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Abstract

The Taylor series is an important tool in mathematical analysis and it has wide ranging applications
.Nevertheless there are inconsistent features related to it. The article intends to demonstrate such
features.

Introduction

The Taylor series is well known for its application in mathematics and in physics. The article brings out
some anomalous features about the Taylor expansion

Various Inconsistencies
Derivation 1

We expand f (x) in Taylor series!! about three distinct points x;,x, and x3 with the same increment h
assuming convergence for all three cases

h h? h3

[l +h) = fG) + 3 G) + 7 f7Ce) + 57 f7 G 4 (D)
h h? h3

fle +h) = f(xz) + Ef’(XZ) + Zf”(xz) + if"'(xz) +on(2)

h h? h3
fOrs 1) = flea) + 3 f" () + 57 7 () + 57 7 () + - . (3).

The increment ‘h’ in the above three equations may be arbitrary to the extent it does not upset
convergence.

Adding the last three equations we have

fOu+h)+fCe2 +h) + fxs + 1)
= FG) + FOx) + £ ) + I Gen) + £/e) + )

2 3

+ 2 [ Ce) + 1) + )] + 3

i [f,”(xl) + f”’(xz) + f///(x3)] (4)


mailto:palit.anamitra@gmail.com

Let x satisfy the following equation
fO) = fGer) + f(x2) + f(x3) (39)(5)

Equation (39) does not involve ‘h’explicitly

h h? h3
= fOn+ )+ f0+ 1)+ flg+h) = f0) + 37/ + 50 f7 () + 50 7 () + e

fx+h)+ f(xy +h) + f(xz + h) = f(x + h)(40)(6)

But h could be arbitrary. In fact we may very it continuously over a small interval without upsetting
convergence. On top of that there are many functions for which the corresponding Taylor expansion is
convergent for any arbitrary increment for example Sin x, Cos x, exp(x)

For the same x4, X, X3 and corresponding x as given by (39) we do have an infinite number of
equations of the type (40) for the various ‘h’ that comply with the convergence issue. . But (40) (6)does
not represent an identity. We do have a situation of a gross violation.

It follows from the Taylor’s expansion(from what we have discussed in the preceding part):
If
fGa) + fO) + fx2) = F ()
then
flr+h)+ fl +h)+ f(x; +h)=f(x+h)

subject to the issue f convergence that the Taylor expansion has to converge for the function f for x; +
h,x; + handx3 + h

The above inference ensuing from Taylor series does not hold in general[with the exception of the
exponential function:f (x) = e*]

If
Sin(xy) + Sin(x,) + Sin(xz) = Sin(x) (7)

By our choice the absolute value of the left side of the above should be less than or equal to unity

Then do we have the following for an arbitrary ‘h’, [arbitrary to the extent the absolute value of the left
side of the following should be less than or equal to unity]?

Sin(x, + h) + Sin(x, + h) + Sin(x3 + h) = Sin(x + h) (8)

Any arbitrary value of ‘h’ has to satisfy (42) subject to the convergence issue and that the absolute
value of the left side[of (42) ] should be less than or equal to unity.

The Convergence Condition:



If we consider the Taylor expansion of Sin(x + h) for

the1 h? £ (x)
ta, M+2D(n+1) fr(x)

We apply D’Alembert Test considering the absolute value of each term in the expansion. If this series
converges then the original series also converges.

1

f(n+2) (x) _ 0
O+ 2)(n+1)

fm(x)

tnsal _ | fE D) h? ~
il TG m+Dm+ D]
<1

lim,e h?| lim

The modified series consisting of positive terms converges. Hence the Taylor expansion also converges

. o D ()
for any arbitrary ‘h’[considering finite 00
achieved for the sin function]. Those terms for which f™(x) = 0 simply drop out of the series. We may

apply D’Alembert ratio test to the remaining terms.

for all n and n+1:choosing x in that way and this can be

1/n

We may alternatively think of Cauchy condition: if lim,,_,,u, "’ <1, then the series converges.

Against the Taylor series we form a series comprising the absolute values of the corresponding terms of
the Taylor series.

|x|™

B o)
o e\ Xl _
llmn—moT =0=>1lim e o =0=>lim_e Dtm =~ 0

n
Indeed lim,_, % = 0 implies that for every preassigned € > 0, no matter how small, we have N > 0

| x|
(nni/n

x|

n
such that for n > N we have, T <e=> <el/m=¢

. X n
For any arbitrary €’ > 0 no matter how small we can arrange for an € = €'1/" so that % <e=
x|

1 _ !
ani/m <el/m=¢

|f(n)(X)| =0=> (nl!)Lll/nlf(n)(x)ll/n =0

[x|™

If |£ ™ (x)| is bounded for all 'n’, lim,_e, —r

limy ooty ™ u,|Y/™ = 0

Derivation2

We consider



flx+2h)=f((x+h)+h) (9

Expanding about (x + h)

2 3
f(x+2h) = f(x+h) +%f’(x+h) +%f”(x+h)+%f”’(x+h)+---....(10)

Expanding about x = x

2h 4h? 8h3
fla+2m) = f0) + 1)+ —= () + =70 (11)

From (10) and (11)

h h? h3
f(x+h) +ﬂf’(x+ h)+5f”(x+h)+§f”’(x+h) +

2h h? 8h3
= f(x) +Ff’(x) +42—!f”(x) +?f’”(x) + e

fx+h)—fx)+h[f (x+h)—2f"(x)] +%h2[f”(x + h) —4f" (x)]

+%h3[f”’(x+h)—8f”’(x)]+---..=0(12)
f(x+h2_f(X)%+[f’(x+h)h— Zf’(x)]+%[f”(x+h)—4f”(x)]+%h[f”'(x+h)—8f”'(x)]
+.e..=0
fa+h)—f)1 &+ -f®] ) 1., "
- o - - Tyt h) = 4f" (0]

"‘%h[f”'(x +h) = 8" (x)] + h[.....] =0 (13)

Equation (5) is considered for h # 0. Even when we go for h — 0, h does not become equal to zero. It is
in the neighborhood of zero without becoming equal to zero]

[f(x - h; mAC) —f’(x)]%+ PGt hz —f@) +%[f”(x +h) — 4f" ()]

+ %h[f”'(x +h) = 8f""(x)] + Ah[.....] =0

[f'(x+h) - f'(x)]
h

Limh—>0

[f(x * hl)l mAC) - f’(x)] % + Limy_,

o Limy G+ 1) = 4" GO + 3 LimohIF” e+ ) — 8/ (OT 4 AL....]

=0 (14)



We are considering a function for which
Limp_oh[f"" (x + h) — 8f""(x)] + h[.....] =0

Then

h) —
FEABSEp| =376 =0

Ll.mh_)o

h 1 1
M[f(xm @) f’@‘)]ﬁ:z 100

[f(x+h}z—f(X) f()]
Limh_>0 h f”(x) (15)
We apply L’ Hospital’s rule!*? to obtain
d [f(x+h)— f(x)
a7 —f'(x)
Loy dh[ h : ] f,,(x)
d [f(x+h)— f(x)
a7 —f'(x)
Loy dh[ n : ] f,,(x)
d ! !
-l 1
Limy_, 1 = Ef (%)

1
5f() = 0(16)
As claimed we have brought out an aspect of inconsistency with Taylor Series.
Derivation 3

We may also consider the following

h h? h3 h™
f o +h) = fOxo) + 3 f (o) + 57 f (o) + 57 " (o) + ---Ff(") (xo + h8) (17)
Wewritex =xg +h=>h=x— X,
We consider the Taylor expansion of a function up to n terms[inclusive of the remainder term]

n—-1
f( o) + O ) ——f"(x0) + G- ) ———f""(x¢) + - +%f(n_1)(xo)

_l_(x_ xo)"

n!

@) = flxo) +-

f(”)(xo +6(n,x)(x — xo)) (18)



Next We consider the Taylor expansion of the same function up to n+1 terms[inclusive of the remainder
term]

3 _ n-1
FG) = Flxo) + S ) + )fTOYJ “)fm(>+m+gﬁ{%ﬁ—ﬂ““@)
4fx “)fw<w+f%§§%rfmﬂw%+em+1JXx—%n(w)
Subtracting (18) from (19) we have,
i xO) ———f™(xp) + %f(”“)(xo +0(m+1,x)(x — x0))
Wf(”) (xo +0(n,x)(x— xo))(ZO)

(x xo) (x — x)"**

T FOHD (xg + 0+ 1,x)(x — x0))

[ ™ (x0 + 8(n, x)(x — x0)) — F™ (x)] =

FOHD (x +0(n + 1,x) (x — xp))

(n) (xo + Q(n x)(x — xo)) f(n) (Xo) = n+ 1

For x = x, the above equation is satisfied. It is also satisfied for other values of x inclusive of those
arbitrarily close to x;.

f(")(xo +6(n,x)(x — xo)) - f(n)(xo) 1

— _n+1f(n+1)(x0+9(n+1,x)(x—xo)) (21)

Equation (21) is undefined for x = x,

lim £ (xo 4+ 6(n,x)(x — x0)) — £ (x¢) xo +0(n,x)(x —xg) — xo]

X0 + 0(n,x)(x — xo) — xo X — X

limye f ™Y (%0 + 0(n + 1, %) (x — x0))

n+1

f(n)(xo +6(n,x)(x — xo)) —f(n) (x0)

X0+ 0(n,x)(x —x5) — xq

x 0(n, x)]

limy [

1
== limx_)xof(n”) (xo +0(n + 1,x)(x — xp))



£ (x + 0(n,0) (x — x0)) — f™ (xp)
0(n,x)(x — xp)

limy_,x, X limy_,, 6(n, x)

1
= limx_,xof(’”l) (xo +8(n + 1,x) (x — x0))(22)

n+1
Now
limy_x, [0 + 6(n,x)(x — x0)] = x0 (23)
Also
0(n,x) = ¥ ~Xo
X — X

Indeed x, + 8(n, x)(x — xy) = x' is a point between xy and xo + h;h = x — xg;x = xg + h

, , x' —xg
limy_, 0(n,x) = limy_, ———
X — X

As x = xy we have x’ - x,

!
x" —xq
:1

limy_, 0(n,x) = lim,_,,,
X — Xg

limy_, 0(n,x) =1 (24)
limy_, 0(n +1,x) = 1(25)
W e recall (22) and proceed as delineated below

£® (x0 + 0(n, %) (x —x0)) — £ ™ (x0)
0 (n,x)(x — xg)

1
== limxﬁxof(n“) (xo +0(n +1,x)(x — x,))

f(”) (xo +0(n,x)(x — xo)) — f(") (x0) y (xo +0(n,x)(x — xo)) — X
(x0 + 8(n, x)(x — x0)) — %o X — X

limyey, X limy_,,,0(n,x)

limy_y,

limy oy, f ™ (x0 + 6(n, %) (x — xo))

n+1

£ (xo + 6 (n, %) (x — x0)) — £ (x0) .
(XO + H(n, x)(x — xo)) — X X—>Xg
1

= limx_)xof(”“)(xo +0(n,x)(x — x0))

(xo +0(n,x)(x — xo)) — X
X — Xo

limyey,




xo—x0+0(n,x)(x—x0) 1

f(n+1) (xo)limx—mo f(n+1) (xo)

X — Xg X — Xg Tn+1
(n+1) : 1 (n+1)
f (xO)llmx—wco [0+ 6(n,x)] = n__|_1f (x0)
(n+1)( )l' 2] — 1 (n+1)( )
f Xo lmx—)xo (n, x) - n+ 1f Xo
Recalling (50) we obtain

FORD ) 1 = —— D () = 4D (x0) = 0(26)

Derivation 4
We consider the equations:
3 x5 47 9
Slnx=x—§+§—ﬁ—a+ (26)
2 44 46 8
Cosx=1—a+z—a+§+ (27)
Solutions to
Sinx =0 (28)
or

Cosx=1=1—-Cosx =0 (29)

aregivenby x = 2nm; k € ]

By way of approximation we truncate (26) and (27) after a very large number of terms so that the
following two equations hold on some interval reduce to

9 2n-1

Ginx = ¥ x5 X7 x (i X 30
lnx~x—§+a—ﬁ—a+'“...— m()
C ~1——2+x—4—£+—8+ (—pntt i 31
OSXE T T el T T o GV
1—Cosx x x3 x> x7 «x° x2n-1
Mo 4 T (D™ —— (32)

x 2! 4! 6! 8! 10! (2n1)!



Solutions for

. 1—Cosx
Sink =——

are given by

x=2km;k€l;k+0

. 1—-Cosx
Sink = ——
implies in an approximate sense
¥ x5 x7 O x2n-1 x 23 x5 x7 %0 2n-1
X——F=——=—— +en DM = — —— — — 4 ... (=D
3! 51 71 9l 2n—-1)! 2! 4! 6! 8! 10! (2nh)!

Ax(x —a)(x —ay)(x —az) ....(x — a,) = Bx(x — B)(x — B)(x — B3) .....(x — Br) (33)
Butf{a;;i =1,2..n} ={B;;i =1,2..n};a; = B; = 2in
>A=B

1-Cos x

When we consider the two truncated series for Sinx and for we look out for n+k roots[out of an

infinitude of them] that satisfy it sufficiently well. When we factorize each series we consider ‘n’ terms
for both the series for a; = ;. For ‘X’ we use some other root from the ‘k’ roots we have set aside in
order to prove A = B

The values A and B are independent of the choice of x and hence their ratio is also independent of the
choice of x when the sine or cosine series is considered for a finite number of terms.

The values of A and B are approximately equal irrespective of the value of x. We investigate this further
by considering the polynomials to the right of (30)and (32)for arbitrary x when equation (33) may not
hold.

Coefficient for the lowest degree forsinx=A[[j=;a; =1

Coefficient for the lowest degree forl_c;)s *=B |J T %

ButA = B = [[Y; a; = 2]I}-, B; irrespective of the values of x



1

Coefficient for the highest degree term for sin x=4 = (—=1)"*1 Ty

. . . 1-Cosx_, _1\n+1 1 1 \n+1 1
Coefficient for the highest degree for ~ =B = (-1) —(Zn)!—( 1) P

A =~ 2nB
which contradicts our earlier conclusion that A = B

[One has to keep in mind that since we have considered a truncated series; ‘n’ has a fixed value and
each of the sine and the cosine series has been approximated to a polynomial]

Derivation 5

We may try out testing he identity Sin®x + Cos?x = 1 using the Taylor expansion
2 2

3 x5 X7 xz x* x° B
x—aﬁ-a—ﬂ-l-"'. + I—E-I-Z—a-l-"'. =1

Cancelling out unity from either side we obtain an in finite power series in the even powers of x. The
coefficients are not identically zero. We do not have an identity as such

Derivation 6

. x x? x? x™

e —1+ﬂ+5+5+---+5+en(x)
We define f(x,n) as follows:

3 x x% x? x™
f(x,n)—1+ﬁ+§+§+---+ﬁ

xn

f(x,n)—f(x,n—1)=g

We make f(x,n) a smooth[obviously continuous) with respect to ‘n’ by interpolation with a suitable
curve where n is positive everywhere .

af (x,n) 6f(x,n—1)_xnlnx L, a1
on on T onl + dn(n_) (34)

of(x,n) df(x,n—1) x"lnx 1[1 1 1 ]
on on ol n!ln n—1+n—2+m1 (35)

In the above n! = n(n — 1) ....up to |n| terms. The equation considers right handed derivatives
exclusively.

10



11

For large ‘n’ the left side of (35) is zero: f(x,n) = f(x,n — 1) = e*

Therefore,

I x"Inx n1[1+ 1 N 1 N 1] o
HMn—eo |70, Yl Th—1 T n=2 B

That is to say that in the limit ,n tending to infinity,irrespective of the value of x,x very large or very small

Inx 1[1 1 4 1 4 1]
n nlln n-1 n-2
1 [1+ ! + ! + 1]
nan n—-1 n-2

For n tending to infinity the right side blows up while the left side is a variable depending on the value of

‘o,

X
We have a strange result
1 1 1

X~ e[ﬁ+ﬁ+ﬁ+'”1] ; i very large but constant in value (36)

NB: For testing ,in the above, we have taken a very large but fixed value of x so as to ensure that we

have an approximation with (35)..[% + § + i + o = 0]

Derivation 7

Sin2¢ = Sin(2m + 2) = Sin(4w + 2) = Sin(6m + 2) = —=Sin(2w — 2) = —Sin(4m — 2)
= —Sin(6m — 2) (37)

Testing the above fails. | tried it with a Blue Java program[Blue Java, University of Kent, Version 3.1.5.
|Disagreement starts from the thirteenth place of decimal while using the double variable[Blue compiler
consider 16 significant places for the double variable]

[200000 terms of sine series considered in the program initially for each case and later 2000000 terms of
the sine series were considered;there was no change in the values of sine;all angles in radians as
required of the sine series]

For |Sin(2m + 2)| = Sin(2m — 2) differences start from the thirteenth place
For |Sin(2m + 4)| = Sin(2m — 4) differences start from the thirteenth place
For |Sin(2m + 6)| = Sin(2m — 6) differences start from the tenth place

Program[Blue Java, version 3.1.5,University of Kent]



import java.lang.*;
import java.util.Scanner;
class Sin_Verif2
{
public static void main(String [] args)
{
double pi;

pi=3.14159265358979323846;

System.out.printin("pi="+pi);
double x;
x=2%pi-2;

double arr[]={x,x+4,x-2,x+6,x-4,x+8};

double i;

double j;

double sum;

double t;

for(int k=0;k<=5;k++)

{

t=arr[k];

sum=0;

12



for(i=1;i<=2000000;i++)
{
sum=sum-+t;
j=2%i+1;
t=((-1)*t*arr{k]*arr[k])/(* (-1));

//in the above line we have effectively used the recursion t(n+1)=(-1)t(n)x"*2/n(n+1)

}

System.out.printin("\n sum: "+sum);

hi

Another program to verify that it considers 16 signifcant digits[sometimes seventeen??]
import java.lang.*;
import java.util.Scanner;
class Novemberl
{

public static void main(String [] args)

{

double x;

x=0.00000000000000012345678978652345654;

System.out.printin(x);
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Conclusion
As claimed at the outset the article brings out some anomalous features about the Taylor expansion
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