as an electromagnetic changing mass.   

It looks clear that the growing acceleration results the relativistic growing mass - limited also 

with the velocity of the electromagnetic wave.    

The negatively changing acceleration causes a positive electric field, working as a decreasing 

mass.   

Since E = hν and E = mc2, m = hν /c2 that is the m depends only on the ν frequency. It means that 

the mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be 

that the mo inertial mass is the result of the spin, since this is the only accelerating motion of the 

electric charge. Since the accelerating motion has different frequency for the electron in the 

atom and the proton, they masses are different, also as the wavelengths on both sides of the 

diffraction pattern, giving equal intensity of radiation.  

If the mass is electromagnetic, then the gravitation is also electromagnetic effect caused by the 

magnetic effect between the same charges, they would attract each other if they are moving 

parallel by the magnetic effect.  

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths. Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as the measured effect of the force of the 

gravitation, since the magnetic effect depends on this closeness. This way the mass and the 

magnetic attraction depend equally on the wavelength of the electromagnetic waves.  

Conclusions  
The generation and modulation of high-frequency currents are central wireless communication 

devices such as mobile phones, WLAN modules for personal computers, Bluetooth devices and 

future vehicle radars. [8]  

Needless to say that the accelerating electrons of the steady stationary current are a simple 

demystification of the magnetic field, by creating a decreasing charge distribution along the 

wire, maintaining the decreasing U potential and creating the A vector potential experienced by 

the electrons moving by v velocity relative to the wire. This way it is easier to understand also 

the time dependent changes of the electric current and the electromagnetic waves as the 

resulting fields moving by c velocity.   

There is a very important law of the nature behind the self maintaining E accelerating force by 

the accelerated electrons. The accelerated electrons created electromagnetic fields are so 

natural that they occur as electromagnetic waves traveling with velocity c. It shows that the 

electric charges are the result of the electromagnetic waves diffraction.  



One of the most important conclusions is that the electric charges are moving in an accelerated 

way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so 

called spin, since they need at least an intrinsic acceleration to make possible they movement . 

The bridge between the classical and quantum theory is based on this intrinsic acceleration of 

the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the 

electric charges and the photon makes certain that they are both sides of the same thing. Basing 

the gravitational force on the magnetic force and the Planck Distribution Law of the 

electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the 

physical interactions.   
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